Evaluation of Aqueous and Ethanolic Extracts for the Green Synthesis of Zinc Oxide Nanoparticles from Tradescantia spathacea
Abstract
1. Introduction
2. Materials and Methods
2.1. Purple Maguey Leaves Preparation
2.2. Method to Obtain the Aqueous Extract
2.3. Method to Obtain the Ethanolic Extract
2.4. Determination of Phenolic and Antioxidant Compounds in the Extracts
2.4.1. Total Phenol Content
2.4.2. Total Flavonoid Content
2.4.3. Evaluation of Antioxidant Capacity
2.5. Synthesis of ZnO Nanoparticles
2.6. Characterization of ZnO NPs
3. Results and Discussion
3.1. UV-Vis Characterization of the Purple Maguey Extracts
3.2. Characterizations of ZnO NPs Obtained by Green Synthesis
3.2.1. UV-Vis Spectrophotometry
3.2.2. XRD Characterization
3.2.3. SEM Analysis
3.2.4. FTIR Analysis
3.2.5. DLS and Z Potential Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castañeda-Naranjo, L.A.; Palacios-Neri, J. Nanotechnology: Source of new paradigms. Mundo Nano Rev. Interdiscip. Nanocienc. Nanotecnol. 2014, 7, 49–65. [Google Scholar]
- Ijaz, I.; Gilani, E.; Nazir, A.; Bukhari, A. Detail review on chemical, physical and green synthesis, classification, characteriza-tions and applications of nanoparticles. Green Chem. Lett. Rev. 2020, 13, 223–245. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajjadi, M.; Sajadi, S.M.; Issaabadi, Z. Green Nanotechnology. Interface Sci. Technol. 2019, 28, 145–198. [Google Scholar]
- Saleh, T.A. Nanomaterials: Classification, properties, and environmental toxicities. Environ. Technol. Innov. 2020, 20, 101067. [Google Scholar] [CrossRef]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Krol, A.; Pomastowski, P.; Rafinska, K.; Railean-Plugaru, V.; Buszewski, B. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Adv. Colloid Interface Sci. 2017, 249, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M. Zinc oxide nanoparticles: Green synthesis, characterization and biomedical applications. Mater. Sci. Energy Technol. 2021, 4, 532–545. [Google Scholar]
- Ahmed, S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci. 2016, 9, 1–7. [Google Scholar] [CrossRef]
- Bekele, S.G.; Ganta, D.D.; Endashaw, M. Green synthesis and characterization of zinc oxide nanoparticles using Monoon longifolium leave extract for biological applications. Discov. Chem. 2024, 1, 5. [Google Scholar] [CrossRef]
- Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011, 13, 2638–2650. [Google Scholar] [CrossRef]
- Amrulloh, H.; Fatiqin, A.; Simanjuntak, W.; Afriyani, H.; Annissa, A. Antioxidant and antibacterial activities of magnesium oxide nanoparticles prepared using aqueous extract of Moringa oleifera bark as green agents. J. Multidiscip. Appl. Nat. Sci. 2021, 1, 44–53. [Google Scholar] [CrossRef]
- Alamdari, S. Solvent effect on the phytochemical composition and antioxidant activity of plant extracts: A systematic review. Food Chem. 2019, 286, 429–436. [Google Scholar]
- Bouttier-Figueroa, D.C.; Cortez-Valadez, M.; Flores-Acosta, M.; Robles-Zepeda, R.E. Green Synthesis of Zinc Oxide Nanoparticles Using Plant Extracts and Their Antimicrobial Activity. BioNanoScience 2024, 14, 3385–3400. [Google Scholar] [CrossRef]
- Khan, F.; Shariq, M.; Asif, M.; Siddiqui, M.A.; Malan, P.; Ahmad, F. Green Nanotechnology: Plant-Mediated Nanoparticle Synthesis and Application. Nanomaterials 2022, 12, 673. [Google Scholar] [CrossRef] [PubMed]
- Thi, T.U.D.; Nguyen, T.T.; Thi, Y.D.; Thi, K.H.T.; Phan, B.T.; Pham, K.N. Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities. RSC Adv. 2020, 10, 23899–23907. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S. Green synthesis and characterization of zinc oxide nanoparticles using Tradescantia pallida leaf extract and its antimicrobial activity. Mater. Today Proc. 2020, 46, 7474–7477. [Google Scholar]
- Butnariu, M.; Quispe, C.; Herrera-Bravo, J.; Fernández-Ochoa, Á.; Emamzadeh-Yazdi, S.; Adetunji, C.O.; Memudu, A.E.; Otlewska, A.; Bogdan, P.; Antolak, H.; et al. A Review on Tradescantia: Phytochemical Constituents, Biological Activities and Health-Promoting Effects. Front. Biosci. 2022, 27, 197. [Google Scholar] [CrossRef] [PubMed]
- Cano, J. Phytochemical profile and antioxidant activity of Tradescantia spathacea. Rev. Mex. Cienc. Farm. 2018, 49, 25–33. [Google Scholar]
- Matussin, S.N.; Tan, A.L.; Harunsani, M.H.; Mohammad, A.; Cho, M.H.; Khan, M.M. Effect of Ni-doping on properties of the SnO2 synthesized using Tradescantia spathacea for photoantioxidant studies. Mater. Chem. Phys. 2020, 252, 123–293. [Google Scholar] [CrossRef]
- Muñoz-Echeverri, L.; Campo-Avendaño, D.; Hoyos-García, M.; Obregón-Velázquez, M.; Muñoz-Vergara, J.; Giraldo-Correa, G. Green synthesis of ZnO nanoparticles with antibacterial activity for functionalizing cotton textiles. Inf. Técnico 2021, 85, 126–145. [Google Scholar]
- Gberikon, G.M.; Adeoti, L.I.; Aondoackaa, A.D. Effect of ethanol and aqueous solutions as extraction solvents on phytochemical screening and antibacterial activity of fruit and stem bark of Tetrapleura tetrapteraon, Streptococcus salivarus and Streptococcus mutans. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 404–410. [Google Scholar]
- Ramos-Arcos, S.A.; López-Martínez, S.; Velázquez-Martínez, J.R.; Gómez-Aguirre, Y.A.; Cabañas-García, E.; Morales-Bautista, C.M. Phytochemicals and Bioactivities of Tradescantia zebrina Bosse: A Southern Mexican Species with Medicinal Properties. J. Food Nutr. Res. 2023, 11, 564–572. [Google Scholar] [CrossRef]
- Ramírez-Rodríguez, S.C.; Ortega-Ortiz, H.; Fortis-Hernández, M.; Nava-Santos, J.M.; Orozco-Vidal, J.A.; Preciado-Rangel, P.P. Chitosan nanoparticles improve the nutraceutical quality of triticale sprouts. Rev. Mex. Cienc. Agrícolas 2021, 12, 579–589. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Jayachandran, A.; Aswathy, T.R.; Nair, A.S. Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract. Biochem. Biophys. Rep. 2021, 26, 100995. [Google Scholar] [CrossRef] [PubMed]
- Handago, D.; Zereffa, E.; Gonfa, B. Effects of Azadirachta indica Leaf Extract, Capping Agents, on the Synthesis of Pure and Cu Doped ZnO-Nanoparticles: A Green Approach and Microbial Activity. Open Chem. 2019, 17, 246–253. [Google Scholar] [CrossRef]
- Bhuyan, T.; Mishra, K.; Khanuja, M.; Prasad, R.; Varma, A. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater. Sci. Semicond. Process. 2015, 32, 55–61. [Google Scholar] [CrossRef]
- Khan, A.U.H.; Liu, Y.; Naidu, R.; Fang, C.; Dharmarajan, R.; Shon, H. Interactions between zinc oxide nanoparticles and hexabromocyclododecane in simulated Waters. Environ. Technol. Innov. 2021, 24, 102078. [Google Scholar] [CrossRef]
- Malik, G.; Mitra, J. Zinc oxide nanoparticle synthesis, characterization, and their effect on mechanical, barrier, and optical properties of HPMC-based edible film. Food Bioprocess Technol. 2021, 14, 441–456. [Google Scholar] [CrossRef]
- Gómez-Garzón, M. Nanomateriales, nanopartículas y síntesis verde. Rev. Repert. Med. Cir. 2018, 27, 75–80. [Google Scholar] [CrossRef]
- Tan, J.B.L.; Yap, W.J.; Tan, S.Y.; Lim, Y.Y.; Lee, S.M. Antioxidant content, antioxidant activity, and antibacterial activity of five plants from the Commelinaceae family. Antioxidants 2016, 3, 758–769. [Google Scholar] [CrossRef] [PubMed]
- Rosales-Reyes, T.; de la Garza, M.; Arias-Castro, C.; Rodríguez-Mendiola, M.; Fattel-Fazenda, S.; Arce-Popoca, E. Aqueous crude extract of Rhoeo discolor, a Mexican medicinal plant, decreases the formation of liver preneoplastic foci in rats. J. Ethnopharmacol. 2008, 115, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, A.M.; Carmona, M.; Prodanov, M.; Alonso, G.L. Effect of centrifugal ultrafiltration on the composition of aqueous extracts of saffron spice (Crocus sativus L.). J. Agric. Food Chem. 2008, 56, 7293–7301. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, S.; Mahendiran, D.; Viswanathan, V.; Velmurugan, D.; Rahiman, A.K. Heteroscorpionate-based heteroleptic copper(II) complexes: Antioxidant, molecular docking and in vitro cytotoxicity studies. Appl. Organomet. Chem. 2017, 31, e3809. [Google Scholar] [CrossRef]
- Singh, V.; Lehri, A.; Singh, N. Assessment and comparison of phytoremediation potential of selected plant species against endosulfan. Int. J. Environ. Sci. Technol. 2019, 16, 3231–3248. [Google Scholar] [CrossRef]
- Ankamwar, B.; Kirtiwar, S.; Shukla, A.C. Plant-mediated green synthesis of nanoparticles. In Advances in Pharmaceutical Biotechnology; Patra, J., Shukla, A., Das, G., Eds.; Springer: Singapore, 2020; p. 17. [Google Scholar]
- Ghamsari, M.S.; Alamdari, S.; Han, W.; Park, H. Impact of nanostructured thin ZnO film in ultraviolet protection. Int. J. Nanomed. 2016, 12, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Muthu, K.; Priya, S. Green synthesis, characterization and catalytic activity of silver nanoparticles using Cassia auriculata flower extract separated fraction. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 179, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Dutta, T.; Kim, K.H. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnol. 2018, 16, 84. [Google Scholar] [CrossRef] [PubMed]
- Mukunthan, K.S.; Balaji, S. Cashew apple juice (Anacardium occidentale L.) speeds up the synthesis of silver nanoparticles. Int. J. Green Nanotechnol. 2012, 4, 71–79. [Google Scholar] [CrossRef]
- Love, A.J.; Makarov, V.V.; Sinitsyna, O.V.; Shaw, J.; Yaminsky, I.V.; Kalinina, N.O. Genetically modified tobacco mosaic virus that can produce gold nanoparticles from a metal salt precursor. Front. Plant Sci. 2015, 6, 984. [Google Scholar] [CrossRef] [PubMed]
- El-Beltagi, H.S.; Ragab, M.; Osman, A.; El-Masry, R.A.; Alwutayd, K.M.; Althagafi, H. Biosynthesis of zinc oxide nanoparticles via neem extract and their anticancer and antibacterial activities. PeerJ 2024, 12, e17588. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.F.; Islam, S.; Miah, M.A.S.; Huq, A.K.O.; Saha, A.K.; Mou, Z.J. Green synthesis of zinc oxide nanoparticles using Allium cepa L. waste peel extracts and its antioxidant and antibacterial activities. Heliyon 2024, 10, e25430. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Cao, X.; Chen, C.; Liao, L.; Yuan, S.; Huang, S. Green synthesis of zinc oxide nanoparticles using aqueous extracts of Hibiscus cannabinus L.: Wastewater purification and antibacterial activity. Separations 2023, 10, 466. [Google Scholar] [CrossRef]
- Abdelbaky, A.S.; El-Mageed, T.A.; Babalghith, A.O.; Selim, S.; Mohamed, A.M.H.A. Green synthesis and characterization of ZnO nanoparticles using Pelargonium odoratissimum (L.) aqueous leaf extract and their antioxidant, antibacterial, and anti-inflammatory activities. Antioxidants 2022, 11, 1444. [Google Scholar] [CrossRef] [PubMed]
- Bindu, P.; Thomas, S. Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 2014, 8, 123–134. [Google Scholar] [CrossRef]
- Fardood, S.T.; Ramazani, A.; Moradi, S.; Asiabi, P.A. Green synthesis of zinc oxide nanoparticles using Arabic gum and photocatalytic degradation of direct blue 129 dye under visible light. J. Mater. Sci. Mater. Electron. 2017, 28, 13596–13601. [Google Scholar] [CrossRef]
- Vinayagam, R.; Selvaraj, R.; Arivalagan, P.; Varadavenkatesan, T. Synthesis, characterization, and photocatalytic dye degradation capability of Calliandra haematocephala-mediated zinc oxide nanoflowers. J. Photochem. Photobiol. B Biol. 2020, 203, 111760. [Google Scholar] [CrossRef] [PubMed]
- Dulta, K.; Koşarsoy-Ağçeli, G.; Chauhan, P.; Jasrotia, R.; Chauhan, P.K. A novel approach of synthesis zinc oxide nanoparticles by Bergenia ciliata rhizome extract: Antibacterial and anticancer potential. J. Inorg. Organomet. Polym. Mater. 2021, 31, 180–190. [Google Scholar] [CrossRef]
- Cross, J.O.; Opila, R.L.; Boyd, I.W.; Kaufmann, E.N. Materials characterization and the evolution of materials. MRS Bull. 2015, 40, 1019–1034. [Google Scholar] [CrossRef]
- Gençyılmaz, O.; Navruz, F.Z.; İnce, S.; Abbas, A.A.; Salim, A.H.S. Comparative evaluation of zinc oxide nanoparticles (ZnONPs): Photocatalysis, antibacterial, toxicity and genotoxicity. J. Photochem. Photobiol. A Chem. 2024, 456, 115847. [Google Scholar] [CrossRef]
- Sachin, J.; Singh, N.; Singh, R.; Shah, K.; Pramanik, B.-K. Green synthesis of zinc oxide nanoparticles using lychee peel and its application in anti-bacterial properties and CR dye removal from wastewater. Chemosphere 2023, 327, 138497. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Singh, J.; Rawat, M. Green synthesis of zinc oxide nanoparticles using Punica granatum leaf extract and its application towards photocatalytic degradation of Coomassie brilliant blue R-250 dye. SN Appl. Sci. 2016, 1, 624. [Google Scholar] [CrossRef]
- Hwang, N.M.; Jung, J.-S.; Lee, D.K. Thermodynamics and Kinetics in the Synthesis of Monodisperse Nanoparticles; InTechOpen: London, UK, 2012. [Google Scholar] [CrossRef]
- Jesús, E.R.; Aguilar-Méndez, M.A.; López-Perea, P.; Guzmán-Mendoza, J.; Hernández-Martínez, V.; Quiroz-Reyes, N. Synthesis of silver nanoparticles using aqueous tejocote extracts as reducing and passivating agent. Ing. Agrícola Biosist. 2018, 10, 67–75. [Google Scholar] [CrossRef]
- Alamdari, S.; Sasani-Ghamsari, M.; Lee, C.; Han, W.; Park, H.H.; Tafreshi, M.J. Preparation and characterization of zinc oxide nanoparticles using leaf extract of Sambucus ebulus. Appl. Sci. 2020, 10, 3620. [Google Scholar] [CrossRef]
- Farooq, A.; Khan, U.A.; Ali, H.; Sathish, M.; Naqvi, S.A.H.; Iqbal, S. Green chemistry-based synthesis of zinc oxide nanoparticles using plant derivatives of Calotropis gigantea (Giant milkweed) and its biological applications against various bacterial and fungal pathogens. Microorganisms 2022, 10, 2195. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Zhang, T.; Ji, B.; Chou, Y. Green synthesis of zinc oxide nanoparticles using Aloe vera leaves extract and evaluation of ALE-ZnO/regenerated cellulose films antibacterial, antioxidant properties. Preprint 2023, 1, 2–16. [Google Scholar]
- Fouda, A.; Saied, E.; Eid, A.M.; Kouadri, F.; Alemam, A.M.; Hamza, M.F. Green synthesis of zinc oxide nanoparticles using an aqueous extract of Punica granatum for antimicrobial and catalytic activity. J. Funct. Biomater. 2023, 14, 205. [Google Scholar] [CrossRef] [PubMed]
- Thema, F.T.; Manikandan, E.; Dhlamini, M.S.; Maaza, M. Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract. Mater. Lett. 2015, 161, 124–127. [Google Scholar] [CrossRef]
- Raj, A.; Lawrence, R. Green synthesis and characterization of ZnO nanoparticles from leaf extracts of Rosa indica and its antibacterial activity. Rasayan J. Chem. 2018, 11, 1339–1348. [Google Scholar] [CrossRef]
- Esparza-Muñóz, R.A. Scanning electron microscopy in materials characterization. Cienc. Front. 2022, 30, 48–51. [Google Scholar]
- Reyes Gasga, J. Brief historical review of electron microscopy in Mexico and the world. Nano World Interdiscip. J. Nanosci. Nanotechnol. 2020, 13, 79–100. [Google Scholar]
- Elumalai, K.; Velmurugan, S. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl. Surf. Sci. 2015, 345, 329–336. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Vinoj, G.; Malaikozhundan, B.; Shanthi, S.; Vaseeharan, B. Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin-resistant Staphylococcus aureus biofilm and blood-sucking mosquito larvae. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 137, 886–891. [Google Scholar] [CrossRef] [PubMed]
- Asmat-Campos, D.A. Green synthesis of ZnO nanoparticles and their photocatalytic evaluation of methyl yellow degradability using a low-power UV-A lamp. In Proceedings of the 19th LACCEI International Multi-Conference for Engineering, Education, and Technology, Bogota, DC, Colombia, 19–23 July 2021; Available online: https://laccei.org/LACCEI2021-VirtualEdition/full_papers/FP13.pdf (accessed on 25 May 2025).
- Vanlalveni, C.; Lallianrawna, S.; Biswas, A.; Selvaraj, M.; Changmai, B.; Rokhum, S.L. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC Adv. 2021, 11, 2804–2837. [Google Scholar] [CrossRef] [PubMed]
- Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc oxide—From synthesis to application: A review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [PubMed]
- Sabir, S.; Arshad, M.; Chaudhari, S.K. Zinc oxide nanoparticles for revolutionizing agriculture: Synthesis and applications. Sci. World J. 2014, 2014, 925494. [Google Scholar] [CrossRef] [PubMed]
- Gnanasangeetha, D.; Thambavani, D.S. Biogenic production of zinc oxide nanoparticles using Acalypha indica. J. Chem. Biol. Phys. Sci. 2013, 4, 238–246. [Google Scholar]
- Cuadros-Moreno, A.; Pimentel, R.G.C.; Martínez, E.S.M.; Fernández, J.Y. Dynamic light scattering in the sizing of polymeric nanoparticles. Lat. Am. J. Phys. Educ. 2014, 8, 14. [Google Scholar]
- Rasli, N.I.; Basri, H.; Harun, Z. Zinc oxide from Aloe vera extract: Two-level factorial screening of biosynthesis parameters. Heliyon 2020, 6, e03156. [Google Scholar] [CrossRef] [PubMed]
- Yoval, L.S.; Palacios, L.M.; Soberanis, M.P.; Guzmán, L.O.S. Zeta Potential as a Tool for Determining Particle Agglomeration in Sludge Volume Reduction. 2000. Available online: http://elaguapotable.com/POTENCIAL%20ZETA%20COMO%20UNA%20HERRAMIENTA%20PARA%20DETERMINAR%20LA.pdf (accessed on 19 May 2025).
- Srivastav, A.K.; Kumar, M.; Ansari, N.G.; Jain, A.K.; Shankar, J.; Arjaria, N. A comprehensive toxicity study of zinc oxide nanoparticles versus their bulk in Wistar rats. Hum. Exp. Toxicol. 2016, 35, 1286–1304. [Google Scholar] [CrossRef] [PubMed]
- Bandeira, M.; Giovanela, M.; Roesch-Ely, M.; Devine, D.M.; da Silva Crespo, J. Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustain. Chem. Pharm. 2020, 15, 100223. [Google Scholar] [CrossRef]
- Rajendran, R.; Mani, G.; Dhandapani, M.; Maruthamuthu, S.; Kalaiselvam, S. Phytochemical profiling and green synthesis of zinc oxide nanoparticles using Azadirachta indica: Optimization, characterization and antimicrobial activity. J. Mol. Struct. 2022, 1249, 131600. [Google Scholar]
Sample Label | Extract Type | Leaves Group | Precursor Concentration (M) | pH |
---|---|---|---|---|
AD01/07 | Aqueous | Dry | 0.1 | 7 |
AF01/10 | Aqueous | Fresh | 0.1 | 10 |
AF01/07 | Aqueous | Fresh | 0.1 | 7 |
AD05/07 | Aqueous | Dry | 0.5 | 7 |
AF05/07 | Aqueous | Fresh | 0.5 | 7 |
AD01/10 | Aqueous | Dry | 0.1 | 10 |
AF05/10 | Aqueous | Fresh | 0.5 | 10 |
AD05/10 | Aqueous | Dry | 0.5 | 10 |
ED05/10 | Ethanolic | Dry | 0.5 | 10 |
ED01/10 | Ethanolic | Dry | 0.1 | 10 |
* ED05/10 | Ethanolic | Dry | 0.5 | 10 |
* ED05/07 | Ethanolic | Dry | 0.5 | 7 |
ED05/07 | Ethanolic | Dry | 0.5 | 7 |
ED01/07 | Ethanolic | Dry | 0.1 | 7 |
* ED01/07 | Ethanolic | Dry | 0.1 | 7 |
* ED01/10 | Ethanolic | Dry | 0.1 | 10 |
Extract | Phenols (mg Eq.) Gallic Acid/g | Flavonoids (mg Eq.) Quercetin/g | Antioxidant (mg Eq.) TROLOX/g |
---|---|---|---|
Aqueous Fresh | 759.55 ± 33.2 | 16.50 ± 1.5 | 18.39 ± 4.5 |
Aqueous Dry | 1152.96 ± 8.9 | 21.02 ± 11.4 | 33.54 ± 9.0 |
Ethanolic Dry 1 * | 829.50 ± 12.8 | 23.42 ± 2.2 | 39.60 ± 13.6 |
Ethanolic Dry 2 * | 777.24 ± 52.2 | 12.03 ± 3.0 | 21.42 ± 4.5 |
Sample | (deg) | FWHM (deg) | () | (deg) | FWHM (deg) | () | (nm) | (nm) | Crystallite Size (nm) | Particle Size (nm) |
---|---|---|---|---|---|---|---|---|---|---|
AD01/07 | 31.828 | 0.397 | 2.808 | 34.493 | 0.297 | 2.597 | 3.244 | 5.197 | 18 | 424 |
AF01/10 | 31.831 | 0.210 | 2.807 | 34.487 | 0.145 | 2.597 | 3.244 | 5.198 | 23 | 95 |
AF01/07 | 31.799 | 0.598 | 2.810 | 34.393 | 0.495 | 2.604 | 3.247 | 5.212 | 11 | 280 |
AD05/07 | 31.753 | 0.467 | 2.814 | 34.340 | 0.409 | 2.608 | 3.252 | 5.220 | 17 | 430 |
ED05/10 | 31.821 | 0.400 | 2.808 | 34.533 | 0.248 | 2.594 | 3.245 | 5.191 | 25 | 126 |
ED01/10 | 31.780 | 0.300 | 2.812 | 34.501 | 0.290 | 2.596 | 3.249 | 5.196 | 22 | 541 |
* ED05/10 | 31.906 | 0.316 | 2.801 | 34.554 | 0.182 | 2.592 | 3.237 | 5.188 | 32 | 61 |
* ED05/07 | 31.845 | 0.278 | 2.806 | 34.544 | 0.229 | 2.593 | 3.243 | 5.190 | 31 | 499 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trejo-Flores, P.G.; Sánchez-Roque, Y.; Vilchis-Bravo, H.; Pérez-Luna, Y.d.C.; Velázquez-Jiménez, P.E.; Ramírez-González, F.; Soto Martínez, K.M.; López de Paz, P.; Saldaña-Trinidad, S.; Berrones-Hernández, R. Evaluation of Aqueous and Ethanolic Extracts for the Green Synthesis of Zinc Oxide Nanoparticles from Tradescantia spathacea. Nanomaterials 2025, 15, 1126. https://doi.org/10.3390/nano15141126
Trejo-Flores PG, Sánchez-Roque Y, Vilchis-Bravo H, Pérez-Luna YdC, Velázquez-Jiménez PE, Ramírez-González F, Soto Martínez KM, López de Paz P, Saldaña-Trinidad S, Berrones-Hernández R. Evaluation of Aqueous and Ethanolic Extracts for the Green Synthesis of Zinc Oxide Nanoparticles from Tradescantia spathacea. Nanomaterials. 2025; 15(14):1126. https://doi.org/10.3390/nano15141126
Chicago/Turabian StyleTrejo-Flores, Pedro Gerardo, Yazmin Sánchez-Roque, Heber Vilchis-Bravo, Yolanda del Carmen Pérez-Luna, Paulina Elizabeth Velázquez-Jiménez, Francisco Ramírez-González, Karen Magaly Soto Martínez, Pascual López de Paz, Sergio Saldaña-Trinidad, and Roberto Berrones-Hernández. 2025. "Evaluation of Aqueous and Ethanolic Extracts for the Green Synthesis of Zinc Oxide Nanoparticles from Tradescantia spathacea" Nanomaterials 15, no. 14: 1126. https://doi.org/10.3390/nano15141126
APA StyleTrejo-Flores, P. G., Sánchez-Roque, Y., Vilchis-Bravo, H., Pérez-Luna, Y. d. C., Velázquez-Jiménez, P. E., Ramírez-González, F., Soto Martínez, K. M., López de Paz, P., Saldaña-Trinidad, S., & Berrones-Hernández, R. (2025). Evaluation of Aqueous and Ethanolic Extracts for the Green Synthesis of Zinc Oxide Nanoparticles from Tradescantia spathacea. Nanomaterials, 15(14), 1126. https://doi.org/10.3390/nano15141126