Advanced Nanocatalysis in Environmental Applications

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Environmental Nanoscience and Nanotechnology".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 389

Special Issue Editor


E-Mail Website
Guest Editor
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
Interests: nanomaterials; environmental catalysis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nanocatalysis has revolutionized environmental remediation and sustainable energy solutions by harnessing the exceptional properties of nanomaterials. This Special Issue invites cutting-edge research on advanced nanocatalysts for pollution control, renewable energy, and green chemistry. Areas of interest include, but are not limited to, the following:

  • Design and synthesis of novel nanocatalysts;
  • Photocatalysis and electrocatalysis for energy conversion and storage;
  • Mechanistic studies and computational modelling of catalytic processes;
  • Catalytic degradation of water and air pollutants;
  • Sustainability and lifecycle analysis of nanocatalytic systems.

We welcome original research articles, reviews, and perspectives from researchers within the fields of chemistry, material science, and environmental engineering. This Special Issue hopes to foster innovation for a cleaner, more sustainable future.

Dr. Yanqing Jiao
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanocatalysis
  • environmental remediation
  • pollutant degradation
  • green chemistry
  • sustainable catalysis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 5463 KiB  
Article
Evaluation of Aqueous and Ethanolic Extracts for the Green Synthesis of Zinc Oxide Nanoparticles from Tradescantia spathacea
by Pedro Gerardo Trejo-Flores, Yazmin Sánchez-Roque, Heber Vilchis-Bravo, Yolanda del Carmen Pérez-Luna, Paulina Elizabeth Velázquez-Jiménez, Francisco Ramírez-González, Karen Magaly Soto Martínez, Pascual López de Paz, Sergio Saldaña-Trinidad and Roberto Berrones-Hernández
Nanomaterials 2025, 15(14), 1126; https://doi.org/10.3390/nano15141126 - 20 Jul 2025
Viewed by 293
Abstract
In this work, we report a green synthesis of zinc oxide (ZnO) nanoparticles using aqueous and ethanolic extracts of Tradescantia spathacea (purple maguey) as bioreducing and stabilizing agents, which are plant extracts not previously employed for metal oxide nanoparticle synthesis. This method provides [...] Read more.
In this work, we report a green synthesis of zinc oxide (ZnO) nanoparticles using aqueous and ethanolic extracts of Tradescantia spathacea (purple maguey) as bioreducing and stabilizing agents, which are plant extracts not previously employed for metal oxide nanoparticle synthesis. This method provides an efficient, eco-friendly, and reproducible route to obtain ZnO nanoparticles, while minimizing environmental impact compared to conventional chemical approaches. The extracts were prepared following a standardized protocol, and their phytochemical profiles, including total phenolics, flavonoids, and antioxidant capacity, were quantified via UV-Vis spectroscopy to confirm their reducing potential. ZnO nanoparticles were synthesized using zinc acetate dihydrate as a precursor, with variations in pH and precursor concentration in both aqueous and ethanolic media. UV-Vis spectroscopy confirmed nanoparticle formation, while X-ray diffraction (XRD) revealed a hexagonal wurtzite structure with preferential (101) orientation and lattice parameters a = b = 3.244 Å, c = 5.197 Å. Scanning electron microscopy (SEM) showed agglomerated morphologies, and Fourier transform infrared spectroscopy (FTIR) confirmed the presence of phytochemicals such as quercetin, kaempferol, saponins, and terpenes, along with Zn–O bonding, indicating surface functionalization. Zeta potential measurements showed improved dispersion under alkaline conditions, particularly with ethanolic extracts. This study presents a sustainable synthesis strategy with tunable parameters, highlighting the critical influence of precursor concentration and solvent environment on ZnO nanoparticle formation. Notably, aqueous extracts promote ZnO synthesis at low precursor concentrations, while alkaline conditions are essential when using ethanolic extracts. Compared to other green synthesis methods, this strategy offers control and reproducibility and employs a non-toxic, underexplored plant source rich in phytochemicals, potentially enhancing the crystallinity, surface functionality, and application potential of the resulting ZnO nanoparticles. These materials show promise for applications in photocatalysis, in antimicrobial coatings, in UV-blocking formulations, and as functional additives in optoelectronic and environmental remediation technologies. Full article
(This article belongs to the Special Issue Advanced Nanocatalysis in Environmental Applications)
Show Figures

Graphical abstract

Review

Jump to: Research

26 pages, 5379 KiB  
Review
A Review of Strategies to Improve the Electrocatalytic Performance of Tungsten Oxide Nanostructures for the Hydrogen Evolution Reaction
by Meng Ding, Yuan Qin, Weixiao Ji, Yafang Zhang and Gang Zhao
Nanomaterials 2025, 15(15), 1163; https://doi.org/10.3390/nano15151163 - 28 Jul 2025
Abstract
Hydrogen, as a renewable and clean energy with a high energy density, is of great significance to the realization of carbon neutrality. In recent years, extensive research has been conducted on the electrocatalytic hydrogen evolution reaction (HER) by splitting water, with a focus [...] Read more.
Hydrogen, as a renewable and clean energy with a high energy density, is of great significance to the realization of carbon neutrality. In recent years, extensive research has been conducted on the electrocatalytic hydrogen evolution reaction (HER) by splitting water, with a focus on developing efficient electrocatalysts that can perform the HER at an overpotential with minimal power consumption. Tungsten oxide (WO3), a non-noble-metal-based material, has great potential in hydrogen evolution due to its excellent redox capability, low cost, and high stability. However, it cannot meet practical needs because of its poor electrical conductivity and the limited number of active sites; thus, it is necessary to further improve HER performance. In this review, recent advances related to WO3-based electrocatalysts for the HER are introduced. Most importantly, several tactics for optimizing the electrocatalytic HER activity of WO3 are summarized, such as controlling its morphology, phase transition, defect engineering (anion vacancies, cation doping, and interstitial atoms), constructing a heterostructure, and the microenvironment effect. This review can provide insight into the development of novel catalysts with high activity for the HER and other renewable energy applications. Full article
(This article belongs to the Special Issue Advanced Nanocatalysis in Environmental Applications)
Show Figures

Figure 1

Back to TopTop