Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = zinc layered hydroxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2589 KiB  
Article
Corn Waste Arabinoxylans with Zinc and Thymol Nanohydroxides Coating for Salmonella enterica Survival on Cherry Tomato (Solanum lycopersicum var. cerasiforme)
by Jorge Manuel Silva-Jara, Ismael García-Vera, Ana María Morales-Burgos, Gabriela Hinojosa-Ventura, María Esther Macías-Rodríguez, Julia Aurora Pérez-Montaño, Zuami Villagrán, Luis Miguel Anaya-Esparza and Carlos Arnulfo Velázquez-Carriles
Polymers 2025, 17(12), 1632; https://doi.org/10.3390/polym17121632 - 12 Jun 2025
Viewed by 2378
Abstract
This research focused on the development of an edible coat made of corn waste arabinoxylan enriched with nanohybrids of zinc layered hydroxide salt and thymol (ZnHSL, ZnHSL-T). The crystallographic phase was confirmed with XRD (ICDD card 07-0155) and SEM. Filmogenic solutions prepared with [...] Read more.
This research focused on the development of an edible coat made of corn waste arabinoxylan enriched with nanohybrids of zinc layered hydroxide salt and thymol (ZnHSL, ZnHSL-T). The crystallographic phase was confirmed with XRD (ICDD card 07-0155) and SEM. Filmogenic solutions prepared with the polysaccharide (AX) containing thymol (T), ZnHSL, and ZnHSL-T (AXT, AXH, and AXHT, respectively) were characterized by FTIR spectroscopy, color, thickness, transparency, and moisture content, where AXHT exhibited the thinnest layer. Furthermore, the antioxidant activity of the coatings was evaluated by the inhibition of ABTS radical, proving that thymol was present in the filmogenic solutions with inhibitions of 90%. Also, edible coatings were applied on cherry tomatoes (Solanum lycopersicum var. cerasiforme) and stored for 12 days, a period during which physicochemical properties (weight loss, color, lycopene content, soluble solids, pH, and titratable acidity) and Salmonella survival (serovar Enteritidis, Typhimurium, and Montevideo) were evaluated. Results demonstrated that AXHT had less weight loss than the control, and the other physicochemical properties of tomatoes were preserved. Regarding pathogen adherence, AXHT reduced the bacterial survival for Salmonella Enteritidis, S. Typhimurium, and S. Montevideo in 25, 30, and 45%, respectively, by day 12. The findings of this research demonstrate the application of nanotechnology to biopolymers, enabling the production of safer foods with acceptable quality parameters for consumers. Full article
Show Figures

Figure 1

14 pages, 2757 KiB  
Article
Highly Efficient Inverted Organic Light-Emitting Devices with Li-Doped MgZnO Nanoparticle Electron Injection Layer
by Hwan-Jin Yoo, Go-Eun Kim, Chan-Jun Park, Su-Been Lee, Seo-Young Kim and Dae-Gyu Moon
Micromachines 2025, 16(6), 617; https://doi.org/10.3390/mi16060617 - 24 May 2025
Viewed by 506
Abstract
Inverted organic light-emitting devices (OLEDs) have been attracting considerable attention due to their advantages such as high stability, low image sticking, and low operating stress in display applications. To address the charge imbalance that has been known as a critical issue of the [...] Read more.
Inverted organic light-emitting devices (OLEDs) have been attracting considerable attention due to their advantages such as high stability, low image sticking, and low operating stress in display applications. To address the charge imbalance that has been known as a critical issue of the inverted OLEDs, Li-doped MgZnO nanoparticles were synthesized as an electron-injection layer of the inverted OLEDs. Hexagonal wurtzite-structured Li-doped MgZnO nanoparticles were synthesized at room temperature via a solution precipitation method using LiCl, magnesium acetate tetrahydrate, zinc acetate dihydrate, and tetramethylammonium hydroxide pentahydrate. The Mg concentration was fixed at 10%, while the Li concentration was varied up to 15%. The average particle size decreased with Li doping, exhibiting the particle sizes of 3.6, 3.0, and 2.7 nm for the MgZnO, 10% and 15% Li-doped MgZnO nanoparticles, respectively. The band gap, conduction band minimum and valence band maximum energy levels, and the visible emission spectrum of the Li-doped MgZnO nanoparticles were investigated. The surface roughness and electrical conduction properties of the Li-doped MgZnO nanoparticle films were also analyzed. The inverted phosphorescent OLEDs with Li-doped MgZnO nanoparticles exhibited higher external quantum efficiency (EQE) due to better charge balance resulting from suppressed electron conduction, compared to the undoped MgZnO nanoparticle devices. The maximum EQE of 21.7% was achieved in the 15% Li-doped MgZnO nanoparticle devices. Full article
(This article belongs to the Special Issue Photonic and Optoelectronic Devices and Systems, Third Edition)
Show Figures

Figure 1

102 pages, 24905 KiB  
Review
One Stone, Three Birds: Innovations and Challenges of Layered Double Hydroxides in Batteries, Supercapacitors, and Hydrogen Production
by Syed Shaheen Shah, Manisha Das and Takaya Ogawa
Batteries 2025, 11(5), 193; https://doi.org/10.3390/batteries11050193 - 14 May 2025
Cited by 1 | Viewed by 1637
Abstract
Layered double hydroxides (LDHs), notable for their unique two-dimensional layered structures, have attracted significant research attention due to their exceptional versatility and promising performance in energy storage and conversion applications. This comprehensive review systematically addresses the fundamentals and diverse synthesis strategies for LDHs, [...] Read more.
Layered double hydroxides (LDHs), notable for their unique two-dimensional layered structures, have attracted significant research attention due to their exceptional versatility and promising performance in energy storage and conversion applications. This comprehensive review systematically addresses the fundamentals and diverse synthesis strategies for LDHs, including co-precipitation, hydrothermal synthesis, electrochemical deposition, sol-gel processes, ultrasonication, and exfoliation techniques. The synthesis methods profoundly influence the physicochemical properties, morphology, and electrochemical performance of LDHs, necessitating a detailed understanding to optimize their applications. In this paper, the role of LDHs in batteries, supercapacitors, and hydrogen production is critically evaluated. We discuss their incorporation in various battery systems, such as lithium-ion, lithium–sulfur, sodium-ion, chloride-ion, zinc-ion, and zinc–air batteries, highlighting their structural and electrochemical advantages. Additionally, the superior pseudocapacitive behavior and high energy densities offered by LDHs in supercapacitors are elucidated. The effectiveness of LDHs in hydrogen production, particularly through electrocatalytic water splitting, underscores their significance in renewable energy systems. This review paper uniquely integrates these three pivotal energy technologies, outlining current innovations and challenges, thus fulfilling a critical need for the scientific community by providing consolidated insights and guiding future research directions. Full article
Show Figures

Graphical abstract

9 pages, 1696 KiB  
Article
Interactions Between Trivalent Elements Enable Ultrastable LDH Cathode for High-Performance Zinc Battery
by Junhua Zeng, Jinlei Gao, Wenyao Lu, Jiashuo Feng and Ting Deng
Batteries 2025, 11(5), 170; https://doi.org/10.3390/batteries11050170 - 23 Apr 2025
Viewed by 390
Abstract
Layered double hydroxides (LDHs) are one class of two-dimensional materials, with tunable chemical composition and large interlayer spacing, that is a potential cathode material candidate for aqueous zinc-ion batteries (AZIBs). Nevertheless, the low conductivity and fragile structure of LDH have impeded their practical [...] Read more.
Layered double hydroxides (LDHs) are one class of two-dimensional materials, with tunable chemical composition and large interlayer spacing, that is a potential cathode material candidate for aqueous zinc-ion batteries (AZIBs). Nevertheless, the low conductivity and fragile structure of LDH have impeded their practical application in AZIBs. Herein, a ternary CoMnAl LDH is synthesized via the facile coprecipitation method as the cathode material for AZIB. The interaction between trivalent Al3+ and Mn3+ not only lowers the redox energy barrier but also enhances the electronic structure, as proved by EIS analysis and DFT simulation. As a result, the synthesized CoMnAl LDH displays a high specific capacity of 238.9 mAh g−1 at 0.5 A g−1, an outstanding rate performance (138.8 mAh g−1 at 5 A g−1), and a stable cyclability (92% capacity retention after 2000 cycles). Full article
Show Figures

Graphical abstract

17 pages, 3734 KiB  
Article
Tailoring Two-Dimensional NiFeCo-Layered Double Hydroxide onto One-Dimensional N-Doped CNTs for High-Performance Bifunctional Air Electrodes in Flexible Zinc–Air Batteries
by Yeon-Woo Kim, Ayeon Lee and Sung Hoon Ahn
Batteries 2025, 11(4), 155; https://doi.org/10.3390/batteries11040155 - 15 Apr 2025
Viewed by 979
Abstract
The development of bifunctional air electrodes with high activity and durability is essential for advancing flexible zinc–air batteries. Herein, a hierarchical electrode structure is designed by growing N-doped carbon nanotubes (CNTs) on copper foam, where CNTs serve as highly active oxygen reduction reaction [...] Read more.
The development of bifunctional air electrodes with high activity and durability is essential for advancing flexible zinc–air batteries. Herein, a hierarchical electrode structure is designed by growing N-doped carbon nanotubes (CNTs) on copper foam, where CNTs serve as highly active oxygen reduction reaction (ORR) sites. The controlled deposition of NiFeCo-layered double hydroxide (LDH) nanosheets, optimized to maintain ORR activity while enhancing oxygen evolution reaction (OER) performance, enables a finely tuned bifunctional catalyst. This architecture achieves outstanding electrochemical properties, requiring only 0.897 V vs. RHE and 1.446 V vs. RHE to reach 10 mA cm−2 in 1 M KOH, thereby minimizing overpotentials. When implemented as an air electrode in a quasi-solid-state zinc–air battery, the system demonstrates remarkable cycling stability, sustaining performance for over 300 h. Furthermore, a 16 cm2 pouch-type zinc–air battery delivers a high discharge capacity of 0.62 Ah, highlighting the scalability of this design. This work presents a robust and scalable strategy for developing high-performance bifunctional air electrodes, offering a promising route for next-generation flexible energy storage systems. Full article
(This article belongs to the Special Issue Two-Dimensional Materials for Battery Applications)
Show Figures

Figure 1

18 pages, 4718 KiB  
Article
Recovering Zinc and Iron from Waste Tire-Derived Pyrolysis Carbon Black to Prepare Layered Metal Hydroxide Composites for Efficient Adsorption of Dye Methyl Orange
by Pei Chen, Wenli Liu, Yanzhi Sun, Yongmei Chen and Junqing Pan
Recycling 2025, 10(2), 76; https://doi.org/10.3390/recycling10020076 - 15 Apr 2025
Viewed by 645
Abstract
The pyrolysis carbon black (CBp) from waste tires contains zinc, iron, and other metal elements, which have high recycling value. This study proposes a simple method of recovering zinc and iron from waste tire-derived CBp to synthesize hydrotalcite-type adsorbents for the treatment of [...] Read more.
The pyrolysis carbon black (CBp) from waste tires contains zinc, iron, and other metal elements, which have high recycling value. This study proposes a simple method of recovering zinc and iron from waste tire-derived CBp to synthesize hydrotalcite-type adsorbents for the treatment of anodic dye wastewater. Firstly, zinc-aluminum hydrotalcite (LDH) and zinc-iron aluminum hydrotalcite (FeLDH) were obtained by leaching the zinc and iron ions from CBp with an acid solution. As compared with LDH, FeLDH shows increased laminate metal ion arrangement density and layer spacing. By calcining the LDH and FeLDH at 500 °C, zinc aluminum oxides (LDO) and zinc iron aluminum oxides (FeLDO) were then prepared and applied for the adsorption of dye methyl orange (MO). The results demonstrate that the maximum adsorption capacity of LDO and FeLDO are 304.9 and 609.8 mg g−1 at pH of 4.0, respectively. The adsorption processes of both LDO and FeLDO are consistent with the Langmuir adsorption isotherm and the proposed second-order kinetic model. The adsorption regeneration performance and adsorption mechanism of LDO and FeLDO were also investigated in detail. Regeneration experiments show that after three cycles, the removal rate of MO by LDO remains above 80%, while that of FeLDO only remains around 64% in the first cycle after regeneration. This work would provide a new pathway to realize the high-value metal recycling of waste tire-derived CBp and solve the contamination of dye wastewater. Full article
(This article belongs to the Special Issue Rubber Waste and Tyre Stewardship)
Show Figures

Graphical abstract

11 pages, 2856 KiB  
Article
Mechanochemical Loading of Doxorubicin on the Surface of Magnesium and Zinc-Based Layered Double Hydroxides
by Minerva Guadalupe Ventura Muñoz, Jesús Alfredo Lara Cerón, Manuel de Jesús Gallegos Saucedo and Gregorio Guadalupe Carbajal Arizaga
Processes 2025, 13(4), 931; https://doi.org/10.3390/pr13040931 - 21 Mar 2025
Viewed by 435
Abstract
In the search for technologies and materials to improve the safety and efficacy of active ingredients used in treating diseases, layered double hydroxides (LDHs) have been proposed as drug carriers since they can enhance the effects of active ingredients and even reduce toxicity. [...] Read more.
In the search for technologies and materials to improve the safety and efficacy of active ingredients used in treating diseases, layered double hydroxides (LDHs) have been proposed as drug carriers since they can enhance the effects of active ingredients and even reduce toxicity. Doxorubicin (DOX) is one of the most widely used and studied antitumor drugs due to its broad spectrum; however, due to its low plasma bioavailability and slow systemic clearance, only a small fraction of the drug reaches and acts on the tumor, so LDHs have been proposed as vehicles to solve these disadvantages. The most used method to load the drug is incubating LDH particles in DOX solutions. In this work, two additional methods, co-precipitation, and mechanochemical reaction, were explored to evaluate the structural stability of the vehicle and the amount of DOX retained by LDHs structured by magnesium/aluminum and zinc/aluminum cations, which are the two most common compositions to design materials for biomedical applications. The zinc/aluminum LDH structure degraded in the loading process, whereas the magnesium/aluminum LDH particles were stable against the three loading processes. The mechanochemical procedure, a green and sustainable technology, loaded the highest content of DOX. Full article
(This article belongs to the Special Issue Synthesis and Applications of Nanomaterials)
Show Figures

Graphical abstract

17 pages, 12853 KiB  
Article
A Non-Autonomous Amphoteric Metal Hydroxide Oscillations and Pattern Formation in Hydrogels
by Norbert Német, Hugh Shearer Lawson, Masaki Itatani, Federico Rossi, Nobuhiko J. Suematsu, Hiroyuki Kitahata and István Lagzi
Molecules 2025, 30(6), 1323; https://doi.org/10.3390/molecules30061323 - 15 Mar 2025
Cited by 1 | Viewed by 896
Abstract
Oscillations in animate and inanimate systems are ubiquitous phenomena driven by sophisticated chemical reaction networks. Non-autonomous chemical oscillators have been designed to mimic oscillatory behavior using programmable syringe pumps. Here, we investigated the non-autonomous oscillations, pattern formation, and front propagation of amphoteric hydroxide [...] Read more.
Oscillations in animate and inanimate systems are ubiquitous phenomena driven by sophisticated chemical reaction networks. Non-autonomous chemical oscillators have been designed to mimic oscillatory behavior using programmable syringe pumps. Here, we investigated the non-autonomous oscillations, pattern formation, and front propagation of amphoteric hydroxide (aluminum (III), zinc (II), tin (II), and lead (II)) precipitates under controlled pH conditions. A continuous stirred-tank reactor with modulated inflows of acidic and alkaline solutions generated pH oscillations, leading to periodic precipitation and dissolution of metal hydroxides in time. The generated turbidity oscillations exhibited ion-specific patterns, enabling their characterization through quantitative parameters such as peak width (W) and asymmetry (As). The study of mixed metal cationic systems showed that turbidity patterns contained signatures of both hydroxides due to the formation of mixed hydroxides and oxyhydroxides. The reaction–diffusion setup in solid hydrogel columns produced spatial precipitation patterns depending on metal cations and their concentrations. Additionally, in the case of tin (II), a propagating precipitation front was observed in a thin precipitation layer. These findings provide new insights into precipitation pattern formation and open avenues for metal ion identification and further exploration of complex reaction–diffusion systems. Full article
Show Figures

Figure 1

23 pages, 5279 KiB  
Article
Synergistic Effects of Zn-Rich Layered Double Hydroxides on the Corrosion Resistance of PVDF-Based Coatings in Marine Environments
by Hissah A. Alqahtani, Jwaher M. AlGhamdi and Nuhu Dalhat Mu’azu
Polymers 2025, 17(3), 331; https://doi.org/10.3390/polym17030331 - 25 Jan 2025
Cited by 2 | Viewed by 1499
Abstract
In this study, zinc–aluminum layered double hydroxide (ZLDH) and its calcined counterpart (CZLDH) were synthesized and incorporated into a poly(vinylidene fluoride) (PVDF) matrix to develop high-performance anti-corrosion coatings for mild steel substrates. The structural integrity, morphology, and dispersion of the LDH fillers were [...] Read more.
In this study, zinc–aluminum layered double hydroxide (ZLDH) and its calcined counterpart (CZLDH) were synthesized and incorporated into a poly(vinylidene fluoride) (PVDF) matrix to develop high-performance anti-corrosion coatings for mild steel substrates. The structural integrity, morphology, and dispersion of the LDH fillers were analyzed using FTIR, XRD, Raman spectroscopy, and SEM/EDS, while coating performance was evaluated through water contact angle (WCA), adhesion tests, and electrochemical techniques. Comparative electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in a 3.5% NaCl solution revealed that the ZLDH/PVDF coating exhibited superior corrosion resistance and long-term stability compared to CZLDH/PVDF and pristine PVDF coatings. The intact lamellar structure of ZLDH promoted excellent dispersion within the polymer matrix, enhancing interfacial adhesion, reducing porosity, and effectively blocking chloride ion penetration. Conversely, calcination disrupted the lamellar structure of ZLDH, reducing its compatibility and adhesion performance within the PVDF matrix. This study demonstrates the critical role of ZLDH’s structural integrity in achieving enhanced adhesion, barrier properties, and corrosion protection, offering an effective anti-corrosion coating for marine applications. Full article
(This article belongs to the Special Issue Development of Polymer Materials as Functional Coatings)
Show Figures

Figure 1

15 pages, 3548 KiB  
Article
Efficient Removal of Lead, Cadmium, and Zinc from Water and Soil by MgFe Layered Double Hydroxide: Adsorption Properties and Mechanisms
by Hua Deng, Shuyun Zhang, Qiuyan Li, Anyu Li, Weixing Gan and Lening Hu
Sustainability 2024, 16(24), 11037; https://doi.org/10.3390/su162411037 - 16 Dec 2024
Cited by 2 | Viewed by 1994
Abstract
Both biochar and layered double hydroxide (LDH) have drawbacks in regard to the removal of heavy metals. The combined application of biochar and LDH not only solved the problem of the easy agglomeration of LDH but also effectively improved the heavy metal adsorption [...] Read more.
Both biochar and layered double hydroxide (LDH) have drawbacks in regard to the removal of heavy metals. The combined application of biochar and LDH not only solved the problem of the easy agglomeration of LDH but also effectively improved the heavy metal adsorption capacity of biochar. In this work, a MgFe–LDH banana straw biochar composite (MgFe–LDH@BB), with a regular hydrotalcite structure, was synthesized by employing a simple hydrothermal method. The composite showed an ultra-high adsorption capacity for lead (Pb), cadmium (Cd), and zinc (Zn) in water. A series of experiments were conducted to investigate the adsorption characteristics of MgFe–LDH@BB. At pH = 6.0, MgFe–LDH@BB demonstrated the effective adsorption of Pb, Cd, and Zn. In addition, the results showed that the adsorption of Pb, Cd, and Zn by MgFe–LDH@BB was rapid and conformed to pseudo-second-order kinetic and Langmuir models, indicating single-layer chemical adsorption. The maximum adsorption capacity of MgFe–LDH@BB for Pb, Cd, and Zn was 1112.6, 869.6, and 414.9 mg·g−1, respectively. Moreover, the adsorption mechanisms of MgFe–LDH@BB mainly included metal hydroxide/carbonate precipitation, complex formation with hydroxyl groups, and ion exchange. Meanwhile, MgFe–LDH@BB had the ability to immobilize heavy metals in soil. The surface-rich functional groups and cation exchange promoted the transformation of active heavy metal ions into a more stable form. Full article
Show Figures

Figure 1

22 pages, 5132 KiB  
Article
Zn-Layered Double Hydroxide Intercalated with Graphene Oxide for Methylene Blue Photodegradation and Acid Red Adsorption Studies
by Rahmah H. Al-Ammari, Salwa D. Al-Malwi, Mohamed A. Abdel-Fadeel, Salem M. Bawaked and Mohamed Mokhtar M. Mostafa
Catalysts 2024, 14(12), 897; https://doi.org/10.3390/catal14120897 - 6 Dec 2024
Cited by 4 | Viewed by 1688
Abstract
This study focuses on the synthesis of a novel layered double hydroxide and its application in two environmental remediation processes. Graphene oxide, a two-dimensional material, has potential applications in this field. However, its tendency to agglomerate restricts its usability. Our objective was to [...] Read more.
This study focuses on the synthesis of a novel layered double hydroxide and its application in two environmental remediation processes. Graphene oxide, a two-dimensional material, has potential applications in this field. However, its tendency to agglomerate restricts its usability. Our objective was to increase the morphology and performance of layered double hydroxide (LDH) by combining GO with hydrotalcite. The LDH/GO nanohybrids were utilized as photocatalysts for the degradation of methylene blue (MB) dye and were investigated as sorbents for acid red (A.R) dye in water. In order to achieve this objective, ZnAl-NO3 LDH was synthesized using the co-precipitation method, with a Zn:Al ratio of ~3. Subsequently, the LDH was intercalated with varying ratios of as-received graphene oxide. An array of analytical techniques, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) measurements, N2 physisorption, scanning electron microscopy–energy-dispersive X-ray analysis (SEM-EDX), and diffuse reflectance UV–vis spectra (DR UV-vis), were employed to examine the physicochemical properties of the synthesized LDH. These techniques confirmed that the obtained material is zinc-aluminum hydrotalcite intercalated with GO. The addition of graphene oxide (GO) to the layered double hydroxide (LDH) structure improved the performance of the hydrotalcite. As a result, the composite ZnAl-LDH-10 shows significant potential in the field of photocatalytic degradation of MB. Additionally, the incorporation of GO enhanced the absorption of light in the visible region of the spectra, leading to improved elimination of A.R compared to LDH without GO or other ratios of GO. Full article
(This article belongs to the Special Issue Green Chemistry and Catalysis)
Show Figures

Figure 1

10 pages, 4107 KiB  
Article
Inverted Red Quantum Dot Light-Emitting Diodes with ZnO Nanoparticles Synthesized Using Zinc Acetate Dihydrate and Potassium Hydroxide in Open and Closed Systems
by Se-Hoon Jang, Go-Eun Kim, Sang-Uk Byun, Kyoung-Ho Lee and Dae-Gyu Moon
Micromachines 2024, 15(11), 1297; https://doi.org/10.3390/mi15111297 - 25 Oct 2024
Cited by 1 | Viewed by 1416
Abstract
We developed inverted red quantum dot light-emitting diodes (QLEDs) with ZnO nanoparticles synthesized in open and closed systems. Wurtzite-structured ZnO nanoparticles were synthesized using potassium hydroxide and zinc acetate dihydrate at various temperatures in the open and closed systems. The particle size increases [...] Read more.
We developed inverted red quantum dot light-emitting diodes (QLEDs) with ZnO nanoparticles synthesized in open and closed systems. Wurtzite-structured ZnO nanoparticles were synthesized using potassium hydroxide and zinc acetate dihydrate at various temperatures in the open and closed systems. The particle size increases with increasing synthesis temperature. The ZnO nanoparticles synthesized at 50, 60, and 70 °C in the closed system have an average particle size of 3.2, 4.0, and 5.4 nm, respectively. The particle size is larger in the open system compared to the closed system as the methanol solvent evaporates during the synthesis process. The surface defect-induced emission in ZnO nanoparticles shifts to a longer wavelength and the emission intensity decreases as the synthesis temperature increases. The inverted red QLEDs were fabricated with a synthesized ZnO nanoparticle electron transport layer. The driving voltage of the inverted QLEDs decreases as the synthesis temperature increases. The current efficiency is higher in the inverted red QLEDs with the ZnO nanoparticles synthesized in the closed system compared to the devices with the nanoparticles synthesized in the open system. The device with the ZnO nanoparticles synthesized at 60 °C in the closed system exhibits the maximum current efficiency of 5.8 cd/A. Full article
Show Figures

Figure 1

14 pages, 11328 KiB  
Article
High-Temperature Zn-5Al Hot Dip Galvanizing of Reinforcement Steel
by Anżelina Marek, Veronika Steinerová, Petr Pokorný, Henryk Kania and Franciszek Berger
Coatings 2024, 14(8), 959; https://doi.org/10.3390/coatings14080959 - 1 Aug 2024
Cited by 2 | Viewed by 1895
Abstract
This article presents the results of research on the growth kinetics, microstructure (SEM/EDS/XRD), and corrosion behavior of Zn-5Al coatings obtained using a high-temperature hot dip process on B500B reinforcing steel. The corrosion resistance of the coatings was determined using the neutral salt spray [...] Read more.
This article presents the results of research on the growth kinetics, microstructure (SEM/EDS/XRD), and corrosion behavior of Zn-5Al coatings obtained using a high-temperature hot dip process on B500B reinforcing steel. The corrosion resistance of the coatings was determined using the neutral salt spray (NSS) test (EN ISO 9227). Based on chemical composition tests in micro-areas (EDS) and phase composition tests (XRD), corrosion products formed on the coating surface after exposure to a corrosive environment containing chlorides were identified. In the outer layer of the coating, areas rich in Zn and Al were found, which were solid solutions of Al in Zn (α), while the diffusion layer was formed by a layer of Fe(Al,Zn)3 intermetallics. The growth kinetics of the coatings indicate the sequential growth of the diffusion layer, controlled by diffusion in the initial phase of growth, and the formation of a periodic layered structure with a longer immersion time. The NSS test showed an improved corrosion resistance of reinforcing bars with Zn-5Al coatings compared to a conventional hot-dip-galvanized zinc coating. The increase in corrosion resistance was caused by the formation of beneficial corrosion products: layered double hydroxides (LDH) based on Zn2+ and Al3+ cations and Cl anions and simonkolleite—Zn5(OH)8Cl2·H2O. Full article
(This article belongs to the Special Issue High-Temperature Corrosion and Oxidation of Metals and Alloys)
Show Figures

Figure 1

13 pages, 4372 KiB  
Article
One-Pot Preparation of Layered Double Hydroxide-Engineered Boric Acid Root and Application in Wastewater
by Fengrong Zhang, Cuilan Zhang, Kaixuan Zhang, Lishun Wu and Dandan Han
Molecules 2024, 29(13), 3204; https://doi.org/10.3390/molecules29133204 - 5 Jul 2024
Cited by 1 | Viewed by 1217
Abstract
Heavy metals and organic pollutants are prevalent in water bodies, causing great damage to the environment and human beings. Hence, it is urgent to develop a kind of adsorbent with good performance. Anion interlacing layered double hydroxides (LDHs) are a promising adsorbent for [...] Read more.
Heavy metals and organic pollutants are prevalent in water bodies, causing great damage to the environment and human beings. Hence, it is urgent to develop a kind of adsorbent with good performance. Anion interlacing layered double hydroxides (LDHs) are a promising adsorbent for the sustainable removal of heavy metal ions and dyes from wastewater. Using aluminum chloride, zinc chloride and ammonium pentaborate tetrahydrate (NH4B5O8 · 4H2O, BA) as raw materials, the LDHs complex (BA-LDHs) of B5O8 intercalation was prepared by one-step hydrothermal method. The BA-LDHs samples were characterized by a X-ray powder diffractometer (XRD), scanning electron microscope (SEM), Fourier transform infrared spectrometer (FT-IR) and the Brunauer–Emmett–Teller (BET) method. The results showed that B5O8- was successfully intercalated. Adsorption experimental results suggested that BA-LDHs possess a maximum adsorption capacity of 18.7, 57.5, 70.2, and 3.12 mg·g−1 for Cd(II), Cu(II), Cr(VI) and Methylene blue (MB) at Cs = 2 g·L−1, respectively. The adsorption experiment conforms to the Langmuir and Freundlich adsorption models, and the kinetic adsorption data are well fitted by the pseudo-second-order adsorption kinetic equation. The as-prepared BA-LDHs have potential application prospects in the removal of heavy metals and dyes in wastewater. More importantly, they also provide a strategy for preparing selective adsorbents. Full article
(This article belongs to the Special Issue Advanced Chemical Approaches and Technologies in Water Treatment)
Show Figures

Graphical abstract

12 pages, 2486 KiB  
Article
Metal–Site Dispersed Zinc–Chromium Oxide Derived from Chromate–Intercalated Layered Hydroxide for Highly Selective Propane Dehydrogenation
by Lu Xue, Maoqi Pang, Zijian Yuan and Daojin Zhou
Molecules 2024, 29(13), 3063; https://doi.org/10.3390/molecules29133063 - 27 Jun 2024
Viewed by 1165
Abstract
Propane dehydrogenation (PDH) is a crucial approach for propylene production. However, commonly used CrOx–based catalysts have issues including easy sintering at elevated reaction temperatures and relying on high acidity supports. In this work, we develop a strategy, to strongly anchor and [...] Read more.
Propane dehydrogenation (PDH) is a crucial approach for propylene production. However, commonly used CrOx–based catalysts have issues including easy sintering at elevated reaction temperatures and relying on high acidity supports. In this work, we develop a strategy, to strongly anchor and isolate active sites against their commonly observed aggregation during reactions, by taking advantage of the net trap effect in chromate intercalated Zn–Cr layered hydroxides as precursors. Furthermore, the intercalated chromate overcomes the collapse of traditional layered hydroxides during their transformation to metal oxide, thus exposing more available active sites. A joint fine modulation including crystal structure, surface acidity, specific surface area, and active sites dispersion is performed on the final mixed metal oxides for propane dehydrogenation. As a result, Zn1Cr2–CrO42−–MMO delivers attractive propane conversion (~27%) and propylene selectivity (>90%) as compared to other non–noble–metal–based catalysts. Full article
(This article belongs to the Special Issue Advances in Metal Oxide Nanoparticles)
Show Figures

Figure 1

Back to TopTop