One-Pot Preparation of Layered Double Hydroxide-Engineered Boric Acid Root and Application in Wastewater
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of Adsorbents
2.2. Adsorption Kinetics
2.3. Adsorption Isotherms
2.4. Adsorption Mechanism
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Fabrication of BA-LDHs Composites
3.3. Characteristics of Adsorbents
3.4. Adsorption Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kurwadkar, S. Occurrence and distribution of organic and inorganic pollutants in groundwater. Water Environ. Res. 2019, 91, 1001–1008. [Google Scholar] [CrossRef]
- Zeng, X.; Zhu, J.; Zhang, G.; Wu, Z.; Lu, J.; Ji, H. Molecular-level understanding on complexation-adsorption-degradation during the simultaneous removal of aqueous binary pollutants by magnetic composite aerogels. Chem. Eng. J. 2023, 468, 143536. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Li, L.P.; Kong, L.C.; Cai, G.Y.; Wang, P.; Zhang, J.; Zuo, W.; Tian, Y. Compressible amino-modified carboxymethyl chitosan aerogel for efficient Cu(II) adsorption from wastewater. Sep. Purif. Technol. 2022, 293, 121146. [Google Scholar] [CrossRef]
- Chen, B.; Yue, W.L.; Zhao, H.N.; Long, F.X.; Cao, Y.R.; Pan, X.J. Simultaneous capture of methyl orange and chromium(VI) from complex wastewater using polyethylenimine cation decorated magnetic carbon nanotubes as a recyclable adsorbent. ACS Adv. 2019, 9, 4722. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, L.; Wang, R.; Wang, Y.; Zhang, X. A novel cellulose hydrogel coating with nanoscale Fe(0) for Cr(VI) adsorption and reduction. Sci. Total. Environ. 2020, 726, 138625. [Google Scholar] [CrossRef]
- Li, Y.F.; Wen, J.; Xue, Z.Z.; Yin, X.Y.; Yuan, L.; Yang, C.L. Removal of Cr(VI) by polyaniline embedded polyvinyl alcohol/sodium alginate beads–Extension from water treatment to soil remediation. J. Hazard. Mater. 2021, 426, 127809. [Google Scholar] [CrossRef]
- Zeng, X.C.; Zhang, G.H.; Wen, J.; Li, X.L.; Zhu, J.F.; Wu, Z. Simultaneous removal of aqueous same ionic type heavy metals and dyes by a magnetic chitosan/polyethyleneimine embedded hydrophobic sodium alginate composite: Performance, interaction and mechanism. Chemosphere 2023, 318, 137869. [Google Scholar] [CrossRef]
- Yang, L.; Jiao, Y.; Xu, X.; Pan, Y.; Su, C.; Duan, X.; Sun, H.; Liu, S.; Wang, S.; Shao, Z. Superstructures with atomic-level arranged perovskite and oxide layers for advanced oxidation with an enhanced non-free radical pathway. ACS Sustain. Chem. Eng. 2022, 10, 1899–1909. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, Y.; Zheng, J.; Shang, L.; Shi, Y.; Wu, Q.; Liu, X.; Wang, Y.; Shi, L.; Shao, Q. Synthesis and characterization of ZnNiCr-layered double hydroxides with high adsorption activities for Cr(VI). Adv. Compos. Hybrid Mater. 2021, 4, 819–829. [Google Scholar] [CrossRef]
- Tang, J.; Ma, Y.; Deng, Z.; Li, P.; Qi, X.; Zhang, Z. One-pot preparation of layered double oxides-engineered biochar for the sustained removal of tetracycline in water. Bio. Technol. 2023, 381, 129119. [Google Scholar] [CrossRef]
- Liang, W.; Wang, G.; Peng, C.; Tan, J.; Wan, J.; Sun, P.; Li, Q.; Ji, X.; Zhang, Q.; Wu, Y.; et al. Recent advances of carbon-based nano zero valent iron for heavy metals remediation in soil and water: A critical review. J. Hazard Mater. 2022, 426, 127993. [Google Scholar] [CrossRef]
- Liang, X.; Su, Y.; Wang, X.; Liang, C.; Tang, C.; Wei, J.; Liu, K.; Ma, J.; Yu, F.; Li, Y. Insights into the heavy metal adsorption and immobilization mechanisms of CaFe-layered double hydroxide corn straw biochar: Synthesis and application in a combined heavy metal-contaminated environment. Chemosphere 2023, 313, 137467. [Google Scholar] [CrossRef]
- Chai, W.S.; Cheun, J.Y.; Kumar, P.S.; Mubashir, M.; Majeed, Z.; Banat, F.; Ho, S.H.; Show, P.L. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Clean. Prod. 2021, 296, 126589. [Google Scholar] [CrossRef]
- Feng, Z.; Zheng, Y.; Wang, H.; Feng, C.; Chen, N.; Wang, S. Sodium humate based double network hydrogel for Cu and Pb removal. Chemosphere 2023, 313, 137558. [Google Scholar] [CrossRef]
- Zubair, M.; Ihsanullah, I.; Aziz, H.A.; Ahmad, M.A.; Al-Harthi, M.A. Sustainable wastewater treatment by biochar/layered double hydroxide composites: Progress, challenges, and outlook. Bio. Technol. 2021, 319, 124128. [Google Scholar] [CrossRef]
- Millange, F.; Walton, R.I.; Lei, L.; O’Hare, D. Efficient separation of terephthalate and phthalate anions by selective ion-Exchange intercalation in the layered double hydroxide Ca2Al(OH)6·NO3·2H2O. Chem. Mater. 2000, 12, 1990–1994. [Google Scholar] [CrossRef]
- Alcântara, A.C.S.; Aranda, P.; Darder, M.; Ruiz-Hitzky, E. Bionanocomposites based on alginate-zein/layered double hydroxide materials as drug delivery systems. J. Mater. Chem. 2010, 20, 9495–9504. [Google Scholar] [CrossRef]
- Raki, L.; Beaudoin, J.; Alizadeh, R.; Makar, J.; Sato, T. Cement and concrete nanoscience and nanotechnology. Materials 2010, 3, 918–942. [Google Scholar] [CrossRef]
- Basu, D.; Das, A.; George, J.; Wang, D.; Stöckelhuber, K.; Wagenknecht, U.; Leuteritz, A.; Kutlu, B.; Reuter, U.; Heinrich, G. Unmodified LDH as reinforcing filler for XNBR and the development of flame-retardant elastomer composites. Rubber Chem. Technol. 2014, 87, 606–616. [Google Scholar] [CrossRef]
- Peng, Z.-K.; Peng, Q.-M.; Ma, Y.-Q. Thermal characteristics of borates and its indication for endogenous borate deposits. Ore Geol. Rev. 2022, 145, 104887. [Google Scholar] [CrossRef]
- Wang, S.; Bai, P.; Cichocka, M.O.; Cho, J.; Willhammar, T.; Wang, Y.; Yan, W.; Zou, X.; Yu, J. Two-Dimensional cationic aluminoborate as a new paradigm for highly selective and efficient Cr(VI) capture from aqueous solution. JACS Au 2022, 2, 1669–1678. [Google Scholar] [CrossRef]
- Nyambo, C.; Wilkie, C.A. Layered double hydroxides intercalated with borate anions: Fire and thermal properties in ethylene vinyl acetate copolymer. Polym. Degrad. Stabil. 2009, 94, 506–512. [Google Scholar] [CrossRef]
- Zheng, J.; Fan, C.; Li, X.; Yang, Q.; Wang, D.; Duan, A.; Pan, S. Tourmaline/ZnAL-LDH nanocomposite based photocatalytic system for efficient degradation of mixed pollutant wastewater. Sep. Purif. Technol. 2024, 345, 127306. [Google Scholar] [CrossRef]
- Ba, W.; Tang, Y.; Yu, J.; Ya, W.; Wang, C.; Li, Y.; Wang, Z.; Yang, J.; Zhang, L.; Yu, F. Si-doped ZnAl-LDH nanosheets by layer-engineering for efficient photoelectrocatalytic water splitting, Appl. Catal. B Environ. Energy 2024, 346, 123706. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, Y.; Gao, Q.; Zhang, N.; Hu, P.; Feng, W. ZnAl-LDH film for self-powered ultraviolet photodetection. Nano Mater. Sci. 2024, in press. [CrossRef]
- Hameed, R.; Abbas, A.; Lou, J.; Khatta, W.; Roh, B.; Iqbal, B.; Li, G.; Zhang, Q.; Zhao, X. Synthesis of biochar-ZnAl-layered double hydroxide composite for effective heavy metal adsorption: Exploring mechanisms and structural transformations. J. Environ. Chem. Eng. 2024, 12, 112687. [Google Scholar] [CrossRef]
- Aquin, R.; Lucen, P.; Arias, S.; Landers, R.; Pacheco, J.A.; Rocha, O. Influence of terephthalate anion in ZnAl layered double hydroxide on lead ion removal: Adsorption, kinetics, thermodynamics and mechanism. Colloid Surface A 2024, 686, 133404. [Google Scholar] [CrossRef]
- Theamwong, N.; Intarabumrung, W.; Sangon, S.; Aintharabunya, S.; Ngernyen, Y.; Hunt, A.J.; Supanchaiyamat, N. Activated carbons from waste Cassia bakeriana seed pods as high-performance adsorbents for toxic anionic dye and ciprofloxacin antibiotic remediation. Bioresour. Technol. 2021, 341, 125832. [Google Scholar] [CrossRef]
- Yao, B.; Luo, Z.; Du, S.; Yang, J.; Zhi, D.; Zhou, Y. Sustainable biochar/MgFe2O4 adsorbent for levofloxacin removal: Adsorption performances and mechanisms. Bioresour. Technol. 2021, 340, 125698. [Google Scholar] [CrossRef]
- Cheng, D.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Zhang, X.; Varjani, S.; Liu, Y. Feasibility study on a new pomelo peel derived biochar for tetracycline antibiotics removal in swine wastewater. Sci. Total Environ. 2020, 720, 137662. [Google Scholar] [CrossRef]
- Li, X.; Xu, J.; Shi, J.; Luo, X. Rapid and efficient adsorption of tetracycline from aqueous solution in a wide pH range by using iron and aminoacetic acid sequentially modified hierarchical porous biochar. Bioresour. Technol. 2022, 346, 126672. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Liu, Y.; Zhang, Y.; Liu, S.; Wang, C.; Chen, W.; Liu, C.; Chen, Z.; Zhang, Y. ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline. Bioresour. Technol. 2020, 297, 122381. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, S.; Banik, C.; Rathke, S.J.; Laird, D.A. Arsenic sorption on zero-valent iron-biochar complexes. Water Res. 2018, 137, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Wanga, T.; Lia, C.; Wang, C.; Wang, H. Biochar/MnAl-LDH composites for Cu (ΙΙ) removal from aqueous solution. Colloids Surf. A 2018, 538, 443–450. [Google Scholar] [CrossRef]
- Nie, Y.; Zhao, C.; Zhou, Z.; Kong, Y.; Ma, J. Hydrochloric acid-modified fungi-microalgae biochar for adsorption of tetracycline hydrochloride: Performance and mechanism. Bioresour. Technol. 2023, 383, 129224. [Google Scholar] [CrossRef]
Adsorption Object | Pseudo-First-Order: ln(qe − qt) = lnqe − k1t | Pseudo-Second-Order: t/qt = 1/qe2k2 + t/qe | ||||
---|---|---|---|---|---|---|
qe | k1 | R2 | qe | k2 | R2 | |
Cd | 0.7421 | 0.01199 | 0.8003 | 10.54 | 0.08180 | 0.9999 |
Cu | 14.85 | 0.005880 | 0.9794 | 20.98 | 0.001189 | 0.9736 |
Cr | 9.746 | 0.007050 | 0.8955 | 22.79 | 0.002853 | 0.9997 |
MB | 0.2463 | 0.005840 | 0.8946 | 0.7063 | 0.09844 | 0.9974 |
Adsorption Object | Cs (g·L−1) | Langmuir Isotherm: qe = KLqmCe/(1 + qmKL) | Freundlich Isotherm: qe = KFCenF | ||||
---|---|---|---|---|---|---|---|
qm (mg·g−1) | KL (L·mg−1) | R2 | nF | KF (mg1−nFLnF·g−1) | R2 | ||
Cd | 2 | 18.7 | 0.004 | 0.952 | 0.608 | 0.303 | 0.904 |
4 | 10.9 | 0.006 | 0.925 | 0.601 | 0.228 | 0.877 | |
8 | 5.65 | 0.007 | 0.952 | 0.565 | 0.148 | 0.911 | |
Cu | 2 | 57.5 | 0.0458 | 0.965 | 0.330 | 9.40 | 0.996 |
4 | 50.1 | 0.0338 | 0.971 | 0.362 | 6.74 | 0.999 | |
8 | 38.6 | 0.0642 | 0.977 | 0.359 | 6.05 | 0.976 | |
Cr | 2 | 70.2 | 0.0347 | 0.997 | 0.358 | 9.57 | 0.954 |
4 | 52.3 | 0.0273 | 0.982 | 0.489 | 3.85 | 0.948 | |
8 | 32.2 | 0.0179 | 0.991 | 0.531 | 1.71 | 0.987 | |
MB | 2 | 3.12 | 0.0285 | 0.989 | 0.408 | 0.351 | 0.986 |
4 | 1.58 | 0.0332 | 0.978 | 0.522 | 0.121 | 0.940 | |
8 | 0.930 | 0.0387 | 0.930 | 0.618 | 0.0524 | 0.927 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Zhang, C.; Zhang, K.; Wu, L.; Han, D. One-Pot Preparation of Layered Double Hydroxide-Engineered Boric Acid Root and Application in Wastewater. Molecules 2024, 29, 3204. https://doi.org/10.3390/molecules29133204
Zhang F, Zhang C, Zhang K, Wu L, Han D. One-Pot Preparation of Layered Double Hydroxide-Engineered Boric Acid Root and Application in Wastewater. Molecules. 2024; 29(13):3204. https://doi.org/10.3390/molecules29133204
Chicago/Turabian StyleZhang, Fengrong, Cuilan Zhang, Kaixuan Zhang, Lishun Wu, and Dandan Han. 2024. "One-Pot Preparation of Layered Double Hydroxide-Engineered Boric Acid Root and Application in Wastewater" Molecules 29, no. 13: 3204. https://doi.org/10.3390/molecules29133204
APA StyleZhang, F., Zhang, C., Zhang, K., Wu, L., & Han, D. (2024). One-Pot Preparation of Layered Double Hydroxide-Engineered Boric Acid Root and Application in Wastewater. Molecules, 29(13), 3204. https://doi.org/10.3390/molecules29133204