One-Pot Preparation of Layered Double Hydroxide-Engineered Boric Acid Root and Application in Wastewater
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Adsorbents
2.2. Adsorption Kinetics
2.3. Adsorption Isotherms
2.4. Adsorption Mechanism
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Fabrication of BA-LDHs Composites
3.3. Characteristics of Adsorbents
3.4. Adsorption Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kurwadkar, S. Occurrence and distribution of organic and inorganic pollutants in groundwater. Water Environ. Res. 2019, 91, 1001–1008. [Google Scholar] [CrossRef]
- Zeng, X.; Zhu, J.; Zhang, G.; Wu, Z.; Lu, J.; Ji, H. Molecular-level understanding on complexation-adsorption-degradation during the simultaneous removal of aqueous binary pollutants by magnetic composite aerogels. Chem. Eng. J. 2023, 468, 143536. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Li, L.P.; Kong, L.C.; Cai, G.Y.; Wang, P.; Zhang, J.; Zuo, W.; Tian, Y. Compressible amino-modified carboxymethyl chitosan aerogel for efficient Cu(II) adsorption from wastewater. Sep. Purif. Technol. 2022, 293, 121146. [Google Scholar] [CrossRef]
- Chen, B.; Yue, W.L.; Zhao, H.N.; Long, F.X.; Cao, Y.R.; Pan, X.J. Simultaneous capture of methyl orange and chromium(VI) from complex wastewater using polyethylenimine cation decorated magnetic carbon nanotubes as a recyclable adsorbent. ACS Adv. 2019, 9, 4722. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, L.; Wang, R.; Wang, Y.; Zhang, X. A novel cellulose hydrogel coating with nanoscale Fe(0) for Cr(VI) adsorption and reduction. Sci. Total. Environ. 2020, 726, 138625. [Google Scholar] [CrossRef]
- Li, Y.F.; Wen, J.; Xue, Z.Z.; Yin, X.Y.; Yuan, L.; Yang, C.L. Removal of Cr(VI) by polyaniline embedded polyvinyl alcohol/sodium alginate beads–Extension from water treatment to soil remediation. J. Hazard. Mater. 2021, 426, 127809. [Google Scholar] [CrossRef]
- Zeng, X.C.; Zhang, G.H.; Wen, J.; Li, X.L.; Zhu, J.F.; Wu, Z. Simultaneous removal of aqueous same ionic type heavy metals and dyes by a magnetic chitosan/polyethyleneimine embedded hydrophobic sodium alginate composite: Performance, interaction and mechanism. Chemosphere 2023, 318, 137869. [Google Scholar] [CrossRef]
- Yang, L.; Jiao, Y.; Xu, X.; Pan, Y.; Su, C.; Duan, X.; Sun, H.; Liu, S.; Wang, S.; Shao, Z. Superstructures with atomic-level arranged perovskite and oxide layers for advanced oxidation with an enhanced non-free radical pathway. ACS Sustain. Chem. Eng. 2022, 10, 1899–1909. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, Y.; Zheng, J.; Shang, L.; Shi, Y.; Wu, Q.; Liu, X.; Wang, Y.; Shi, L.; Shao, Q. Synthesis and characterization of ZnNiCr-layered double hydroxides with high adsorption activities for Cr(VI). Adv. Compos. Hybrid Mater. 2021, 4, 819–829. [Google Scholar] [CrossRef]
- Tang, J.; Ma, Y.; Deng, Z.; Li, P.; Qi, X.; Zhang, Z. One-pot preparation of layered double oxides-engineered biochar for the sustained removal of tetracycline in water. Bio. Technol. 2023, 381, 129119. [Google Scholar] [CrossRef]
- Liang, W.; Wang, G.; Peng, C.; Tan, J.; Wan, J.; Sun, P.; Li, Q.; Ji, X.; Zhang, Q.; Wu, Y.; et al. Recent advances of carbon-based nano zero valent iron for heavy metals remediation in soil and water: A critical review. J. Hazard Mater. 2022, 426, 127993. [Google Scholar] [CrossRef]
- Liang, X.; Su, Y.; Wang, X.; Liang, C.; Tang, C.; Wei, J.; Liu, K.; Ma, J.; Yu, F.; Li, Y. Insights into the heavy metal adsorption and immobilization mechanisms of CaFe-layered double hydroxide corn straw biochar: Synthesis and application in a combined heavy metal-contaminated environment. Chemosphere 2023, 313, 137467. [Google Scholar] [CrossRef]
- Chai, W.S.; Cheun, J.Y.; Kumar, P.S.; Mubashir, M.; Majeed, Z.; Banat, F.; Ho, S.H.; Show, P.L. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Clean. Prod. 2021, 296, 126589. [Google Scholar] [CrossRef]
- Feng, Z.; Zheng, Y.; Wang, H.; Feng, C.; Chen, N.; Wang, S. Sodium humate based double network hydrogel for Cu and Pb removal. Chemosphere 2023, 313, 137558. [Google Scholar] [CrossRef]
- Zubair, M.; Ihsanullah, I.; Aziz, H.A.; Ahmad, M.A.; Al-Harthi, M.A. Sustainable wastewater treatment by biochar/layered double hydroxide composites: Progress, challenges, and outlook. Bio. Technol. 2021, 319, 124128. [Google Scholar] [CrossRef]
- Millange, F.; Walton, R.I.; Lei, L.; O’Hare, D. Efficient separation of terephthalate and phthalate anions by selective ion-Exchange intercalation in the layered double hydroxide Ca2Al(OH)6·NO3·2H2O. Chem. Mater. 2000, 12, 1990–1994. [Google Scholar] [CrossRef]
- Alcântara, A.C.S.; Aranda, P.; Darder, M.; Ruiz-Hitzky, E. Bionanocomposites based on alginate-zein/layered double hydroxide materials as drug delivery systems. J. Mater. Chem. 2010, 20, 9495–9504. [Google Scholar] [CrossRef]
- Raki, L.; Beaudoin, J.; Alizadeh, R.; Makar, J.; Sato, T. Cement and concrete nanoscience and nanotechnology. Materials 2010, 3, 918–942. [Google Scholar] [CrossRef]
- Basu, D.; Das, A.; George, J.; Wang, D.; Stöckelhuber, K.; Wagenknecht, U.; Leuteritz, A.; Kutlu, B.; Reuter, U.; Heinrich, G. Unmodified LDH as reinforcing filler for XNBR and the development of flame-retardant elastomer composites. Rubber Chem. Technol. 2014, 87, 606–616. [Google Scholar] [CrossRef]
- Peng, Z.-K.; Peng, Q.-M.; Ma, Y.-Q. Thermal characteristics of borates and its indication for endogenous borate deposits. Ore Geol. Rev. 2022, 145, 104887. [Google Scholar] [CrossRef]
- Wang, S.; Bai, P.; Cichocka, M.O.; Cho, J.; Willhammar, T.; Wang, Y.; Yan, W.; Zou, X.; Yu, J. Two-Dimensional cationic aluminoborate as a new paradigm for highly selective and efficient Cr(VI) capture from aqueous solution. JACS Au 2022, 2, 1669–1678. [Google Scholar] [CrossRef]
- Nyambo, C.; Wilkie, C.A. Layered double hydroxides intercalated with borate anions: Fire and thermal properties in ethylene vinyl acetate copolymer. Polym. Degrad. Stabil. 2009, 94, 506–512. [Google Scholar] [CrossRef]
- Zheng, J.; Fan, C.; Li, X.; Yang, Q.; Wang, D.; Duan, A.; Pan, S. Tourmaline/ZnAL-LDH nanocomposite based photocatalytic system for efficient degradation of mixed pollutant wastewater. Sep. Purif. Technol. 2024, 345, 127306. [Google Scholar] [CrossRef]
- Ba, W.; Tang, Y.; Yu, J.; Ya, W.; Wang, C.; Li, Y.; Wang, Z.; Yang, J.; Zhang, L.; Yu, F. Si-doped ZnAl-LDH nanosheets by layer-engineering for efficient photoelectrocatalytic water splitting, Appl. Catal. B Environ. Energy 2024, 346, 123706. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, Y.; Gao, Q.; Zhang, N.; Hu, P.; Feng, W. ZnAl-LDH film for self-powered ultraviolet photodetection. Nano Mater. Sci. 2024, in press. [CrossRef]
- Hameed, R.; Abbas, A.; Lou, J.; Khatta, W.; Roh, B.; Iqbal, B.; Li, G.; Zhang, Q.; Zhao, X. Synthesis of biochar-ZnAl-layered double hydroxide composite for effective heavy metal adsorption: Exploring mechanisms and structural transformations. J. Environ. Chem. Eng. 2024, 12, 112687. [Google Scholar] [CrossRef]
- Aquin, R.; Lucen, P.; Arias, S.; Landers, R.; Pacheco, J.A.; Rocha, O. Influence of terephthalate anion in ZnAl layered double hydroxide on lead ion removal: Adsorption, kinetics, thermodynamics and mechanism. Colloid Surface A 2024, 686, 133404. [Google Scholar] [CrossRef]
- Theamwong, N.; Intarabumrung, W.; Sangon, S.; Aintharabunya, S.; Ngernyen, Y.; Hunt, A.J.; Supanchaiyamat, N. Activated carbons from waste Cassia bakeriana seed pods as high-performance adsorbents for toxic anionic dye and ciprofloxacin antibiotic remediation. Bioresour. Technol. 2021, 341, 125832. [Google Scholar] [CrossRef]
- Yao, B.; Luo, Z.; Du, S.; Yang, J.; Zhi, D.; Zhou, Y. Sustainable biochar/MgFe2O4 adsorbent for levofloxacin removal: Adsorption performances and mechanisms. Bioresour. Technol. 2021, 340, 125698. [Google Scholar] [CrossRef]
- Cheng, D.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Zhang, X.; Varjani, S.; Liu, Y. Feasibility study on a new pomelo peel derived biochar for tetracycline antibiotics removal in swine wastewater. Sci. Total Environ. 2020, 720, 137662. [Google Scholar] [CrossRef]
- Li, X.; Xu, J.; Shi, J.; Luo, X. Rapid and efficient adsorption of tetracycline from aqueous solution in a wide pH range by using iron and aminoacetic acid sequentially modified hierarchical porous biochar. Bioresour. Technol. 2022, 346, 126672. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Liu, Y.; Zhang, Y.; Liu, S.; Wang, C.; Chen, W.; Liu, C.; Chen, Z.; Zhang, Y. ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline. Bioresour. Technol. 2020, 297, 122381. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, S.; Banik, C.; Rathke, S.J.; Laird, D.A. Arsenic sorption on zero-valent iron-biochar complexes. Water Res. 2018, 137, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Wanga, T.; Lia, C.; Wang, C.; Wang, H. Biochar/MnAl-LDH composites for Cu (ΙΙ) removal from aqueous solution. Colloids Surf. A 2018, 538, 443–450. [Google Scholar] [CrossRef]
- Nie, Y.; Zhao, C.; Zhou, Z.; Kong, Y.; Ma, J. Hydrochloric acid-modified fungi-microalgae biochar for adsorption of tetracycline hydrochloride: Performance and mechanism. Bioresour. Technol. 2023, 383, 129224. [Google Scholar] [CrossRef]
Adsorption Object | Pseudo-First-Order: ln(qe − qt) = lnqe − k1t | Pseudo-Second-Order: t/qt = 1/qe2k2 + t/qe | ||||
---|---|---|---|---|---|---|
qe | k1 | R2 | qe | k2 | R2 | |
Cd | 0.7421 | 0.01199 | 0.8003 | 10.54 | 0.08180 | 0.9999 |
Cu | 14.85 | 0.005880 | 0.9794 | 20.98 | 0.001189 | 0.9736 |
Cr | 9.746 | 0.007050 | 0.8955 | 22.79 | 0.002853 | 0.9997 |
MB | 0.2463 | 0.005840 | 0.8946 | 0.7063 | 0.09844 | 0.9974 |
Adsorption Object | Cs (g·L−1) | Langmuir Isotherm: qe = KLqmCe/(1 + qmKL) | Freundlich Isotherm: qe = KFCenF | ||||
---|---|---|---|---|---|---|---|
qm (mg·g−1) | KL (L·mg−1) | R2 | nF | KF (mg1−nFLnF·g−1) | R2 | ||
Cd | 2 | 18.7 | 0.004 | 0.952 | 0.608 | 0.303 | 0.904 |
4 | 10.9 | 0.006 | 0.925 | 0.601 | 0.228 | 0.877 | |
8 | 5.65 | 0.007 | 0.952 | 0.565 | 0.148 | 0.911 | |
Cu | 2 | 57.5 | 0.0458 | 0.965 | 0.330 | 9.40 | 0.996 |
4 | 50.1 | 0.0338 | 0.971 | 0.362 | 6.74 | 0.999 | |
8 | 38.6 | 0.0642 | 0.977 | 0.359 | 6.05 | 0.976 | |
Cr | 2 | 70.2 | 0.0347 | 0.997 | 0.358 | 9.57 | 0.954 |
4 | 52.3 | 0.0273 | 0.982 | 0.489 | 3.85 | 0.948 | |
8 | 32.2 | 0.0179 | 0.991 | 0.531 | 1.71 | 0.987 | |
MB | 2 | 3.12 | 0.0285 | 0.989 | 0.408 | 0.351 | 0.986 |
4 | 1.58 | 0.0332 | 0.978 | 0.522 | 0.121 | 0.940 | |
8 | 0.930 | 0.0387 | 0.930 | 0.618 | 0.0524 | 0.927 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Zhang, C.; Zhang, K.; Wu, L.; Han, D. One-Pot Preparation of Layered Double Hydroxide-Engineered Boric Acid Root and Application in Wastewater. Molecules 2024, 29, 3204. https://doi.org/10.3390/molecules29133204
Zhang F, Zhang C, Zhang K, Wu L, Han D. One-Pot Preparation of Layered Double Hydroxide-Engineered Boric Acid Root and Application in Wastewater. Molecules. 2024; 29(13):3204. https://doi.org/10.3390/molecules29133204
Chicago/Turabian StyleZhang, Fengrong, Cuilan Zhang, Kaixuan Zhang, Lishun Wu, and Dandan Han. 2024. "One-Pot Preparation of Layered Double Hydroxide-Engineered Boric Acid Root and Application in Wastewater" Molecules 29, no. 13: 3204. https://doi.org/10.3390/molecules29133204
APA StyleZhang, F., Zhang, C., Zhang, K., Wu, L., & Han, D. (2024). One-Pot Preparation of Layered Double Hydroxide-Engineered Boric Acid Root and Application in Wastewater. Molecules, 29(13), 3204. https://doi.org/10.3390/molecules29133204