Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = zearalenone-14-glucoside

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 677 KB  
Article
Identification and Assessment of Resistance to Fusarium Head Blight and Mycotoxin Accumulation Among 99 Wheat Varieties
by Chen Huang, Dezhou Cui, Yongbo Li, Yamei Zhuang, Xinxia Sui and Qingqi Fan
Agronomy 2025, 15(7), 1542; https://doi.org/10.3390/agronomy15071542 - 25 Jun 2025
Cited by 2 | Viewed by 1553
Abstract
Fusarium head blight (FHB) is a major devastating wheat fungal disease. Mycotoxins act as virulent factor for FHB progression, including deoxynivalenol (DON), 15-acetyl deoxynivalenol (15-ADON), 3-acetyl deoxynivalenol (3-ADON), deoxynivalenol-3-glucoside (D3G), and zearalenone (ZEN). To identify resistant germplasm against FHB and mycotoxin accumulation, we [...] Read more.
Fusarium head blight (FHB) is a major devastating wheat fungal disease. Mycotoxins act as virulent factor for FHB progression, including deoxynivalenol (DON), 15-acetyl deoxynivalenol (15-ADON), 3-acetyl deoxynivalenol (3-ADON), deoxynivalenol-3-glucoside (D3G), and zearalenone (ZEN). To identify resistant germplasm against FHB and mycotoxin accumulation, we evaluated 99 wheat cultivars for FHB severity using point inoculation by three FHB isolates under greenhouse and field conditions. FHB severity of selected varieties evaluated in the fields were correlated with that in greenhouse (p < 0.01). Inoculated spikes from 20 varieties were examined for mycotoxin accumulation, employing an LC-MS/MS method that differentiated five mycotoxins. Five cultivars exhibited resistance to both FHB and mycotoxin accumulation, with FHB severity averaging from 13.36% to 33.37%, and DON accumulation below 2400.0 µg/kg, across various conditions. Seven dominant varieties exhibited moderate resistance to FHB and mycotoxin accumulation. FHB severity was significantly positively correlated with DON accumulation, but negatively correlated to the D3G to DON ratio, across distinct groups of FHB resistance (p < 0.01) after inoculation of three distinct isolates, although no correlation was observed within-group. In the present study, Shannong20, Huaimai20, and Sunlin were identified with resistance to both FHB and mycotoxins with superior agronomic performance, providing promising materials for improving disease resistance in breeding programs. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

20 pages, 1431 KB  
Article
Mapping Variability of Mycotoxins in Individual Oat Kernels from Batch Samples: Implications for Sampling and Food Safety
by Irene Teixido-Orries, Francisco Molino, Bianca Castro-Criado, Monika Jodkowska, Angel Medina, Sonia Marín and Carol Verheecke-Vaessen
Toxins 2025, 17(1), 34; https://doi.org/10.3390/toxins17010034 - 11 Jan 2025
Cited by 3 | Viewed by 2596
Abstract
Oats are susceptible to contamination by Fusarium mycotoxins, including deoxynivalenol (DON), zearalenone (ZEN), and T-2/HT-2 toxins, posing food safety risks. This study analyses the variation in levels of 14 mycotoxins in 200 individual oat kernels from two DON-contaminated batch samples (mean = 3498 [...] Read more.
Oats are susceptible to contamination by Fusarium mycotoxins, including deoxynivalenol (DON), zearalenone (ZEN), and T-2/HT-2 toxins, posing food safety risks. This study analyses the variation in levels of 14 mycotoxins in 200 individual oat kernels from two DON-contaminated batch samples (mean = 3498 µg/kg) using LC-MS/MS. The samples also contained deoxynivalenol-3-glucoside (DON-3G), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), and ZEN. Contamination levels varied notably among individual kernels, with DON detected in 70% of them, followed by DON-3G (24.5%) and 3-ADON (20.5%). Importantly, 8% of kernels exceeded the EU legal limit for DON (1750 µg/kg), and some occasionally surpassed limits for ZEN and T-2/HT-2. Correlation analyses revealed strong associations between DON and its derivatives but weaker correlations with other toxins. Mycotoxin ratios varied widely, indicating that although they often co-occur, their concentrations differ between kernels. Contamination did not significantly impact kernel weight, though a slight trend toward lower weights in contaminated kernels was noted. Additionally, sampling statistics showed that as the percentage of selected kernels increased, the probability of batch sample rejection for DON contamination rose significantly. The study highlights the heterogeneity of mycotoxin contamination in oat batches, emphasising the importance of accurate detection and regulatory compliance to ensure safer oat-based products. Full article
(This article belongs to the Special Issue Occurrence, Toxicity, Metabolism, Analysis and Control of Mycotoxins)
Show Figures

Figure 1

14 pages, 1712 KB  
Article
A Multi-Year Study of Mycotoxin Co-Occurrence in Wheat and Corn Grown in Ontario, Canada
by Megan J. Kelman, J. David Miller, Justin B. Renaud, Daria Baskova and Mark W. Sumarah
Toxins 2024, 16(8), 372; https://doi.org/10.3390/toxins16080372 - 22 Aug 2024
Cited by 3 | Viewed by 2539
Abstract
Mycotoxin emergence and co-occurrence trends in Canadian grains are dynamic and evolving in response to changing weather patterns within each growing season. The mycotoxins deoxynivalenol and zearalenone are the dominant mycotoxins detected in grains grown in Eastern Canada. Two potential emerging mycotoxins of [...] Read more.
Mycotoxin emergence and co-occurrence trends in Canadian grains are dynamic and evolving in response to changing weather patterns within each growing season. The mycotoxins deoxynivalenol and zearalenone are the dominant mycotoxins detected in grains grown in Eastern Canada. Two potential emerging mycotoxins of concern are sterigmatocystin, produced by Aspergillus versicolor, and diacetoxyscirpenol, a type A trichothecene produced by a number of Fusarium species. In response to a call from the 83rd Joint Expert Committee on Food Additives and Contaminants, we conducted a comprehensive survey of samples from cereal production areas in Ontario, Canada. Some 159 wheat and 160 corn samples were collected from farms over a three-year period. Samples were extracted and analyzed by LC-MS/MS for 33 mycotoxins and secondary metabolites. Ergosterol was analyzed as an estimate of the overall fungal biomass in the samples. In wheat, the ratio of DON to its glucoside, deoxynivalenol-3-glucoside (DON-3G), exhibited high variability, likely attributable to differences among cultivars. In corn, the ratio was more consistent across the samples. Sterigmatocystin was detected in some wheat that had higher concentrations of ergosterol. Diacetoxyscirpenol was not detected in either corn or wheat over the three years, demonstrating a low risk to Ontario grain. Overall, there was some change to the mycotoxin profiles over the three years for wheat and corn. Ongoing surveys are required to reassess trends and ensure the safety of the food value chain, especially for emerging mycotoxins. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

15 pages, 3622 KB  
Article
A Study of a New Certified Reference Material for Accurate Determination of the Main Fusarium Mycotoxins in Whole-Wheat Flour
by Li Li, Peng Li, Yu Wu, Jin Ye, Zongwang Li and Songxue Wang
Foods 2023, 12(23), 4358; https://doi.org/10.3390/foods12234358 - 2 Dec 2023
Viewed by 2116
Abstract
Matrix certified reference materials (CRMs) play a critical role in analytical method validation and the assurance of reliable measurement results. A certified reference material (GBW(E)100813) for whole-wheat flour was developed to ensure an accurate and reliable measurement of the main Fusarium mycotoxins (deoxynivalenol [...] Read more.
Matrix certified reference materials (CRMs) play a critical role in analytical method validation and the assurance of reliable measurement results. A certified reference material (GBW(E)100813) for whole-wheat flour was developed to ensure an accurate and reliable measurement of the main Fusarium mycotoxins (deoxynivalenol (DON), nivalenol (NIV), deoxynivalenol-3-glucoside (DON-3G), and zearalenone (ZEN)). CRM candidates were prepared using sun-drying, grinding, sieving, homogenising, packaging, and gamma irradiation. The final produced CRM was packaged at 50 g per unit and stored at 20 °C. Certification was performed using isotope dilution-liquid chromatography–tandem mass spectrometry. CRM characterization was performed in eight laboratories in accordance with the requirements of ISO Guide 35. The certified values and expanded uncertainties (at a confidence of 95%, k = 2) for DON, NIV, DON-3G, and ZEN were determined to be 0.98 ± 0.12 mg/kg, 1.37 ± 0.20 mg/kg, 242 ± 35 μg/g, and 382 ± 50 μg/g. The CRM was sufficiently homogeneous between and within bottles, and remained stable for up to 12 months at 20 °C and 9 days below 40 °C for transportation. Thus, CRM can be used for quality control and method validation to ensure the accurate and reliable quantification of the main Fusarium mycotoxins in whole-wheat flour. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

12 pages, 427 KB  
Article
Fusarium Mycotoxins and OTA in Beer from Shanghai, the Largest Megacity in China: Occurrence and Dietary Risk Assessment
by Anqi Xu, Haiyan Zhou, Shenghao Yu, Yiqi Li, Lan Wang, Aibo Wu, Jiang Liang, Shaojie Peng and Na Liu
Foods 2023, 12(16), 3071; https://doi.org/10.3390/foods12163071 - 16 Aug 2023
Cited by 8 | Viewed by 2684
Abstract
Beer is susceptible to mycotoxin contamination originating from infected grains. It could be that mycotoxins are not completely removed during the brewing process and remain in the final product. Nevertheless, there have been no surveys of exposure to mycotoxin for Chinese inhabitants through [...] Read more.
Beer is susceptible to mycotoxin contamination originating from infected grains. It could be that mycotoxins are not completely removed during the brewing process and remain in the final product. Nevertheless, there have been no surveys of exposure to mycotoxin for Chinese inhabitants through beer consumption. This study aimed to investigate the presence of eight mycotoxins in 158 beer samples purchased in Shanghai, the largest megacity in China. The multiple mycotoxins determination was carried out using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Our findings revealed that 48.1% (76/158) of the beer samples were contaminated with Fusarium toxins. Deoxynivalenol-3-glucoside (D3G) and zearalenone (ZEN) were detected in 34.81% and 16.46% of the total samples, respectively. The significant differences between D3G/ZEN contamination and various beer types were performed. Furthermore, this study performed a health risk assessment for Shanghai residents based on data for Fusarium toxins and ochratoxin A (OTA) present in beer for the first time. The results revealed that the 95th percentile dietary exposures of Shanghai residents did not pose any chronic or acute health risks, either individually or in combination. Dietary exposures to Fusarium toxins revealed different risk levels among residents. The cumulative health risk for women is higher than that for men at the same beer consumption. In addition, the acute risk of DONs exposure for adults deserves concern. The insights obtained from this study may be of assistance for beer manufacturers and governmental regulators to further develop beer monitoring and guarantee public health. Full article
(This article belongs to the Special Issue Mycotoxins in Food: From Prediction to Management and Control)
Show Figures

Figure 1

15 pages, 3591 KB  
Article
Kinetics and Distribution of Zearalenone-14-Glucoside and Its Metabolite Zearalenone in Rat, Determined by a Reliable HPLC-MS/MS Method
by Yaling Cai, Zhiqi Zhang, Fang Dong, Zefeng Ma, Kai Fan, Zheng Han, Zhizhong Li and Zhihui Zhao
Appl. Sci. 2023, 13(8), 4990; https://doi.org/10.3390/app13084990 - 16 Apr 2023
Cited by 1 | Viewed by 2828
Abstract
A reliable high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was established for the simultaneous detection of zearalenone-14-glucoside (ZEN-14G) and its metabolite, zearalenone (ZEN), in the plasma, urine, and various tissues of rats. The performance of the developed method was validated by determining the [...] Read more.
A reliable high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was established for the simultaneous detection of zearalenone-14-glucoside (ZEN-14G) and its metabolite, zearalenone (ZEN), in the plasma, urine, and various tissues of rats. The performance of the developed method was validated by determining the selectivity, linearity (R2 > 0.99), sensitivity (lower limit of quantification, 0.1–1 μg/L), recovery (80.7 ± 3.0–112.3 ± 3.1%), precision (0.6–16.5%), and stability (81.7 ± 1.7–104.1 ± 3.9%). Through use of the methodological advances, the subsequent kinetics and distribution after administration of ZEN-14G by gavage were thoroughly investigated. ZEN-14G and ZEN exhibited similar trends in the plasma, and reached their peak concentrations at 10 min and then rapidly decreased. ZEN-14G could be quantified in the stomach, small intestine, and large intestine 24 h after administration, while ZEN was detectable in all tested tissues. Interestingly, ZEN-14G (7.6 ± 3.0 μg/L) and ZEN (977.5 ± 98.0 μg/L) were also detected in the urine 24 h after administration, indicating that ZEN-14G was prone to be slowly and continuously hydrolyzed into ZEN to be absorbed into the plasma and distributed to various tissues, thus leading to a cumulative exposure. Continuous attention should be paid to the co-exposure of ZEN and ZEN-14G, which might pose additional health risks to humans and animals. Full article
(This article belongs to the Topic New Advances in Food Analysis and Detection)
Show Figures

Figure 1

12 pages, 1567 KB  
Article
Free and Modified Mycotoxins in Organic and Conventional Oats (Avena sativa L.) Grown in Scotland
by Noshin Daud, Valerie Currie, Gary Duncan, Joao A. N. Filipe, Tomoya Yoshinari, Gary Stoddart, Deborah Roberts and Silvia W. Gratz
Toxins 2023, 15(4), 247; https://doi.org/10.3390/toxins15040247 - 28 Mar 2023
Cited by 12 | Viewed by 5479
Abstract
Small grain cereals are frequently infected with mycotoxigenic Fusarium fungi. Oats have a particularly high risk of contamination with type A trichothecene mycotoxins; their glucoside conjugates have also been reported. Agronomy practices, cereal variety and weather conditions have been suggested to play a [...] Read more.
Small grain cereals are frequently infected with mycotoxigenic Fusarium fungi. Oats have a particularly high risk of contamination with type A trichothecene mycotoxins; their glucoside conjugates have also been reported. Agronomy practices, cereal variety and weather conditions have been suggested to play a role in Fusarium infection in oats. The current study investigates concentrations of free and conjugated Fusarium mycotoxins in organic and conventional oats grown in Scotland. In 2019, 33 milling oat samples (12 organic, 21 conventional) were collected from farmers across Scotland, together with sample questionnaires. Samples were analysed for 12 mycotoxins (type A trichothecenes T-2-toxin, HT-2-toxin, diacetoxyscirpenol; type B trichothecenes deoxynivalenol, nivalenol; zearalenone and their respective glucosides) using LC-MS/MS. The prevalence of type A trichothecenes T-2/HT-2 was very high (100% of conventional oats, 83% of organic oats), whereas type B trichothecenes were less prevalent, and zearalenone was rarely found. T-2-glucoside and deoxynivalenol-glucoside were the most prevalent conjugated mycotoxins (36 and 33%), and co-occurrence between type A and B trichothecenes were frequently observed (66% of samples). Organic oats were contaminated at significantly lower average concentrations than conventional oats, whereas the effect of weather parameters were not statistically significant. Our results clearly indicate that free and conjugated T-2- and HT-2-toxins pose a major risk to Scottish oat production and that organic production and crop rotation offer potential mitigation strategies. Full article
Show Figures

Figure 1

15 pages, 4471 KB  
Article
Probing Serum Albumins and Cyclodextrins as Binders of the Mycotoxin Metabolites Alternariol-3-Glucoside, Alternariol-9-Monomethylether-3-Glucoside, and Zearalenone-14-Glucuronide
by Miklós Poór, Beáta Lemli, Péter Vilmányi, Ágnes Dombi, Zoltán Nagymihály, Eszter Borbála Both, Nándor Lambert, Tamás Czömpöly and Lajos Szente
Metabolites 2023, 13(3), 446; https://doi.org/10.3390/metabo13030446 - 18 Mar 2023
Cited by 3 | Viewed by 2506
Abstract
Mycotoxins are toxic metabolites of molds. Chronic exposure to alternariol, zearalenone, and their metabolites may cause the development of endocrine-disrupting and carcinogenic effects. Alternariol-3-glucoside (AG) and alternariol-9-monomethylether-3-glucoside (AMG) are masked derivatives of alternariol. Furthermore, in mammals, zearalenone-14-glucuronide (Z14Glr) is one of the most [...] Read more.
Mycotoxins are toxic metabolites of molds. Chronic exposure to alternariol, zearalenone, and their metabolites may cause the development of endocrine-disrupting and carcinogenic effects. Alternariol-3-glucoside (AG) and alternariol-9-monomethylether-3-glucoside (AMG) are masked derivatives of alternariol. Furthermore, in mammals, zearalenone-14-glucuronide (Z14Glr) is one of the most dominant metabolites of zearalenone. In this study, we examined serum albumins and cyclodextrins (CDs) as potential binders of AG, AMG, and Z14Glr. The most important results/conclusions were as follows: AG and AMG formed moderately strong complexes with human, bovine, porcine, and rat albumins. Rat albumin bound Z14Glr approximately 4.5-fold stronger than human albumin. AG–albumin and Z14Glr–albumin interactions were barely influenced by the environmental pH, while the formation of AMG–albumin complexes was strongly favored by alkaline conditions. Among the mycotoxin–CD complexes examined, AMG–sugammadex interaction proved to be the most stable. CD bead polymers decreased the mycotoxin content of aqueous solutions, with moderate removal of AG and AMG, while weak extraction of Z14Glr was observed. In conclusion, rat albumin is a relatively strong binder of Z14Glr, and albumin can form highly stable complexes with AMG at pH 8.5. Therefore, albumins can be considered as affinity proteins with regard to the latter mycotoxin metabolites. Full article
(This article belongs to the Special Issue Bioactive Metabolites from Natural Sources)
Show Figures

Graphical abstract

16 pages, 2260 KB  
Article
Effect of Gliding Arc Plasma Jet on the Mycobiota and Deoxynivalenol Levels in Naturally Contaminated Barley Grains
by William Chiappim, Vanessa de Paula Bernardes, Naara Aparecida Almeida, Viviane Lopes Pereira, Adriana Pavesi Arisseto Bragotto, Maristela Barnes Rodrigues Cerqueira, Eliana Badiale Furlong, Rodrigo Pessoa and Liliana Oliveira Rocha
Int. J. Environ. Res. Public Health 2023, 20(6), 5072; https://doi.org/10.3390/ijerph20065072 - 14 Mar 2023
Cited by 8 | Viewed by 2938
Abstract
Fusarium graminearum and Fusarium meridionale are primary contaminants of barley, capable of producing several mycotoxins, mainly type B trichothecenes and zearalenone. Cold plasma decontamination has been gaining prominence, seeking to control the fungal and mycotoxin contamination of food and feed and to improve [...] Read more.
Fusarium graminearum and Fusarium meridionale are primary contaminants of barley, capable of producing several mycotoxins, mainly type B trichothecenes and zearalenone. Cold plasma decontamination has been gaining prominence, seeking to control the fungal and mycotoxin contamination of food and feed and to improve product quality. To reach this objective, the present study was divided into two parts. In the first part, F. meridionale and F. graminearum strains were exposed to gliding arc plasma jet (GAPJ). Cell viability tests showed the inactivation of F. meridionale after 15-min treatment, whereas F. graminearum showed to be resistant. In the second part, barley grains were treated by GAPJ for 10, 20, and 30 min, demonstrating a reduction of about 2 log CFU/g of the barley’s mycobiota, composed of yeasts, strains belonging to the F. graminearum species complex, Alternaria, and Aspergillus. A decrease in DON levels (up to 89%) was observed after exposure for 20 min. However, an increase in the toxin Deoxynivalenol-3-glucoside (D3G) was observed in barley grains, indicating a conversion of DON to D3G. Full article
(This article belongs to the Special Issue Processed Food: Nutrition, Safety and Public Health)
Show Figures

Figure 1

17 pages, 1873 KB  
Article
Three-Year Survey of Fusarium Multi-Metabolites/Mycotoxins Contamination in Wheat Samples in Potentially Epidemic FHB Conditions
by Valentina Spanic, Marko Maricevic, Ivica Ikic, Michael Sulyok and Hrvoje Sarcevic
Agronomy 2023, 13(3), 805; https://doi.org/10.3390/agronomy13030805 - 9 Mar 2023
Cited by 10 | Viewed by 3102
Abstract
Fusarium head blight (FHB) is a fungal disease of cereals including wheat, which results in significant economic losses and reductions in grain quality. Additionally, the presence of Fusarium spp. results in productions of mycotoxins/metabolites, some of which are toxic in low concentrations. The [...] Read more.
Fusarium head blight (FHB) is a fungal disease of cereals including wheat, which results in significant economic losses and reductions in grain quality. Additionally, the presence of Fusarium spp. results in productions of mycotoxins/metabolites, some of which are toxic in low concentrations. The liquid chromatography with tandem mass spectrometry (LC-MS/MS) method was applied to 216 wheat samples from field conditions diseased with FHB. Data obtained show that out of 28 metabolites detected, deoxynivalenol (DON), deoxynivalenol-3-glucoside (D3G), enniatin B (ENN B), enniatin B1 (ENN B1), culmorin, 15-hydroxyculmorin, and aurofusarin were the most prevalent mycotoxins/metabolites over three years (2014–2016). In 2014–2016, 100, 100 and 96% of the samples were contaminated with zearalenone (ZEN). Of the masked mycotoxins, D3G occurred at a high incidence level of 100% in all three investigated years. Among emerging mycotoxins, moniliformin (MON), beauvericin (BEA) and enniatins (ENNs) showed high occurrences ranging from 27 and 100% during three investigated years. Co-occurrence of Fusarium mycotoxins/metabolites was high and almost all were highly correlated to each other but their possible synergistic, additive, or antagonistic effects of toxicity, should be taken into consideration. Our results demonstrated that modified and emerging mycotoxins/metabolites contributed substantially to the overall contamination of wheat grains. To avoid disparagement, it is necessary to analyse these forms in future mycotoxin monitoring programs and to set their maximum levels. Full article
(This article belongs to the Special Issue Treatment and Management of Fusarium Disease in Wheat)
Show Figures

Figure 1

15 pages, 4796 KB  
Article
Cyanidin-3-O-Glucoside Rescues Zearalenone-Induced Apoptosis via the ITGA7-PI3K-AKT Signaling Pathway in Porcine Ovarian Granulosa Cells
by Xiuxiu Li, Jingya Wang, Fali Zhang, Mubin Yu, Ning Zuo, Lan Li, Jinghe Tan and Wei Shen
Int. J. Mol. Sci. 2023, 24(5), 4441; https://doi.org/10.3390/ijms24054441 - 23 Feb 2023
Cited by 12 | Viewed by 3135
Abstract
Zearalenone (ZEN) is an important secondary metabolite of Fusarium fungi, exposure to which can cause reproductive disorders through its effects on ovarian granulosa cells (GCs) in many mammals, especially in pigs. This study aimed to investigate the protective effects of Cyanidin-3-O-glucoside (C3G) on [...] Read more.
Zearalenone (ZEN) is an important secondary metabolite of Fusarium fungi, exposure to which can cause reproductive disorders through its effects on ovarian granulosa cells (GCs) in many mammals, especially in pigs. This study aimed to investigate the protective effects of Cyanidin-3-O-glucoside (C3G) on the ZEN-induced negative effects in porcine GCs (pGCs). The pGCs were treated with 30 µM ZEN and/or 20 µM C3G for 24 h; they were divided into a control (Ctrl) group, ZEN group, ZEN+C3G (Z+C) group, and a C3G group. Bioinformatics analysis was used to systematically screen differentially expressed genes (DEGs) in the rescue process. Results showed that C3G could effectively rescue ZEN-induced apoptosis in pGCs, and notably increase cell viability and proliferation. Furthermore, 116 DEGs were identified, and the phosphatidylinositide 3-kinases-protein kinase B (PI3K-AKT) signaling pathway was the center of attention, of which five genes and the PI3K-AKT signaling pathway were confirmed by real-time quantitative PCR (qPCR) and/or Western blot (WB). As analyzed, ZEN inhibited mRNA and protein levels of integrin subunit alpha-7 (ITGA7), and promoted the expression of cell cycle inhibition kinase cyclin-D3 (CCND3) and cyclin-dependent kinase inhibitor 1 (CDKN1A). After the knock-down of ITGA7 by siRNA, the PI3K-AKT signaling pathway was significantly inhibited. Meanwhile, proliferating cell nuclear antigen (PCNA) expression decreased, and apoptosis rates and pro-apoptotic proteins increased. In conclusion, our study demonstrated that C3G exhibited significant protective effects on the ZEN-induced inhibition of proliferation and apoptosis via the ITGA7-PI3K-AKT pathway. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Reproductive and Developmental Toxicology)
Show Figures

Graphical abstract

18 pages, 2051 KB  
Article
The Occurrence and Co-Occurrence of Regulated, Emerging, and Masked Mycotoxins in Rice Bran and Maize from Southeast Asia
by Wipada Siri-anusornsak, Oluwatobi Kolawole, Warapa Mahakarnchanakul, Brett Greer, Awanwee Petchkongkaew, Julie Meneely, Christopher Elliott and Kanithaporn Vangnai
Toxins 2022, 14(8), 567; https://doi.org/10.3390/toxins14080567 - 19 Aug 2022
Cited by 42 | Viewed by 5636
Abstract
Raw feed materials are often contaminated with mycotoxins, and co-occurrence of mycotoxins occurs frequently. A total of 250 samples i.e., rice bran and maize from Cambodia, Laos, Myanmar, and Thailand were analysed using state-of-the-art liquid chromatography-mass spectrometry (LC-MS/MS) for monitoring the occurrence of [...] Read more.
Raw feed materials are often contaminated with mycotoxins, and co-occurrence of mycotoxins occurs frequently. A total of 250 samples i.e., rice bran and maize from Cambodia, Laos, Myanmar, and Thailand were analysed using state-of-the-art liquid chromatography-mass spectrometry (LC-MS/MS) for monitoring the occurrence of regulated, emerging, and masked mycotoxins. Seven regulated mycotoxins – aflatoxins, ochratoxin A, fumonisin B1, deoxynivalenol, zearalenone, HT-2, and T-2 toxin were detected as well as some emerging mycotoxins, such as beauvericin, enniatin type B, stachybotrylactam, sterigmatocystin, and masked mycotoxins, specifically zearalenone-14-glucoside, and zearalenone-16-glucoside. Aspergillus and Fusarium mycotoxins were the most prevalent compounds identified, especially aflatoxins and fumonisin B1 in 100% and 95% of samples, respectively. Of the emerging toxins, beauvericin and enniatin type B showed high occurrences, with more than 90% of rice bran and maize contaminated, whereas zearalenone-14-glucoside and zearalenone-16-glucoside were found in rice bran in the range of 56–60%. Regulated mycotoxins (DON and ZEN) were the most frequent mycotoxin combination with emerging mycotoxins (BEA and ENN type B) in rice bran and maize. This study indicates that mycotoxin occurrence and co-occurrence are common in raw feed materials, and it is critical to monitor mycotoxin levels in ASEAN’s feedstuffs so that mitigation strategies can be developed and implemented. Full article
(This article belongs to the Special Issue Mycotoxins in Food and Feed: Detection and Identification)
Show Figures

Figure 1

13 pages, 1451 KB  
Article
Toxigenicity of F. graminearum Residing on Host Plants Alternative to Wheat as Influenced by Environmental Conditions
by Sigita Janaviciene, Skaidre Suproniene, Grazina Kadziene, Romans Pavlenko, Zane Berzina and Vadims Bartkevics
Toxins 2022, 14(8), 541; https://doi.org/10.3390/toxins14080541 - 8 Aug 2022
Cited by 12 | Viewed by 2946
Abstract
Fusarium graminearum is an important pathogen that causes Fusarium head blight (FHB) in several cereal crops worldwide. The potential of this pathogen to contaminate cereals with trichothecene mycotoxins presents a health risk for both humans and animals. This study aimed to evaluate the [...] Read more.
Fusarium graminearum is an important pathogen that causes Fusarium head blight (FHB) in several cereal crops worldwide. The potential of this pathogen to contaminate cereals with trichothecene mycotoxins presents a health risk for both humans and animals. This study aimed to evaluate the potential of different trichothecene genotypes of F. graminearum isolated from an alternative host plant to produce mycotoxins under different spring wheat grain incubation conditions. Fourteen F. graminearum strains were isolated from seven alternative host plants and identified as 3-acetyl-deoxynivalenol (3-ADON) and 15-acetyl-deoxynivalenol (15-ADON) genotypes. These strains were cultivated on spring wheat grains at 25 °C and 29 °C for 5 weeks. The mycotoxins produced were analysed with a high-performance liquid chromatograph (HPLC) coupled to a Thermo Scientific TSQ Quantiva MS/MS detector. The obtained results showed that the F. graminearum strains from alternative host plants could produce nivalenol (NIV), deoxynivalenol (DON), fusarenon-X (FUS-X), 3-ADON, deoxynivalenol-3-ß-d-glucoside (D3G), 15-ADON, and zearalenone (ZEA). F. graminearum strains produced DON and ZEA under both temperatures, with the mean concentrations varying from 363 to 112,379 µg kg−1 and from 1452 to 44,816 µg kg−1, respectively. Our results indicated the possible role of dicotyledonous plants, including weeds, as a reservoir of inoculum sources of F. graminearum-induced Fusarium head blight, associated with the risk of mycotoxin contamination in spring wheat. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

32 pages, 4441 KB  
Article
Cocktails of Mycotoxins, Phytoestrogens, and Other Secondary Metabolites in Diets of Dairy Cows in Austria: Inferences from Diet Composition and Geo-Climatic Factors
by Felipe Penagos-Tabares, Ratchaneewan Khiaosa-ard, Marlene Schmidt, Eva-Maria Bartl, Johanna Kehrer, Veronika Nagl, Johannes Faas, Michael Sulyok, Rudolf Krska and Qendrim Zebeli
Toxins 2022, 14(7), 493; https://doi.org/10.3390/toxins14070493 - 15 Jul 2022
Cited by 16 | Viewed by 5104
Abstract
Dairy production is a pivotal economic sector of Austrian and European agriculture. Dietary toxins and endocrine disruptors of natural origin such as mycotoxins and phytoestrogens can affect animal health, reproduction, and productivity. This study characterized the profile of a wide spectrum of fungal, [...] Read more.
Dairy production is a pivotal economic sector of Austrian and European agriculture. Dietary toxins and endocrine disruptors of natural origin such as mycotoxins and phytoestrogens can affect animal health, reproduction, and productivity. This study characterized the profile of a wide spectrum of fungal, plant, and unspecific secondary metabolites, including regulated, emerging, and modified mycotoxins, phytoestrogens, and cyanogenic glucosides, in complete diets of lactating cows from 100 Austrian dairy farms. To achieve this, a validated multi-metabolite liquid chromatography/electrospray ionization–tandem mass spectrometric (LC/ESI–MS/MS) method was employed, detecting 155 of >800 tested metabolites. Additionally, the most influential dietary and geo-climatic factors related to the dietary mycotoxin contamination of Austrian dairy cattle were recognized. We evidenced that the diets of Austrian dairy cows presented ubiquitous contamination with mixtures of mycotoxins and phytoestrogens. Metabolites derived from Fusarium spp. presented the highest concentrations, were the most recurrent, and had the highest diversity among the detected fungal compounds. Zearalenone, deoxynivalenol, and fumonisin B1 were the most frequently occurring mycotoxins considered in the EU legislation, with detection frequencies >70%. Among the investigated dietary factors, inclusion of maize silage (MS) and straw in the diets was the most influential factor in contamination with Fusarium-derived and other fungal toxins and metabolites, and temperature was the most influential among the geo-climatic factors. Full article
(This article belongs to the Special Issue Mycotoxins in Food and Feed: Detection and Identification)
Show Figures

Figure 1

10 pages, 2903 KB  
Article
Zearalenone-14-Glucoside Is Hydrolyzed to Zearalenone by β-Glucosidase in Extracellular Matrix to Exert Intracellular Toxicity in KGN Cells
by Haonan Ruan, Yunyun Wang, Yong Hou, Jing Zhang, Jiashuo Wu, Fangqing Zhang, Ming Sui, Jiaoyang Luo and Meihua Yang
Toxins 2022, 14(7), 458; https://doi.org/10.3390/toxins14070458 - 4 Jul 2022
Cited by 11 | Viewed by 3117
Abstract
As one of the most important conjugated mycotoxins, zearalenone-14-glucoside (Z14G) has received widespread attention from researchers. Although the metabolism of Z14G in animals has been extensively studied, the intracellular toxicity and metabolic process of Z14G are not fully elucidated. In this study, the [...] Read more.
As one of the most important conjugated mycotoxins, zearalenone-14-glucoside (Z14G) has received widespread attention from researchers. Although the metabolism of Z14G in animals has been extensively studied, the intracellular toxicity and metabolic process of Z14G are not fully elucidated. In this study, the cytotoxicity of Z14G to human ovarian granulosa cells (KGN) and the metabolism of Z14G in KGN cells were determined. Furthermore, the experiments of co-administration of β-glucosidase and pre-administered β-glucosidase inhibitor (Conduritol B epoxide, CBE) were used to clarify the mechanism of Z14G toxicity release. Finally, the human colon adenocarcinoma cell (Caco-2) metabolism model was used to verify the toxicity release mechanism of Z14G. The results showed that the IC50 of Z14G for KGN cells was 420 μM, and the relative hydrolysis rate of Z14G on ZEN was 35% (25% extracellular and 10% intracellular in KGN cells). The results indicated that Z14G cannot enter cells, and Z14G is only hydrolyzed extracellularly to its prototype zearalenone (ZEN) by β-glucosidase which can exert toxic effects in cells. In conclusion, this study demonstrated the cytotoxicity of Z14G and clarified the toxicity release mechanism of Z14G. Different from previous findings, our results showed that Z14G cannot enter cells but exerts cytotoxicity through deglycosylation. This study promotes the formulation of a risk assessment and legislation limit for ZEN and its metabolites. Full article
(This article belongs to the Special Issue Fusarium Toxins: Occurrence, Risk and Reduction)
Show Figures

Graphical abstract

Back to TopTop