The Occurrence and Co-Occurrence of Regulated, Emerging, and Masked Mycotoxins in Rice Bran and Maize from Southeast Asia
Abstract
:1. Introduction
2. Results
2.1. Method Performance
2.2. Occurrence of Mycotoxins in Different Commodities
2.2.1. Rice Bran
2.2.2. Maize
2.3. Co-Occurrence of Mycotoxin Contamination
3. Discussion
3.1. Climate Change and Mycotoxins
3.2. Occurrence of Regulated Mycotoxins in Rice Bran and Maize
3.3. Occurrence of Emerging Mycotoxins in Rice Bran and Maize
3.4. Co-Occurrence of Regulated Mycotoxins in Rice Bran and Maize
3.5. Co-Occurrence of Regulated and Emerging Mycotoxins in Rice Bran and Maize
3.6. Mycotoxin Control Strategies
4. Conclusions
5. Materials and Methods
5.1. Sample Collection
5.2. Sample Preparation
5.3. Chemicals and Materials
5.4. HPLC-MS/MS Parameters
5.5. Method Validation
5.6. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luciano, A.; Tretola, M.; Ottoboni, M.; Baldi, A.; Cattaneo, D.; Pinotti, L. Potentials and challenges of former food products (food leftover) as alternative feed ingredients. Animals 2020, 10, 125. [Google Scholar] [CrossRef] [PubMed]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global mycotoxin occurrence in feed: A ten-year survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef] [PubMed]
- Kolawole, O.; Graham, A.; Donaldson, C.; Owens, B.; Abia, W.A.; Meneely, J.; Alcorn, M.J.; Connolly, L.; Elliott, C.T. Low doses of mycotoxin mixtures below eu regulatory limits can negatively affect the performance of broiler chickens: A longitudinal study. Toxins 2020, 12, 433. [Google Scholar] [CrossRef] [PubMed]
- ASEAN Food Security Information System (AFSIS). ASEAN Agricultural Commodity Outlook. 2021. Available online: http://www.aptfsis.org/uploads/normal/ACO%20Report%201/ACO%2026/ACO%20Report%2026.pdf (accessed on 27 December 2021).
- Jayaraman, P.; Kalyanasundaram, I. Natural occurrence of toxigenic fungi and mycotoxins in rice bran. Mycopathologia 1990, 110, 81–85. [Google Scholar] [CrossRef]
- Kananub, S.; Jala, P.; Laopiem, S.; Boonsoongnern, A.; Sanguankiat, A. Mycotoxin profiles of animal feeds in the central part of Thailand: 2015–2020. Vet. World 2021, 14, 739–743. [Google Scholar] [CrossRef]
- Balendres, M.A.O.; Karlovsky, P.; Cumagun, C.J.R. Mycotoxigenic fungi and mycotoxins in agricultural crop commodities in the philippines: A review. Foods 2019, 8, 249. [Google Scholar] [CrossRef]
- Scudamore, K.A.; Nawaz, S.; Hetmanski, M.T.; Rainbird, S.C. Mycotoxins in ingredients of animal feeding stuffs: III. Determination of mycotoxins in rice bran. Food Addit. Contam. 1998, 15, 185–194. [Google Scholar] [CrossRef]
- Trend Economy. Annual International Trade Statistics by Country (HS02). 2020. Available online: https://trendeconomy.com/data/h2/Thailand/1005 (accessed on 11 November 2021).
- Afsah-Hejri, L.; Jinap, S.; Hajeb, P.; Radu, S.; Shakibazadeh, S. A review on mycotoxins in food and feed: Malaysia case study. Compr. Rev. Food Sci. Food Saf. 2013, 12, 629–651. [Google Scholar] [CrossRef]
- Rodrigues, I.; Naehrer, K. A three-year survey on the worldwide occurrence of mycotoxins in feedstuffs and feed. Toxins 2012, 4, 663–675. [Google Scholar] [CrossRef]
- Yang, C.; Song, G.; Lim, W. Effects of mycotoxin-contaminated feed on farm animals. J. Hazard Mater. 2020, 389, 122087. [Google Scholar] [CrossRef]
- Adegbeye, M.J.; Reddy, P.R.K.; Chilaka, C.A.; Balogun, O.B.; Elghandour, M.; Rivas-Caceres, R.R.; Salem, A.Z.M. Mycotoxin toxicity and residue in animal products: Prevalence, consumer exposure and reduction strategies—A review. Toxicon 2020, 177, 96–108. [Google Scholar] [CrossRef]
- Persi, N.; Pleadin, J.; Kovacevic, D.; Scortichini, G.; Milone, S. Ochratoxin A in raw materials and cooked meat products made from OTA-treated pigs. Meat Sci. 2014, 96, 203–210. [Google Scholar] [CrossRef]
- European Commission. Directive 2002/32/EC of European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed. Off. J. Eur. Union 2002, L140, 10–22. [Google Scholar]
- European Commission. European Commission Recommendation N. 2006/576/EC of 17 August 2006 on the presence of de-oxynivalenol, zearalenone, ochratoxinA, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off. J. Eur. Commun. 2006, 229, 7–9. [Google Scholar]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajslova, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef]
- Egmond, H.P.v.; Jonker, M.A. Current situation on regulations for mycotoxins. Mycotoxins 2003, 2003 (Suppl. 3), 1–15. [Google Scholar] [CrossRef]
- Zhang, Z.; Nie, D.; Fan, K.; Yang, J.; Guo, W.; Meng, J.; Zhao, Z.; Han, Z. A systematic review of plant-conjugated masked mycotoxins: Occurrence, toxicology, and metabolism. Crit. Rev. Food Sci. Nutr. 2020, 60, 1523–1537. [Google Scholar] [CrossRef]
- Medina, Á.; González-Jartín, J.M.; Sainz, M.J. Impact of global warming on mycotoxins. Curr. Opin. Food Sci. 2017, 18, 76–81. [Google Scholar] [CrossRef]
- Magan, N.; Medina, A.; Aldred, D. Possible climate-change effects on mycotoxin contamination of food crops pre- and postharvest. Plant Pathol. 2011, 60, 150–163. [Google Scholar] [CrossRef]
- Medina, Á.; Rodríguez, A.; Magan, N. Climate change and mycotoxigenic fungi: Impacts on mycotoxin production. Curr. Opin. Food Sci. 2015, 5, 99–104. [Google Scholar] [CrossRef]
- Kolawole, O.; Meneely, J.; Petchkongkaew, A.; Elliott, C. A review of mycotoxin biosynthetic pathways: Associated genes and their expressions under the influence of climatic factors. Fungal Biol. Rev. 2021, 37, 8–26. [Google Scholar] [CrossRef]
- Thornton, P.K.; Ericksen, P.J.; Herrero, M.; Challinor, A.J. Climate variability and vulnerability to climate change: A review. Glob. Chang. Biol. 2014, 20, 3313–3328. [Google Scholar] [CrossRef] [PubMed]
- Eckstein, D.; Kunzel, V.; Schafer, L. Global Climate Risk Index 2021. Available online: https://germanwatch.org/sites/default/files/Global%20Climate%20Risk%20Index%202021_1.pdf (accessed on 13 May 2022).
- International Feed Industry Federation (IFIF). Global Feed Production. 2020. Available online: http://www.ifif.org/pages/t/Global+feed+production (accessed on 24 February 2020).
- Lim, C.W.; Chung, G.; Chan, S.H. Analytical Methods for Mycotoxin Detection in Southeast Asian Nations (ASEAN). J. AOAC Int. 2018, 101, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Kovalsky, P.; Kos, G.; Nahrer, K.; Schwab, C.; Jenkins, T.; Schatzmayr, G.; Sulyok, M.; Krska, R. Co-occurrence of regulated, masked and emerging mycotoxins and secondary metabolites in finished feed and maize-An extensive survey. Toxins 2016, 8, 363. [Google Scholar] [CrossRef] [PubMed]
- Dellafiora, L.; Dall’Asta, C. Masked mycotoxins: An emerging issue that makes renegotiable what is ordinary. Food Chem. 2016, 213, 534–535. [Google Scholar] [CrossRef] [PubMed]
- Bryła, M.; Waskiewicz, A.; Ksieniewicz-Wozniak, E.; Szymczyk, K.; Jedrzejczak, R. Modified fusarium mycotoxins in cereals and their products—Metabolism, occurrence, and toxicity: An updated review. Molecules 2018, 23, 963. [Google Scholar] [CrossRef] [PubMed]
- Ekwomadu, T.I.; Akinola, S.A.; Mwanza, M. Fusarium mycotoxins, their metabolites (free, emerging, and masked), food safety concerns, and health impacts. Int. J. Environ. Res. Public Health 2021, 18, 11741. [Google Scholar] [CrossRef]
- Zain, M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011, 15, 129–144. [Google Scholar] [CrossRef]
- Kompas, T.; Pham, V.H.; Che, T.N. The effects of climate change on GDP by country and the global economic gains from complying with the Paris Climate Accord. Earths Future 2018, 6, 1153–1173. [Google Scholar] [CrossRef]
- Bhat, R.; Rai, R.V.; Karim, A.A. Mycotoxins in food and feed: Present status and future concerns. Comp. Rev. Food Sci. Food Saf. 2010, 9, 57–81. [Google Scholar] [CrossRef]
- Thanushree, M.P.; Sailendri, D.; Yoha, K.S.; Moses, J.A.; Anandharamakrishnan, C. Mycotoxin contamination in food: An exposition on spices. Trends Food Sci. Technol. 2019, 93, 69–80. [Google Scholar] [CrossRef]
- Van der Fels-Klerx, H.J.; Liu, C.; Battilani, P. Modelling climate change impacts on mycotoxin contamination. World Mycotoxin J. 2016, 9, 717–726. [Google Scholar] [CrossRef]
- Paris, M.P.K.; Liu, Y.-J.; Nahrer, K.; Binder, E.M. Climate change impacts on mycotoxin production. In Climate Change and Mycotoxins; Botana, L.M., Sainz, M.J., Eds.; Walter de Gruyter GmbH: Berlin, Germany, 2015; pp. 133–149. [Google Scholar]
- Climatological Center. Thai Meteorological Department Weather Summary (Yearly). 2022. Available online: http://climate.tmd.go.th/content/category/17 (accessed on 28 April 2022).
- Weather Spark. The Weather Year Round Anywhere on Earth. 2022. Available online: https://weatherspark.com/ (accessed on 28 April 2022).
- Jala, P.; Sanguankiat, A.; Tulayakul, P.; Laopiem, S.; Ratanavanichrojn, N. Mycotoxins in feedstuffs in Thailand-laboratory reports in the years 2010–2014. In Proceedings of the 54th Kasetsart University Annual Conference: Plants, Animals, Veterinary Medicine, Fisheries, Agricultural Extension, and Home Economics, Bangkok, Thailand, 2–5 February 2016. [Google Scholar]
- BIOMIN. BIOMIN World Mycotoxin Survey 2020. 2020. Available online: https://f.hubspotusercontent20.net/hubfs/7252579/Downloads/MAG_MTX-Survey-Report_2020_EN.pdf?utm_campaign=World%20Mycotoxin%20Report%20-%20Impact%202021&utm_medium=email&_hsmi=112972448&_hsenc=p2ANqtz--GQqqRUKpeMQgvPalT6X5yAqOoGRygX41LWo4_iJMkCSu1rYQuGhab_yLt_YzifnnqnEau94VsK5920Wdm1nTvzcKd_pqdJ6qaTqhdtXr3G09JlZU&utm_content=112972448&utm_source=hs_email (accessed on 28 January 2021).
- Daou, R.; Joubrane, K.; Maroun, R.G.; Khabbaz, L.R.; Ismail, A.; Khoury, A.E. Mycotoxins: Factors influencing production and control strategies. AIMS Agric. Food 2021, 6, 416–447. [Google Scholar] [CrossRef]
- Sales, A.C.; Yoshizawa, T. Mold counts and Aspergillus section Flavi populations in rice and its by-products from the Phillippines. J. Food Prot. 2005, 68, 120–125. [Google Scholar] [CrossRef]
- Thieu, N.Q.; Ogle, B.; Pettersson, H. Screening of Aflatoxins and Zearalenone in feedstuffs and complete feeds for pigs in Southern Vietnam. Trop. Anim. Health Prod. 2008, 40, 77–83. [Google Scholar] [CrossRef]
- Li, X.; Ma, W.; Ma, Z.; Zhang, Q.; Li, H. The occurrence and contamination level of ochratoxin A in plant and animal-derived food commodities. Molecules 2021, 26, 6928. [Google Scholar] [CrossRef]
- Jestoi, M. Emerging fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin: A review. Crit. Rev. Food Sci. Nutr. 2008, 48, 21–49. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the risks to human and animal health related to the presence of beauvericin and enniatins in food and feed. EFSA J. 2014, 12, 3916. [Google Scholar]
- Covarelli, L.; Beccari, G.; Prodi, A.; Generotti, S.; Etruschi, F.; Meca, G.; Juan, C.; Manes, J. Biosynthesis of beauvericin and enniatins in vitro by wheat fusarium species and natural grain contamination in an area of central Italy. Food Microbiol. 2015, 46, 618–626. [Google Scholar] [CrossRef]
- Svingen, T.; Lund Hansen, N.; Taxvig, C.; Vinggaard, A.M.; Jensen, U.; Have Rasmussen, P. Enniatin B and beauvericin are common in Danish cereals and show high hepatotoxicity on a high-content imaging platform. Environ. Toxicol. 2017, 32, 1658–1664. [Google Scholar] [CrossRef]
- Mallebrera, B.; Prosperini, A.; Font, G.; Ruiz, M.J. In vitro mechanisms of beauvericin toxicity: A review. Food Chem. Toxicol. 2018, 111, 537–545. [Google Scholar] [CrossRef]
- Yoshinari, T.; Suzuki, Y.; Sugita-Konishi, Y.; Ohnishi, T.; Terajima, J. Occurrence of beauvericin and enniatins in wheat flour and corn grits on the Japanese market, and their co-contamination with type B trichothecene mycotoxins. Food Addit. Contam. Part A Chem. Anal. Control Expo Risk Assess. 2016, 33, 1620–1626. [Google Scholar] [CrossRef]
- Shao, M.; Li, L.; Gu, Z.; Yao, M.; Xu, D.; Fan, W.; Yan, L.; Song, S. Mycotoxins in commercial dry pet food in China. Food Addit. Contam. Part B Surveill. 2018, 11, 237–245. [Google Scholar] [CrossRef]
- Lee, K.-E.; Kim, B.H.; Lee, C. Occurrence of Fusarium mycotoxin beauvericin in animal feeds in Korea. Anim. Feed Sci. Technol. 2010, 157, 190–194. [Google Scholar] [CrossRef]
- Tansakul, N.; Jala, P.; Laopiem, S.; Tangmunkhong, P.; Limsuwan, S. Co-occurrence of five Fusarium toxins in corn-dried distiller’s grains with solubles in Thailand and comparison of ELISA and LC-MS/MS for fumonisin analysis. Mycotoxin Res. 2013, 29, 255–260. [Google Scholar] [CrossRef]
- McElhinney, C.; Danaher, M.; Elliott, C.T.; O’Kiely, P. Mycotoxins in farm silages—A 2-year Irish national survey. Grass Forage Sci. 2016, 71, 339–352. [Google Scholar] [CrossRef]
- Tolosa, J.; Rodriguez-Carrasco, Y.; Ferrer, E.; Manes, J. Identification and Quantification of Enniatins and Beauvericin in Animal Feeds and Their Ingredients by LC-QTRAP/MS/MS. Metabolites 2019, 9, 33. [Google Scholar] [CrossRef]
- Streit, E.; Schwab, C.; Sulyok, M.; Naehrer, K.; Krska, R.; Schatzmayr, G. Multi-mycotoxin screening reveals the occurrence of 139 different secondary metabolites in feed and feed ingredients. Toxins 2013, 5, 504–523. [Google Scholar] [CrossRef]
- Shimshoni, J.A.; Cuneah, O.; Sulyok, M.; Krska, R.; Galon, N.; Sharir, B.; Shlosberg, A. Mycotoxins in corn and wheat silage in Israel. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2013, 30, 1614–1625. [Google Scholar] [CrossRef] [PubMed]
- Jestoi, M.; Rokka, M.; Yli-Mattila, T.; Parikka, P.; Rizzo, A.; Peltonen, K. Presence and concentrations of the Fusarium-related mycotoxins beauvericin, enniatins and moniliformin in finnish grain samples. Food Addit. Contam. 2004, 21, 794–802. [Google Scholar] [CrossRef] [PubMed]
- Uhlig, S.; Torp, M.; Heier, B.T. Beauvericin and enniatins A, A1, B and B1 in Norwegian grain: A survey. Food Chem. 2006, 94, 193–201. [Google Scholar] [CrossRef]
- Sorensen, J.L.; Nielsen, K.F.; Rasmussen, P.H.; Thrane, U. Development of a LC-MS/MS method for the analysis of enniatins and beauvericin in whole fresh and ensiled maize. J. Agric. Food Chem. 2008, 56, 10439–10443. [Google Scholar] [CrossRef] [PubMed]
- Stanciu, O.; Juan, C.; Miere, D.; Loghin, F.; Mañes, J. Occurrence and co-occurrence of Fusarium mycotoxins in wheat grains and wheat flour from Romania. Food Control 2017, 73, 147–155. [Google Scholar] [CrossRef]
- Stanciu, O.; Juan, C.; Miere, D.; Dumitrescu, A.; Bodoki, E.; Loghin, F.; Mañes, J. Climatic conditions influence emerging mycotoxin presence in wheat grown in Romania—A 2-year survey. Crop. Prot. 2017, 100, 124–133. [Google Scholar] [CrossRef]
- Prosperini, A.; Berrada, H.; Ruiz, M.J.; Caloni, F.; Coccini, T.; Spicer, L.J.; Perego, M.C.; Lafranconi, A. A review of the mycotoxin enniatin B. Front. Public Health 2017, 5, 304. [Google Scholar] [CrossRef]
- Mo, H.G.J.; Pietri, A.; MacDonald, S.J.; Anagnostopoulos, C.; Spanjer, M. On sterigmatocystin in food. EFSA Support. Publ. 2015, 12, 774E. [Google Scholar]
- Warth, B.; Parich, A.; Atehnkeng, J.; Bandyopadhyay, R.; Schuhmacher, R.; Sulyok, M.; Krska, R. Quantitation of mycotoxins in food and feed from Burkina Faso and Mozambique using a modern LC-MS/MS multitoxin method. J. Agric. Food Chem. 2012, 60, 9352–9363. [Google Scholar] [CrossRef]
- Kovalenko, A.V.; Soldatenko, N.A.; Fetisov, L.N.; Strel’tsov, N.V. More accurate determination of the minimum allowable level of sterigmatocystin in piglet feed. Russ. Agric. Sci. 2012, 37, 504–507. [Google Scholar] [CrossRef]
- Tančinová, D.; Labuda, R. Fungi on wheat bran and their toxinogenity. Ann. Agric. Environ. Med. 2009, 16, 325–331. [Google Scholar]
- Labuda, R.; Tančinová, D. Fungi recovered from Slovakian poultry feed mixtures and their toxinogenity. Ann. Agric. Environ. Med. 2006, 13, 193–200. [Google Scholar]
- Zingales, V.; Fernandez-Franzon, M.; Ruiz, M.J. Sterigmatocystin: Occurrence, toxicity and molecular mechanisms of action—A review. Food Chem. Toxicol. 2020, 146, 111802. [Google Scholar] [CrossRef]
- Bertuzzi, T.; Romani, M.; Rastelli, S.; Mulazzi, A.; Pietri, A. Sterigmatocystin Occurrence in Paddy and Processed Rice Produced in Italy in the Years 2014-2015 and Distribution in Milled Rice Fractions. Toxins 2017, 9, 86. [Google Scholar] [CrossRef]
- Smith, M.C.; Madec, S.; Coton, E.; Hymery, N. Natural co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins 2016, 8, 94. [Google Scholar] [CrossRef]
- Ali, N. Aflatoxins in rice: Worldwide occurrence and public health perspectives. Toxicol Rep. 2019, 6, 1188–1197. [Google Scholar] [CrossRef]
- Moreno, E.C.; Garcia, G.T.; Ono, M.A.; Vizoni, É.; Kawamura, O.; Hirooka, E.Y.; Ono, E.Y.S. Co-occurrence of mycotoxins in corn samples from the Northern region of Paraná State, Brazil. Food Chem. 2009, 116, 220–226. [Google Scholar] [CrossRef]
- Rocha, L.O.; Nakai, V.K.; Braghini, R.; Reis, T.A.; Kobashigawa, E.; Correa, B. Mycoflora and co-occurrence of fumonisins and aflatoxins in freshly harvested corn in different regions of Brazil. Int. J. Mol. Sci. 2009, 10, 5090–5103. [Google Scholar] [CrossRef]
- Camargos, S.M.; Machinski, M.; Soares, L.M.V. Co-occurrence of fumonisins and aflatoxins in freshly harvested Brazilian maize. Trop. Sci. 2001, 41, 182–184. [Google Scholar]
- JECFA. Aflatoxins, fumonisins, and co-exposure of fumonisins with aflatoxins. Food Safety Digest. 2018. Available online: http://www.who.int/foodsafety/Food_Safety_Digest_Fumonisins_aflatoxins_EN.pdf (accessed on 18 March 2020).
- Ibanez-Vea, M.; Gonzalez-Penas, E.; Lizarraga, E.; de Cerain, A.L. Co-occurrence of aflatoxins, ochratoxin A and zearalenone in barley from a northern region of Spain. Food Chem. 2012, 132, 35–42. [Google Scholar] [CrossRef]
- Huff, W.E.; Doerr, J.A. Synergism between aflatoxin and ochratoxin A in broiler chickens. Poult. Sci. 1981, 60, 550–555. [Google Scholar] [CrossRef]
- Gutleb, A.C.; Caloni, F.; Giraud, F.; Cortinovis, C.; Pizzo, F.; Hoffmann, L.; Bohn, T.; Pasquali, M. Detection of multiple mycotoxin occurrences in soy animal feed by traditional mycological identification combined with molecular species identification. Toxicol. Rep. 2015, 2, 275–279. [Google Scholar] [CrossRef]
- Sedmikova, M.; Reisnerova, H.; Dufkova, Z.; Barta, I.; Jilek, F. Potential hazard of simultaneous occurrence of aflatoxin B-1 and ochratoxin A. Vet. Med.-Czech 2001, 46, 169–174. [Google Scholar] [CrossRef]
- Smerak, P.; Barta, I.; Polivkova, Z.; Bartova, J.; Sedmíkova, M. Mutagenic effects of selected trichothecene mycotoxins and their combinations with aflatoxin B1. Czech J. Food Sci. 2001, 19, 90–96. [Google Scholar] [CrossRef]
- Kovac, M.; Bulaic, M.; Nevistic, A.; Rot, T.; Babic, J.; Panjicko, M.; Kovac, T.; Sarkanj, B. Regulated mycotoxin occurrence and co-occurrence in croatian cereals. Toxins 2022, 14, 112. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, R.; Crisci, A.; Venancio, A.; Cortinas Abrahantes, J.; Dorne, J.L.; Battilani, P.; Toscano, P. Occurrence and co-occurrence of mycotoxins in cereal-based feed and food. Microorganisms 2020, 8, 74. [Google Scholar] [CrossRef]
- Gutleb, A.C.; Morrison, E.; Murk, A.J. Cytotoxicity assays formycotoxins producedby Fusarium strains—A review. Environ. Toxicol. Pharmacol. 2002, 11, 307–318. [Google Scholar] [CrossRef]
- Miraglia, M.; Marvin, H.J.; Kleter, G.A.; Battilani, P.; Brera, C.; Coni, E.; Cubadda, F.; Croci, L.; De Santis, B.; Dekkers, S.; et al. Climate change and food safety: An emerging issue with special focus on Europe. Food Chem. Toxicol. 2009, 47, 1009–1021. [Google Scholar] [CrossRef]
- Thompson, C.; Henke, S.E. Effects of climate and type of storage container on aflatoxin production in corn and its associated risks to wildlife species. J. Wildl. Dis. 2000, 36, 172–179. [Google Scholar] [CrossRef]
- Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010, 70, 440–446. [Google Scholar] [CrossRef]
- Hussein, H.S.; Brasel, J.M. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 2001, 167, 101–134. [Google Scholar] [CrossRef]
- Perez-Fuentes, N.; Alvarino, R.; Alfonso, A.; Gonzalez-Jartin, J.; Gegunde, S.; Vieytes, M.R.; Botana, L.M. Single and combined effects of regulated and emerging mycotoxins on viability and mitochondrial function of SH-SY5Y cells. Food Chem. Toxicol. 2021, 154, 112308. [Google Scholar] [CrossRef]
- Khoshal, A.K.; Novak, B.; Martin, P.G.P.; Jenkins, T.; Neves, M.; Schatzmayr, G.; Oswald, I.P.; Pinton, P. Co-occurrence of DON and emerging mycotoxins in worldwide finished pig feed and their combined toxicity in intestinal cells. Toxins 2019, 11, 727. [Google Scholar] [CrossRef]
- Lee, H.J.; Ryu, D. Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: Public health per-spectives of their co-occurrence. J. Agric. Food Chem. 2017, 65, 7034–7051. [Google Scholar] [CrossRef]
- Al-Jaal, B.A.; Jaganjac, M.; Barcaru, A.; Horvatovich, P.; Latiff, A. Aflatoxin, fumonisin, ochratoxin, zearalenone and deox-ynivalenol biomarkers in human biological fluids: A systematic literature review, 2001–2018. Food Chem. Toxicol. 2019, 129, 211–228. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, X.; Li, J. Updating techniques on controlling mycotoxins—A review. Food Control 2018, 89, 123–132. [Google Scholar] [CrossRef]
- Greer, B.; Chevallier, O.; Quinn, B.; Botana, L.M.; Elliott, C.T. Redefining dilute and shoot: The evolution of the technique and its application in the analysis of foods and biological matrices by liquid chromatography mass spectrometry. TrAC-Trends Anal. Chem. 2021, 141, 116284. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.; Guo, Z.; Li, X.; Zhang, Q.; Li, H. Determination of fosetyl-aluminum in wheat flour with extract-dilute-shoot procedure and hydrophilic interaction liquid chromatography tandem mass spectrometry. Separations 2021, 8, 197. [Google Scholar] [CrossRef]
- European Commission. Commission Decision of 14 August 2002 implementing Council Directive 96/23/EC concerning the per-formance of analytical methods and the interpretation of results (2002/657/EC). Off. J. Eur. Union 2002, 221, 8. [Google Scholar]
Mycotoxins | Precursor ion (m/z) | Product ion (m/z) | DP (V) | CE (eV) | CXP |
---|---|---|---|---|---|
Regulated mycotoxins | |||||
Aflatoxin B1 | 313.061 | 285.1 | 121 | 33 | 14 |
313.061 | 241.1 | 121 | 53 | 14 | |
Aflatoxin B2 | 315.074 | 287.2 | 141 | 37 | 14 |
315.074 | 259.1 | 141 | 41 | 14 | |
Aflatoxin G1 | 329.055 | 243.2 | 131 | 37 | 18 |
329.055 | 311.1 | 131 | 31 | 16 | |
Aflatoxin G2 | 331.057 | 313 | 106 | 35 | 16 |
331.057 | 245.2 | 106 | 41 | 14 | |
Deoxynivalenol | 297.097 | 249.1 | 91 | 21 | 20 |
297.097 | 203.2 | 91 | 21 | 20 | |
Fumonisin B1 | 722.316 | 334.4 | 100 | 53 | 10 |
722.316 | 704.3 | 100 | 41 | 38 | |
HT-2 toxin | 447.169 | 345.1 | 131 | 27 | 18 |
447.169 | 285.2 | 131 | 29 | 14 | |
T2 toxin | 489.175 | 387.2 | 151 | 31 | 36 |
489.175 | 245.2 | 151 | 35 | 12 | |
Ochratoxin A | 404.092 | 239 | 111 | 33 | 12 |
404.092 | 358.1 | 111 | 21 | 18 | |
Zearalenone | 319.114 | 301.1 | 81 | 15 | 16 |
319.114 | 283.1 | 81 | 17 | 14 | |
Emerging mycotoxins | |||||
Alternariol | 256.957 | 213 | −125 | −34 | −19 |
256.957 | 215 | −125 | −36 | −17 | |
Beauvericin | 801.287 | 784.3 | 141 | 27 | 14 |
801.287 | 244.1 | 141 | 43 | 12 | |
Enniatin A | 699.386 | 682.4 | 100 | 27 | 24 |
699.386 | 210.2 | 100 | 39 | 22 | |
Enniatin A1 | 685.36 | 668.5 | 100 | 27 | 12 |
685.36 | 210.1 | 100 | 39 | 10 | |
Enniatin B | 657.319 | 640.3 | 100 | 27 | 22 |
657.319 | 196.1 | 100 | 39 | 10 | |
Enniatin B1 | 671.317 | 654.4 | 6 | 27 | 22 |
671.317 | 196.1 | 6 | 41 | 22 | |
Stachybotrylactam | 386.184 | 178 | 191 | 47 | 22 |
386.184 | 150.2 | 191 | 57 | 14 | |
Sterigmatocystin | 325.023 | 310.1 | 121 | 35 | 16 |
325.023 | 281.6 | 121 | 41 | 14 | |
Masked mycotoxin | |||||
3-acetyl deoxynivalenol | 337.1 | 59.2 | −110 | −28 | −13 |
337.1 | 255.2 | −110 | −52 | −9 | |
15-acetyl deoxynivalenol | 339.1 | 321.3 | 81 | 13 | 18 |
339.1 | 261.1 | 81 | 17 | 14 | |
Deoxynivalenol-3-glucoside | 517.3 | 427.1 | −70 | −30 | −11 |
517.3 | 59.1 | −70 | −85 | −7 | |
Alpha-Zearalenol | 319.2 | 160.1 | −105 | −44 | −13 |
319.2 | 130.1 | −105 | −50 | −20 | |
Beta-Zearalenol | 319.2 | 160 | −105 | −44 | −13 |
319.2 | 130 | −105 | −50 | −20 | |
Zearalenone-14-glucoside | 479.2 | 317.1 | −145 | −24 | −15 |
479.2 | 175 | −145 | −54 | −11 | |
Zearalenone-14-glucoside | 479.12 | 317.105 | −140 | −30 | −21 |
479.12 | 149 | −140 | −50 | −15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siri-anusornsak, W.; Kolawole, O.; Mahakarnchanakul, W.; Greer, B.; Petchkongkaew, A.; Meneely, J.; Elliott, C.; Vangnai, K. The Occurrence and Co-Occurrence of Regulated, Emerging, and Masked Mycotoxins in Rice Bran and Maize from Southeast Asia. Toxins 2022, 14, 567. https://doi.org/10.3390/toxins14080567
Siri-anusornsak W, Kolawole O, Mahakarnchanakul W, Greer B, Petchkongkaew A, Meneely J, Elliott C, Vangnai K. The Occurrence and Co-Occurrence of Regulated, Emerging, and Masked Mycotoxins in Rice Bran and Maize from Southeast Asia. Toxins. 2022; 14(8):567. https://doi.org/10.3390/toxins14080567
Chicago/Turabian StyleSiri-anusornsak, Wipada, Oluwatobi Kolawole, Warapa Mahakarnchanakul, Brett Greer, Awanwee Petchkongkaew, Julie Meneely, Christopher Elliott, and Kanithaporn Vangnai. 2022. "The Occurrence and Co-Occurrence of Regulated, Emerging, and Masked Mycotoxins in Rice Bran and Maize from Southeast Asia" Toxins 14, no. 8: 567. https://doi.org/10.3390/toxins14080567