Fusarium Mycotoxins and OTA in Beer from Shanghai, the Largest Megacity in China: Occurrence and Dietary Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sampling and Sample Preparation
2.3. UHPLC–MS/MS Analysis and Validation
2.4. Beer Consumption Data
2.5. Assessment of Health Risk
2.5.1. Deterministic Estimation
2.5.2. Probabilistic Estimation
2.5.3. Risk Characterization
2.6. Data Analysis
3. Results and Discussion
3.1. Method Validation
3.2. Mycotoxin Occurrence in Beer Samples
3.3. Risk Assessment and Characterization
3.3.1. Chronic Risk Assessment of Individual Mycotoxin
3.3.2. Cumulative Chronic Risk Assessment of Fusarium Toxins
3.3.3. Acute Risk Assessment of DONs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kirin Brewery Company, Limited. Global Beer Consumption by Country in 2020. Available online: https://www.kirinholdings.com/en/newsroom/release/2022/0127_04.html (accessed on 27 January 2022).
- Neme, K.; Mohammed, A. Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. Food Control 2017, 78, 412–425. [Google Scholar] [CrossRef]
- Rodriguez-Carrasco, Y.; Fattore, M.; Albrizio, S.; Berrada, H.; Manes, J. Occurrence of Fusarium mycotoxins and their dietary intake through beer consumption by the European population. Food Chem. 2015, 178, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Schabo, D.C.; Alvarenga, V.O.; Schaffner, D.W.; Magnani, M. A worldwide systematic review, meta-analysis, and health risk assessment study of mycotoxins in beers. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5742–5764. [Google Scholar] [CrossRef] [PubMed]
- Schabo, D.C.; Freire, L.; Sant’Ana, A.S.; Schaffner, D.W.; Magnani, M. Mycotoxins in artisanal beers: An overview of relevant aspects of the raw material, manufacturing steps and regulatory issues involved. Food Res. Int. 2021, 141, 110114. [Google Scholar] [CrossRef]
- Wall-Martinez, H.A.; Pascari, X.; Ramos, A.J.; Marin, S.; Sanchis, V. Frequency and levels of mycotoxins in beer from the Mexican market and exposure estimate for deoxynivalenol mycotoxins. Mycotoxin Res. 2019, 35, 207–216. [Google Scholar] [CrossRef]
- Juan, C.; Berrada, H.; Manes, J.; Oueslati, S. Multi-mycotoxin determination in barley and derived products from Tunisia and estimation of their dietary intake. Food Chem. Toxicol. 2017, 103, 148–156. [Google Scholar] [CrossRef]
- Pascari, X.; Ortiz-Solá, J.; Marín, S.; Ramos, A.J.; Sanchis, V. Survey of mycotoxins in beer and exposure assessment through the consumption of commercially available beer in Lleida, Spain. LWT 2018, 92, 87–91. [Google Scholar] [CrossRef]
- Ferranti, L.d.S.; Fungaro, M.H.P.; Massi, F.P.; Silva, J.J.d.; Penha, R.E.S.; Frisvad, J.C.; Taniwaki, M.H.; Iamanaka, B.T. Diversity of Aspergillus section Nigri on the surface of Vitis labrusca and its hybrid grapes. Int. J. Food Microbiol. 2018, 268, 53–60. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, D.; Cai, P.; Lin, H.; Ying, H.; Hu, Q.-N.; Wu, A. Elimination of Fusarium mycotoxin deoxynivalenol (DON) via microbial and enzymatic strategies: Current status and future perspectives. Trends Food Sci. Technol. 2022, 124, 96–107. [Google Scholar] [CrossRef]
- Li, Y.; Qin, S.; Yang, Y.; Sun, H.; Qiao, X.; Li, J. Research Status of Mycotoxin Contamination in Grains in China. J. Chin. Cereals Oils Assoc. 2020, 35, 186–194. Available online: http://kns.cnki.net/kcms/detail/11.2864.TS.20200317.1733.004.html (accessed on 18 March 2020).
- Sun, X.D.; Su, P.; Shan, H. Mycotoxin Contamination of Maize in China. Compr. Rev. Food Sci. Food Saf. 2017, 16, 835–849. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, Z.; Tan, Y.; Chen, B.; Zhou, C.; Wu, A. Risk profiling of exposures to multiclass contaminants through cereals and cereal-based products consumption: A case study for the inhabitants in Shanghai, China. Food Control 2020, 109, 106964. [Google Scholar] [CrossRef]
- Han, Z.; Nie, D.; Ediage, E.N.; Yang, X.; Wang, J.; Chen, B.; Li, S.; On, S.L.; De Saeger, S.; Wu, A. Cumulative health risk assessment of co-occurring mycotoxins of deoxynivalenol and its acetyl derivatives in wheat and maize: Case study, Shanghai, China. Food Chem. Toxicol. 2014, 74, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.; Meyland, I.; Tritscher, A. Joint FAO/WHO Expert Committee on Food Additives, Seventy-Second Meeting; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010; Available online: http://www.fao.org/ag/agn/agns/jecfa_index_en.asp (accessed on 25 February 2010).
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Grasl-Kraupp, B. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J. 2017, 15, 4718. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Schrenk, D.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.-C.; Nebbia, C.S. EFSA Panel on contaminants in the food chain. Risk assessment of ochratoxin A in food. EFSA J. 2020, 18, e06113. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Knutsen, H.-K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L. Risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA J. 2017, 15, e04851. [Google Scholar] [CrossRef] [PubMed]
- Bryła, M.; Ksieniewicz-Woźniak, E.; Waśkiewicz, A.; Szymczyk, K.; Jędrzejczak, R. Co-occurrence of nivalenol, deoxynivalenol and deoxynivalenol-3-glucoside in beer samples. Food Control 2018, 92, 319–324. [Google Scholar] [CrossRef]
- Bogdanova, E.; Rozentale, I.; Pugajeva, I.; Emecheta, E.E.; Bartkevics, V. Occurrence and risk assessment of mycotoxins, acrylamide, and furan in Latvian beer. Food Addit. Contam. Part B 2018, 11, 126–137. [Google Scholar] [CrossRef]
- European Commission. Guidance Document on Method Validation and Quality Control Procedures for Pesticide Residues Analysis in Food and Feed (Document no. SANTE/12682/2019). Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/AqcGuidance_SANTE_2019_12682.pdf (accessed on 8 October 2021).
- EFSA. Management of left-censored data in dietary exposure assessment of chemical substances. EFSA J. 2010, 8, 1557. [Google Scholar] [CrossRef]
- Ye, Z.L.; Wang, X.; Fu, R.Y.; Yan, H.B.; Han, S.Q.; Gerelt, K.; Cui, P.; Chen, J.J.; Qi, K.Z.; Zhou, Y. Determination of six groups of mycotoxins in Chinese dark tea and the associated risk assessment. Environ. Pollut. 2020, 261, 114180. [Google Scholar] [CrossRef]
- Ji, X.; Deng, T.; Xiao, Y.; Jin, C.; Lyu, W.; Wu, Z.; Wang, W.; Wang, X.; He, Q.; Yang, H. Emerging Alternaria and Fusarium mycotoxins in tomatoes and derived tomato products from the China market: Occurrence, methods of determination, and risk evaluation. Food Control 2023, 145, 109464. [Google Scholar] [CrossRef]
- Zhou, H.; Yan, Z.; Wu, A.; Liu, N. Mycotoxins in Tea ((Camellia sinensis (L.) Kuntze)): Contamination and Dietary Exposure Profiling in the Chinese Population. Toxins 2022, 14, 452. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing; Regulation (EC) No 1881/2006; European Union: Brussels, Belgium, 2023.
- Kuzdraliński, A.; Solarska, E.; Muszyńska, M. Deoxynivalenol and zearalenone occurence in beers analysed by an enzyme-linked immunosorbent assay method. Food Control 2013, 29, 22–24. [Google Scholar] [CrossRef]
- Rubert, J.; Soler, C.; Marín, R.; James, K.J.; Mañes, J. Mass spectrometry strategies for mycotoxins analysis in European beers. Food Control 2013, 30, 122–128. [Google Scholar] [CrossRef]
- Varga, E.; Malachova, A.; Schwartz, H.; Krska, R.; Berthiller, F. Survey of deoxynivalenol and its conjugates deoxynivalenol-3-glucoside and 3-acetyl-deoxynivalenol in 374 beer samples. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2013, 30, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Lancova, K.; Hajslova, J.; Poustka, J.; Krplova, A.; Zachariasova, M.; Dostalek, P.; Sachambula, L. Transfer of Fusarium mycotoxins and ‘masked’ deoxynivalenol (deoxynivalenol-3-glucoside) from field barley through malt to beer. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk. Assess 2008, 25, 732–744. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Cao, Y.; Su, A.; Yu, Y.; Xu, M. Increase of Deoxynivalenol during the malting of naturally Fusarium infected Chinese winter wheat. Food Control 2018, 87, 88–93. [Google Scholar] [CrossRef]
- Pascari, X.; Gil-Samarra, S.; Marín, S.; Ramos, A.J.; Sanchis, V. Fate of zearalenone, deoxynivalenol and deoxynivalenol-3-glucoside during malting process. LWT 2019, 99, 540–546. [Google Scholar] [CrossRef]
- Wall-Martínez, H.A.; Pascari, X.; Ramos, A.J.; Marín, S.; Sanchis, V. Fate of the mycotoxins in the wort and yeast during ale and lager fermentation and their evaluation under different technological parameters. LWT 2020, 132, 109877. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Dong, M.J.; Yang, Q.Y.; Apaliya, M.T.; Li, J.; Zhang, X.Y. Biodegradation of zearalenone by Saccharomyces cerevisiae: Possible involvement of ZEN responsive proteins of the yeast. J. Proteom. 2016, 143, 416–423. [Google Scholar] [CrossRef]
- Kovalsky Paris, M.P.; Schweiger, W.; Hametner, C.; Stückler, R.; Muehlbauer, G.J.; Varga, E.; Krska, R.; Berthiller, F.; Adam, G. Zearalenone-16-O-glucoside: A New Masked Mycotoxin. J. Agric. Food Chem. 2014, 62, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yan, Z.; Zhao, Q.Y.; Liu, N.; Yu, D.Z.; Jia, B.X.; Li, K.L.; Gao, Y.; Wu, A.B. A prospective study of total urinary deoxynivalenol in adolescents in Shanghai, China. Chemosphere 2022, 307, 135727. [Google Scholar] [CrossRef] [PubMed]
- Assuncao, R.; Vasco, E.; Nunes, B.; Loureiro, S.; Martins, C.; Alvito, P. Single-compound and cumulative risk assessment of mycotoxins present in breakfast cereals consumed by children from Lisbon region, Portugal. Food Chem. Toxicol. 2015, 86, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Jiang, K.; Tang, Z.; Fan, K.; Meng, J.; Nie, D.; Zhao, Z.; Wu, Y.; Han, Z. Exposure Assessment of Multiple Mycotoxins and Cumulative Health Risk Assessment: A Biomonitoring-Based Study in the Yangtze River Delta, China. Toxins 2021, 13, 103. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wu, Y. Evaluation of dietary exposure to deoxynivalenol (DON) and its derivatives from cereals in China. Food Control 2016, 69, 90–99. [Google Scholar] [CrossRef]
Mycotoxins 1 | Molecular Weight | RT 2 (min) | Molecular Ion | ESI | Parent Ion (m/z) | Product Ions (m/z) | CE (eV) |
---|---|---|---|---|---|---|---|
DON | 296.32 | 5.08 | [M + H]+ | + | 297.10 | 249.20/203.00 | 16/22 |
D3G | 458.50 | 5.30 | [M − H]− | − | 457.10 | 427.20/247.30 | 20/28 |
3A-DON | 338.35 | 7.13 | [M − H]+ | + | 339.10 | 231.00/203.10 | 16/19 |
15A-DON | 338.35 | 7.14 | [M − H]− | − | 339.10 | 137.20/321.10 | 12/16 |
NIV | 312.30 | 3.78 | [M − H]− | − | 310.90 | 281.00/205.00 | 14/24 |
ZEN | 318.36 | 10.60 | [M − H]− | − | 317.20 | 175.00/273.00 | 33/27 |
FB1 | 721.00 | 9.00 | [M − H]+ | + | 722.40 | 352.40/334.30 | 53/54 |
OTA | 403.81 | 10.80 | [M − H]− | − | 402.10 | 358.00/166.80 | 29/46 |
Mycotoxins | Linearity Range (µg/L) | Correlation Coefficient (R2) | LOD (µg/L) | LOQ (µg/L) | Recovery ± RSD (%, n = 6) | ||
---|---|---|---|---|---|---|---|
Spiked Low | Spiked Middle | Spiked High | |||||
DON | 15–250 | 0.9996 | 5 | 15 | 121.9 (10.0) | 91.1 (3.1) | 94.4 (4.2) |
D3G | 15–100 | 0.9965 | 5 | 15 | 109.1 (13.5) | 104.8 (12.2) | 82.1 (7.1) |
3A-DON | 30–500 | 0.9911 | 10 | 30 | 119.2 (11.1) | 103.3 (2.3) | 106.0 (1.0) |
15A-DON | 30–500 | 0.9873 | 10 | 30 | 115.8 (10.6) | 102.2 (2.8) | 89.8 (1.8) |
NIV | 150–2500 | 0.9990 | 50 | 150 | 80.7 (10.6) | 104.0 (3.4) | 88.9 (3.8) |
ZEN | 15–250 | 0.9941 | 5 | 15 | 111.6 (5.7) | 112.6 (2.8) | 80.6 (3.2) |
FB1 | 15–250 | 0.9947 | 5 | 15 | 110.4 (15.7) | 86.7 (9.7) | 80.2 (5.4) |
OTA | 1.5–25 | 0.9998 | 0.5 | 1.5 | 121.6 (3.2) | 92.0 (2.4) | 88.1 (1.4) |
Mycotoxin | MRLs 1 | Below MRLs | Incidence | Positive Number | Mean | SD | Range |
---|---|---|---|---|---|---|---|
DON | 1000 2, 750 3 | 100% | <LOD | <LOD | <LOD | <LOD | <LOD |
D3G | 100% | 34.81% | 55/158 | 30.60 | 54.59 | 5–495.24 | |
3A-DON | 100% | <LOD | <LOD | <LOD | <LOD | <LOD | |
15A-DON | 100% | <LOD | <LOD | <LOD | <LOD | <LOD | |
NIV | NF | 100% | <LOD | <LOD | <LOD | <LOD | <LOD |
ZEN | 60 2, 75 3 | 99.36%, 99.36% | 16.46% | 26/158 | 6.83 | 8.72 | 5.38–98.76 |
FB1 | NF, 800 3 | 100% | <LOD | <LOD | <LOD | <LOD | <LOD |
OTA | 5 2, 3 3 | 100% | <LOD | <LOD | <LOD | <LOD | <LOD |
Mycotoxins | PMTDI (µg/kg bw/Day) | ARfd (µg/kg bw/Day) | Population | Deterministic Estimation | Probabilistic Estimation | |||
---|---|---|---|---|---|---|---|---|
Mean | Mean | P50 | P90 | P95 | ||||
DONs | 1 | 8 | Total population | 1.93 × 10−1 | 2.00 × 10−1 | 1.63 × 10−1 | 2.07 × 10−1 | 2.58 × 10−1 |
Adult men | 1.80 × 10−1 | 1.86 × 10−1 | 1.51 × 10−1 | 1.93 × 10−1 | 2.39 × 10−1 | |||
Adult women | 2.08 × 10−1 | 2.16 × 10−1 | 1.76 × 10−1 | 2.24 × 10−1 | 2.78 × 10−1 | |||
NIV | 0.7 | N.F. | Total population | 7.13 × 10−2 | 7.13 × 10−2 | 7.13 × 10−2 | 7.13 × 10−2 | 7.13 × 10−2 |
Adult men | 6.62 × 10−2 | 6.62 × 10−2 | 6.62 × 10−2 | 6.62 × 10−2 | 6.62 × 10−2 | |||
Adult women | 7.69 × 10−2 | 7.69 × 10−2 | 7.69 × 10−2 | 7.69 × 10−2 | 7.69 × 10−2 | |||
ZEN | 0.25 | N.F. | Total population | 9.74 × 10−3 | 8.35 × 10−3 | 7.89 × 10−3 | 9.99 × 10−3 | 1.11 × 10−2 |
Adult men | 9.04 × 10−3 | 7.76 × 10−3 | 7.33 × 10−3 | 9.27 × 10−3 | 1.03 × 10−2 | |||
Adult women | 1.05 × 10−2 | 9.00× 10−3 | 8.51 × 10−3 | 1.08 × 10−2 | 1.19 × 10−2 | |||
FB1 | 2 | N.F. | Total population | 7.13 × 10−3 | 7.13 × 10−3 | 7.13 × 10−3 | 7.13 × 10−3 | 7.13 × 10−3 |
Adult men | 6.62 × 10−3 | 6.62 × 10−3 | 6.62 × 10−3 | 6.62 × 10−3 | 6.62 × 10−3 | |||
Total population | 7.69 × 10−3 | 7.69 × 10−3 | 7.69 × 10−3 | 7.69 × 10−3 | 7.69 × 10−3 | |||
OTA | 0.01 | N.F. | Total population | 7.13 × 10−3 | 7.13 × 10−3 | 7.13 × 10−3 | 7.13 × 10−3 | 7.13 × 10−3 |
Adult men | 6.62 × 10−3 | 6.62 × 10−3 | 6.62 × 10−3 | 6.62 × 10−3 | 6.62 × 10−3 | |||
Adult women | 7.69 × 10−3 | 7.69 × 10−3 | 7.69 × 10−3 | 7.69 × 10−3 | 7.69 × 10−3 |
Method | Population | MOE1 | MOE2 |
---|---|---|---|
Deterministic estimation | Total population | 6.63 × 105 | 2.03 × 106 |
Adult men | 7.15 × 105 | 2.19 × 106 | |
Adult women | 6.15 × 105 | 1.89 × 106 | |
Probabilistic estimation | Total population | 6.63 × 105 | 2.03 × 106 |
Adult men | 7.15 × 105 | 2.19 × 106 | |
Adult women | 6.15 × 105 | 1.89 × 106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, A.; Zhou, H.; Yu, S.; Li, Y.; Wang, L.; Wu, A.; Liang, J.; Peng, S.; Liu, N. Fusarium Mycotoxins and OTA in Beer from Shanghai, the Largest Megacity in China: Occurrence and Dietary Risk Assessment. Foods 2023, 12, 3071. https://doi.org/10.3390/foods12163071
Xu A, Zhou H, Yu S, Li Y, Wang L, Wu A, Liang J, Peng S, Liu N. Fusarium Mycotoxins and OTA in Beer from Shanghai, the Largest Megacity in China: Occurrence and Dietary Risk Assessment. Foods. 2023; 12(16):3071. https://doi.org/10.3390/foods12163071
Chicago/Turabian StyleXu, Anqi, Haiyan Zhou, Shenghao Yu, Yiqi Li, Lan Wang, Aibo Wu, Jiang Liang, Shaojie Peng, and Na Liu. 2023. "Fusarium Mycotoxins and OTA in Beer from Shanghai, the Largest Megacity in China: Occurrence and Dietary Risk Assessment" Foods 12, no. 16: 3071. https://doi.org/10.3390/foods12163071
APA StyleXu, A., Zhou, H., Yu, S., Li, Y., Wang, L., Wu, A., Liang, J., Peng, S., & Liu, N. (2023). Fusarium Mycotoxins and OTA in Beer from Shanghai, the Largest Megacity in China: Occurrence and Dietary Risk Assessment. Foods, 12(16), 3071. https://doi.org/10.3390/foods12163071