Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (260)

Search Parameters:
Keywords = yttrium oxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1893 KB  
Article
Bandgap-Tuned Yttrium-Doped Indium Oxide Alloy Thin Films for High-Performance Solar-Blind Ultraviolet Photodetectors
by Lu Gan, Peicheng Jiao, Zhengdong Jiang, Yutao Xiong and Yanghui Liu
Technologies 2026, 14(1), 23; https://doi.org/10.3390/technologies14010023 - 1 Jan 2026
Viewed by 217
Abstract
Yttrium oxide (Y2O3) has emerged as a key material for advanced solar-blind ultraviolet (SBUV) photodetectors, attributable to its large bandgap energy (~5.5 eV), high dielectric constant, excellent silicon compatibility, and robust thermal stability. To precisely tune its optical bandgap [...] Read more.
Yttrium oxide (Y2O3) has emerged as a key material for advanced solar-blind ultraviolet (SBUV) photodetectors, attributable to its large bandgap energy (~5.5 eV), high dielectric constant, excellent silicon compatibility, and robust thermal stability. To precisely tune its optical bandgap for optimal alignment with the intrinsic solar-blind region, this study prepared Y1.5In0.5O3 ternary alloy films via co-sputtering, achieving an optimized bandgap of 4.70 eV. After optimizing the photosensitive layer, we fabricated a self-powered Pt/Y1.5In0.5O3/p-GaN back-to-back heterojunction SBUV photodetector was fabricated based on the optimized photosensitive layer. Under photovoltaic operation (0 V), the resulting device exhibited impressive performance metrics: a narrow spectral response (FWHM ~50 nm), quick rise/decay times of 30 and 75 ms, respectively, and high operational durability (less than 0.8% photocurrent degradation over 100 cycles). The detector also maintained a low noise current level (2.95 × 10−12 A/Hz1/2 at 1 Hz) and a low noise-equivalent power (NEP) of 4.42 × 10−9 W/Hz1/2, indicating high sensitivity to weak optical signals. These results establish YxIn2−xO3 ternary alloy as a viable material platform for SBUV detection and provide a new design strategy for developing highly sensitive, low-noise and spectrally selective ultraviolet photodetectors. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2025)
Show Figures

Figure 1

15 pages, 1602 KB  
Article
Molecularly Imprinted Electrochemical Sensor Based on Palladium@Yttrium Oxide@Boronnitride Nanocomposite for Determination of Glyphosate Herbicide in Drinking Water Samples
by Bahar Bankoğlu Yola, Sena Bekerecioğlu, İlknur Polat, Ülkü Melike Alptekin, Necip Atar and Mehmet Lütfi Yola
Foods 2026, 15(1), 7; https://doi.org/10.3390/foods15010007 - 19 Dec 2025
Viewed by 370
Abstract
Glyphosate (GLY) is a systemic herbicide used in agriculture and has a carcinogenic effect after long-term usage. Herein, a molecularly imprinted electrochemical sensor based on palladium@yttrium oxide@boron nitride nanosheets (Pd/Y2O3@BN) nanocomposite was developed for the detection of GLY in [...] Read more.
Glyphosate (GLY) is a systemic herbicide used in agriculture and has a carcinogenic effect after long-term usage. Herein, a molecularly imprinted electrochemical sensor based on palladium@yttrium oxide@boron nitride nanosheets (Pd/Y2O3@BN) nanocomposite was developed for the detection of GLY in drinking water. After the preparation of Pd/Y2O3@BN nanocomposite by using sonication and NaBH4 reduction methods, Pd/Y2O3@BN nanocomposite as electrode material was applied on glassy carbon electrode by infrared lamp. Then, a molecularly imprinted glassy carbon electrode based on Pd/Y2O3@BN (MIP) was designed with cyclic voltammetry (CV) in presence of pyrrole monomer and GLY molecule. After the spectroscopic and microscopic characterizations, the linearity in the range of 1.0 × 10−9–1.0 × 10−8 M with a detection limit (LOD) of 3.3 × 10−10 M was obtained for GLY molecule. After MIP electrode was applied to drinking water samples with high recovery, the selectivity, stability, repeatability, and reproducibility features were studied. These promising results suggested that the as-fabricated MIP electrode presented a novel and highly effective approach for GLY assay. Full article
Show Figures

Figure 1

20 pages, 2675 KB  
Article
Electrochemical Behavior of Yttrium–Magnesium Intermediate Alloy Preparation Process by Molten Salt Electrolysis
by Wenchang Shu, Fang Zhang, Jun Peng, Quanjun Zhang, Yubao Liu and Baige Sun
Electrochem 2025, 6(4), 43; https://doi.org/10.3390/electrochem6040043 - 4 Dec 2025
Viewed by 440
Abstract
Yttrium–magnesium alloys are commonly employed as processing additives in magnesium alloy materials. Incorporating yttrium into magnesium alloys via Y-Mg intermediate alloys not only minimizes oxidation and burn-off loss but also simplifies operational procedures. Utilizing yttrium–magnesium alloys ensures a stable composition and reliable quality [...] Read more.
Yttrium–magnesium alloys are commonly employed as processing additives in magnesium alloy materials. Incorporating yttrium into magnesium alloys via Y-Mg intermediate alloys not only minimizes oxidation and burn-off loss but also simplifies operational procedures. Utilizing yttrium–magnesium alloys ensures a stable composition and reliable quality of magnesium alloy products, while contributing to reduced production costs and minimized environmental pollution. In this study, a molten salt co-reduction method was developed for the preparation Y-Mg intermediate alloys. The electrochemical co-reduction behaviors of Y(III) and Mg(II), as well as the transient states of Y-Mg intermediate alloys, were systematically investigated by transient electrochemical techniques. Results indicated that the reduction of Y(III) at the molybdenum (Mo) cathode is a reversible electrochemical process, whereas the reduction of Mg(II) is irreversible and diffusion-controlled. The diffusion coefficient of Y(III) and Mg(II) in the fluoride salt at 1000 °C were determined to be 3.98 × 10−5 cm2/s and 1.16 × 10−3 cm2/s, respectively. Electrochemical calculations revealed that the reduction of Y(III) involves a single-step transfer of three electrons, while Mg(II) involves a single-step transfer of two electrons. The corresponding electrode reactions are Y(III) + 3e→Y and Mg(II) + 2e→Mg, respectively. A Y-Mg alloy sample prepared by constant-current molten salt electrolysis primarily consists of the MgY phase with a composition of 88.38 wt% yttrium and 11.62 wt% magnesium. Full article
Show Figures

Figure 1

19 pages, 8190 KB  
Article
Processing and Characterization of AlN–SiC Composites Obtained by Spark Plasma Sintering
by Tatiana N. Smetyukhova, Levko Arbanas, Anton D. Sokolov, Viktoria E. Bazarova, Yuri Pristinskiy, Anton Smirnov and Nestor Washington Solis Pinargote
Sci 2025, 7(4), 174; https://doi.org/10.3390/sci7040174 - 1 Dec 2025
Viewed by 433
Abstract
In this paper, the dependence of the microstructure and properties on Spark Plasma Sintering modes of an AlN-35 β-SiC (wt.%) composite is investigated. It was found that the use of a heating rate of 100 °C/min during the sintering process of the AlN-35 [...] Read more.
In this paper, the dependence of the microstructure and properties on Spark Plasma Sintering modes of an AlN-35 β-SiC (wt.%) composite is investigated. It was found that the use of a heating rate of 100 °C/min during the sintering process of the AlN-35 β-SiC (wt.%) composite leads to the formation of a solid solution (AlN)x–(SiC)x−1 at 1900 °C during 5 min, and under a pressure of 50 MPa. It was observed that, at a heating rate of 50 °C/min and a pressure of 25 MPa, yttrium oxide used as a sintering additive impedes the diffusion of SiC into AlN. This impedes the formation of a solid solution (AlN)x–(SiC)x−1 and helps preserve SiC grains, which act as the main absorbing phase in the obtained composites. It is shown that the use of sintering additives and SPS technology allows obtaining samples with a density of 3.26 g/cm3, which coincides with the theoretical value of the composite. The dielectric characteristics and absorbing properties of sintered materials are determined in the frequency bands from 5.6 to 26 GHz. It has been discovered that the reflection, transmission, and absorption coefficients can be regulated depending on the thickness of the sample. In addition, it is shown that composites containing solid solutions and silicon carbide grains in their structures have the best absorbing properties. On the other hand, the material containing only solid solutions is a promising material that can be used as microwave filters. Full article
Show Figures

Figure 1

21 pages, 19150 KB  
Article
Preparation and Properties of Plasma Etching-Resistant Y2O3 Films
by Rui Zhang, Jiaxing Peng, Xiaobo Zhang, Kesheng Guo, Zecui Gao, Wei Dai, Zhengtao Wu, Yuxiang Xu and Qimin Wang
Coatings 2025, 15(12), 1397; https://doi.org/10.3390/coatings15121397 - 29 Nov 2025
Viewed by 788
Abstract
Yttrium oxide (Y2O3) films have been widely used as protective layers in plasma etching equipment, but achieving stoichiometric films with high deposition rates remains a challenge. In this study, Y2O3 films were fabricated by a medium-frequency [...] Read more.
Yttrium oxide (Y2O3) films have been widely used as protective layers in plasma etching equipment, but achieving stoichiometric films with high deposition rates remains a challenge. In this study, Y2O3 films were fabricated by a medium-frequency reactive magnetron sputtering (MF-RMS) technique. The oxygen flow and target control voltage were regulated through a closed-loop feedback control system, which effectively solved the problem. The microstructure, mechanical, optical, and plasma etching properties were systematically investigated. The results showed that near-stoichiometric films can achieve a relatively high deposition rate. Increasing the deposition temperature induced a structural transition in the Y2O3 film from a predominantly cubic phase to a mixture of cubic and monoclinic phases. For Y2O3 films deposited at room temperature, increasing the bias voltage increased the deposition rate but reduced hardness and elastic modulus. The Y2O3 film deposited at 300 °C in the near-metallic mode exhibited the highest hardness and elastic modulus, reaching 13.3 GPa and 222.0 GPa, respectively. All Y2O3 films exhibited excellent transmittance and resistance to plasma etching. This study provides an effective protective strategy for semiconductor etching chambers. Full article
Show Figures

Figure 1

11 pages, 3270 KB  
Communication
The Inhibitory Effect of Hafnium Oxide on Grain Growth in Yttrium Aluminum Garnet Composite Fiber
by Ke Gai, Qian Wang, Ketian Guan, Xiaohu Li, Weisen Liu, Yuan Li, Hongwei Zhao and Tong Zhao
Materials 2025, 18(23), 5272; https://doi.org/10.3390/ma18235272 - 21 Nov 2025
Viewed by 437
Abstract
Yttrium aluminum garnet (YAG, Y3Al5O12) fibers are promising materials for high-power lasers and high-temperature structural materials, and it is anticipated that the improvement in the stability of grain size would extend their service life at high temperatures. [...] Read more.
Yttrium aluminum garnet (YAG, Y3Al5O12) fibers are promising materials for high-power lasers and high-temperature structural materials, and it is anticipated that the improvement in the stability of grain size would extend their service life at high temperatures. In this work, YAG-HfO2 composite ceramic fibers were obtained by the solution blow spinning of YAG-HfO2 composite precursor and sintering in steam. The effect of HfO2 on the crystal phase transition and grain growth of YAG-HfO2 fibers was further studied by in situ X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Transmission Electron Microscope (TEM). The results show that the HfO2 addition increased the crystallization temperature of the YAG phase from 900 °C to 950 °C and reduced the crystal size at 1400 °C from 41.9 nm to 31.8 nm. The HfO2 grains were distributed at the boundary of YAG grains, which enabled the fiber to maintain its dense structure and uniform grain size even at 1500 °C, exhibiting excellent high-temperature grain size stability of composite fibers. Full article
(This article belongs to the Special Issue Advances in High-Temperature Ceramics and Refractory Materials)
Show Figures

Figure 1

13 pages, 2838 KB  
Article
Laser-Based Crystallization of Chemical Solution Deposited Proton-Conducting Thin Films
by Jonas Frühling, Samuel Fink, Theodor Schneller and Christian Vedder
Materials 2025, 18(22), 5235; https://doi.org/10.3390/ma18225235 - 19 Nov 2025
Viewed by 464
Abstract
This work investigates the laser-based solid-phase crystallization of wet-chemically deposited BZY (yttrium doped barium zirconate) thin films on metallic substrates. For this purpose, amorphous BZY thin films are deposited on nickel-based alloy substrates using spin coating and are then annealed using laser radiation. [...] Read more.
This work investigates the laser-based solid-phase crystallization of wet-chemically deposited BZY (yttrium doped barium zirconate) thin films on metallic substrates. For this purpose, amorphous BZY thin films are deposited on nickel-based alloy substrates using spin coating and are then annealed using laser radiation. Different laser intensities and scanning velocities are investigated. X-ray diffraction analysis of the processed thin films shows an initial increase in crystallinity with increasing laser intensity. A further increase in laser intensity leads to the formation of secondary phases and ultimately to the melting of the substrate material. Complete crystallization of the thin films without the formation of secondary phases is achieved by applying scanning velocities of vS ≥ 500 mm/s. Scanning electron microscopy images of selected samples show that, especially at higher scanning velocities, crack formation can occur as a result of the annealing. In summary, laser annealing is a promising approach for the thermal post-treatment of BZY thin films in applications in metal-supported solid oxide fuel cells. Full article
(This article belongs to the Special Issue Advances in Laser Processing Technology of Materials—Second Edition)
Show Figures

Figure 1

22 pages, 28424 KB  
Article
Effect of Water Ring Flow Rate Ratio on Preparation of Yttrium Oxide Coatings by Suspension Plasma Spray
by Aolong Deng, Fuhu Liu, Peng Zhao, Hailong Zhu and Chuanwen Geng
Coatings 2025, 15(11), 1304; https://doi.org/10.3390/coatings15111304 - 7 Nov 2025
Viewed by 454
Abstract
Yttrium oxide (Y2O3) is a crucial protective material for the inner walls of semiconductor etching chambers. This study employed Suspension Plasma Spray (SPS) technology to deposit Y2O3 coatings on AISI 304 stainless steel substrates. A water [...] Read more.
Yttrium oxide (Y2O3) is a crucial protective material for the inner walls of semiconductor etching chambers. This study employed Suspension Plasma Spray (SPS) technology to deposit Y2O3 coatings on AISI 304 stainless steel substrates. A water ring guide cover, which injects deionized water toward the center of the plasma flame at the torch outlet, was installed. The critical parameter ratio between the water ring flow rate and the suspension feed rate was investigated, with a specific focus on its influence on the coating’s microstructure and mechanical properties. The findings reveal that this parameter exhibits a significant positive correlation with porosity, with the coefficient of determination R2 for their linear fit reaching 0.91236. When the water ring flow rate ratio was reduced to 79.66%, the porosity decreased to 0.946%, while the primary composition of the coating remained unchanged. Bond strength tests demonstrated that the adhesion strength of the coating exhibits an upward trend with increasing proportion of water ring flow. The adhesion strength reached its maximum value of 27.02 MPa when the water ring flow rate proportion was increased to 85.45%. Roughness exhibits a non-monotonic variation trend within the ratio range, attaining its optimal minimum value at the lower end of the ratio, indicating complex interrelationships among process characteristics. This work concludes that a low water ring flow rate ratio is essential for fabricating dense, well-adhered, and smooth Y2O3 coatings via SPS, providing a critical guideline for process optimization for applications such as semiconductor protection. Full article
(This article belongs to the Section Plasma Coatings, Surfaces & Interfaces)
Show Figures

Figure 1

24 pages, 4300 KB  
Article
Synthesis of Plant-Mediated Silver-Doped Metal Oxides Using Catharanthus roseus and Evaluation of Their Catalytic and Biological Activities
by Samira M. Alsawqaee, Eman A. Alzahrani, Esraa M. Bakhsh, Kalsoom Akhtar and Sher Bahadar Khan
Catalysts 2025, 15(10), 1001; https://doi.org/10.3390/catal15101001 - 21 Oct 2025
Viewed by 1094
Abstract
This study explores the green synthesis of silver-doped lanthanum oxide (La/Ag), silver-doped yttrium oxide (Y/Ag), and silver-doped lanthanum–yttrium oxide (La/Y/Ag) nanocomposites using Catharanthus roseus extract as a natural reducing and stabilizing agent. The nanocomposites were characterized using various spectroscopic techniques to confirm their [...] Read more.
This study explores the green synthesis of silver-doped lanthanum oxide (La/Ag), silver-doped yttrium oxide (Y/Ag), and silver-doped lanthanum–yttrium oxide (La/Y/Ag) nanocomposites using Catharanthus roseus extract as a natural reducing and stabilizing agent. The nanocomposites were characterized using various spectroscopic techniques to confirm their morphology, composition, crystallinity, and functional groups. La/Ag, Y/Ag, and La/Y/Ag exhibited significant catalytic activity in the reduction and degradation of methylene blue (MB), methyl orange (MO), acridine orange (AO), and 4-nitrophenol (4-NP). Optimization studies showed that La/Ag achieved complete MB reduction within 3 min, while La/Y/Ag reduced MO in 90 s. Both catalysts maintained high activity over multiple cycles, with only slight efficiency loss. In real water media, La/Ag and La/Y/Ag achieved reduction efficiencies of 98% and 97%, respectively. La/Ag also demonstrated excellent photocatalytic degradation of AO under UV light, achieving complete degradation in 80 min, and 98% degradation in tap and seawater samples. Additionally, the nanocomposites demonstrated broad-spectrum antimicrobial activity against bacterial and fungal pathogens, with varying inhibition levels across species. Full article
(This article belongs to the Special Issue Design and Synthesis of Nanostructured Catalysts, 3rd Edition)
Show Figures

Figure 1

18 pages, 5271 KB  
Article
Enhancement of Photocatalytic and Anticancer Properties in Y2O3 Nanocomposites Embedded in Reduced Graphene Oxide and Carbon Nanotubes
by ZabnAllah M. Alaizeri, Syed Mansoor Ali and Hisham A. Alhadlaq
Catalysts 2025, 15(10), 960; https://doi.org/10.3390/catal15100960 - 6 Oct 2025
Viewed by 906
Abstract
Due to their excellent physicochemical properties, the nanoparticles (NPs) have been utilized in various potential applications, including environmental remediation, energy storage, and nanomedicine. In this work, the ultrasonic and manual stirring approaches were used to integrate yttrium oxide (Y2O3) [...] Read more.
Due to their excellent physicochemical properties, the nanoparticles (NPs) have been utilized in various potential applications, including environmental remediation, energy storage, and nanomedicine. In this work, the ultrasonic and manual stirring approaches were used to integrate yttrium oxide (Y2O3) nanoparticles (NPs) into reduced graphene oxide (RGO) and carbon nanotubes (CNTs) to enhance their photocatalytic and anticancer properties. Pure Y2O3NPs, Y2O3/RGO NCs, and Y2O3/CNTs NCs were characterized using different analytical techniques, such as XRD, SEM, EDX with Elemental Mapping, FTIR, UV-Vis, PL, and DLS to investigate their improved structural, surface morphological, chemical bonding, optical, and surface charge properties. XRD data confirmed the successful integration of Y2O3into RGO and CNTs, with minor changes in crystallite sizes. SEM images with EDX analysis revealed that Y2O3NPs were uniformly distributed on RGO and CNTs, reducing aggregation. Chemical bonding and interactions between Y2O3and carbon materials were investigated using Fourier Transform Infrared (FTIR) analysis. UV and PL results suggest that the optical studies showed a shift in absorption peaks upon integration with RGO and CNTs. This indicates enhanced light absorption and modifications to the band gap between (3.79–4.40 eV) for the obtained samples. In the photocatalytic experiment, the degradation efficiency of bromophenol blue (BPB) dye for Y2O3RGO NCs was up to 87.3%, outperforming pure Y2O3NPs (45.83%) and Y2O3/CNTs NCs (66.78%) after 120 min of UV irradiation. Additionally, the MTT assay demonstrated that Y2O3/RGO NCs exhibited the highest anticancer activity against MG-63 bone cancer cells with an IC50 value of 45.7 µg/mL compared to Y2O3CNTs NCs and pure Y2O3NPs. This work highlights that Y2O3/RGO NCs could be used in significant applications, including environmental remediation and in vivo cancer therapy studies. Full article
Show Figures

Figure 1

11 pages, 2198 KB  
Article
Effect of Hafnium-Based Thin Film Thickness on Microstructure and Electrical of Yttrium-Doped Hafnium Oxide Ferroelectric Devices Prepared by Magnetron Sputtering
by Bei Ma, Ke Ma, Xinhui Qin, Yingxue Xi, Jin Zhang, Xinyu Yang, Pengfei Yang and Weiguo Liu
Micromachines 2025, 16(9), 1066; https://doi.org/10.3390/mi16091066 - 21 Sep 2025
Viewed by 729
Abstract
This study employs reactive magnetron sputtering technology to fabricate TiN/Y-HfO2/TiN multilayer thin film devices using titanium targets and yttrium-doped high-purity hafnium targets. A systematic investigation was conducted to explore the influence of hafnium-based thin film thickness on the structural and electrical [...] Read more.
This study employs reactive magnetron sputtering technology to fabricate TiN/Y-HfO2/TiN multilayer thin film devices using titanium targets and yttrium-doped high-purity hafnium targets. A systematic investigation was conducted to explore the influence of hafnium-based thin film thickness on the structural and electrical properties of TiN/Y-HfO2/TiN thin film devices. Radio frequency magnetron sputtering was utilized to deposit Y-HfO2 films of varying thicknesses on TiN electrodes by controlling deposition time, with a yttrium doping concentration of 8.24 mol.%. The surface morphology and crystal structure of the thin films were characterized using atomic force microscopy (AFM), Raman spectroscopy, X-ray diffraction (XRD). Results indicate that as film thickness increases, surface roughness and Raman peak intensity increase correspondingly, with the tetragonal phase (t) characteristic peak being most prominent at 65 nm. DC magnetron sputtering was employed to deposit TiN top electrodes, resulting in TiN/Y-HfO2/TiN thin film devices. Following rapid thermal annealing at 700 °C, electrical properties were evaluated using a ferroelectric tester. Leakage current density exhibited a decreasing trend with increasing film thickness, while the maximum polarization intensity gradually increased, reaching a maximum of 11.5 μC/cm2 at 120 nm. Full article
(This article belongs to the Special Issue Recent Advances in Thin-Film Devices)
Show Figures

Figure 1

9 pages, 2531 KB  
Article
Visualization of the Meissner Effect Using Miniaturized Quantum Magnetometers
by Wookyoung Choi, Chanhu Park, Jaebum Park, Dongkwon Lee, Myeongwon Lee, Hong-Yeol Kim, Keun Young Lee, Sung Dan Lee, Dong Jae Cheon, Seong-Hyok Kim and Donghun Lee
Appl. Sci. 2025, 15(17), 9766; https://doi.org/10.3390/app15179766 - 5 Sep 2025
Viewed by 1364
Abstract
The direct visualization of the Meissner effect is achieved by mapping the expulsion of static magnetic fields from a high-TC superconductor, specifically Yttrium Barium Copper Oxide (YBCO). This is accomplished using a miniaturized scanning magnetometer based on an ensemble of nitrogen-vacancy [...] Read more.
The direct visualization of the Meissner effect is achieved by mapping the expulsion of static magnetic fields from a high-TC superconductor, specifically Yttrium Barium Copper Oxide (YBCO). This is accomplished using a miniaturized scanning magnetometer based on an ensemble of nitrogen-vacancy (NV) centers in diamond, operating under ambient room-temperature conditions. By comparing the magnetic field profiles above the YBCO sample at temperatures above and below its critical temperature TC, we observe clear suppression and distortion of the magnetic field in the superconducting state. These observations are consistent with both magnetic simulations and expected characteristics of the Meissner effect. This work introduces a novel and practical method for visualizing the Meissner effect, offering potential applications in educational demonstrations and the diagnostic testing of superconductivity using room-temperature quantum magnetometry. Full article
(This article belongs to the Special Issue Research and Application of Superconducting Magnets)
Show Figures

Figure 1

12 pages, 2702 KB  
Article
Integrated Seamless Non-Noble Plasmonic Ni-Upconversion Nanofilm for Stable and Enhanced Fluorescence Performance
by Hao Zeng, Longhui Han, Yang Li, Yaru Ni and Chunhua Lu
Materials 2025, 18(17), 3995; https://doi.org/10.3390/ma18173995 - 26 Aug 2025
Viewed by 761
Abstract
Thickness-controlled, easily patterned upconversion (UC) nanofilms are essential for high-precision optoelectronic devices, but challenges such as imprecise thickness control and low fluorescence intensity hinder their application. High-performance lanthanide-doped sodium yttrium fluoride UC materials are typically available in powder form, making direct integration into [...] Read more.
Thickness-controlled, easily patterned upconversion (UC) nanofilms are essential for high-precision optoelectronic devices, but challenges such as imprecise thickness control and low fluorescence intensity hinder their application. High-performance lanthanide-doped sodium yttrium fluoride UC materials are typically available in powder form, making direct integration into advanced devices difficult. Although physical vapor deposition (PVD) enables precise film formation, it often produces poor crystalline structures and weak fluorescence. To overcome these limitations, integrating non-noble plasmonic Ni with surface plasmon resonance to enhance fluorescence intensity is a promising yet understudied strategy, likely due to Ni’s ultraviolet resonant wavelength and oxidation susceptibility. This study introduces an integrated Ni-UC nanofilm design, combining an ultrathin Ni layer with a NaYF4:Tm, Yb UC layer via PVD, followed by post-annealing. Annealing at 500 °C transforms the UC layer into a hexagonal-phase crystal structure while protecting the Ni layer from oxidation. The unannealed UC nanofilm showed no fluorescence, whereas the annealed UC nanofilm displayed clear peaks at 476, 648, and 699 nm. Notably, the integrated Ni-UC nanofilm exhibited fluorescence intensities 5.29, 4.43, and 4.29 times higher at these wavelengths, respectively. Additionally, the integrated design exhibited high transparency and stability, highlighting its protective benefits. These results underscore the potential of the integrated Ni-UC nanofilm for advanced optoelectronics and sensing technologies, offering enhanced fluorescence, micro-processing compatibility, and robust performance in a cost-effective, non-noble plasmonic system. Full article
Show Figures

Graphical abstract

20 pages, 6803 KB  
Article
Improved Corrosion Resistance of Yttrium-Bearing H13 Steel for Shield Machine Cutter Ring
by Yunxin Wang, Xingwang Feng, Li Zhang and Bin Yang
Metals 2025, 15(9), 935; https://doi.org/10.3390/met15090935 - 23 Aug 2025
Viewed by 867
Abstract
H13 steel, which was used as the material for shield machine cutter rings, required tempering to attain superior mechanical properties. The Cr-rich carbide that precipitated during the tempering process definitely decreased the corrosion resistance of the steel. Here, we added rare earth Yttrium [...] Read more.
H13 steel, which was used as the material for shield machine cutter rings, required tempering to attain superior mechanical properties. The Cr-rich carbide that precipitated during the tempering process definitely decreased the corrosion resistance of the steel. Here, we added rare earth Yttrium to enhance the corrosion resistance of H13 steel. It was found that the inclusions were modified by adding yttrium in the steel, and the formation of Cr23C6 at the grain boundaries during tempering was suppressed. Furthermore, SKPFM measurements demonstrated that the surface potential of yttrium-containing inclusion was comparable to that of the surrounding matrix, thereby reducing the pitting susceptibility of H13 steel. Further investigation showed that yttrium decreased the normal stress range at grain boundaries during the tempering process, and effectively prevented C segregation. Thus, the number of Cr-depleted zones was decreased, and grain boundaries with active Cr atoms were increased. These active Cr atoms effectively sealed the ion channels between the matrix and NaCl solution within the Cr-rich oxide layer, thus improving localized corrosion resistance in the NaCl solution. On the other hand, the electrochemical test and SKPFM exhibited that yttrium reduced the potential loss during tempering, minimized the potential degradation of the matrix, and improved the corrosion resistance of H13 steel with yttrium. Accordingly, the corrosion loss of Y-bearing H13 steel was reduced by 46.6%. Full article
(This article belongs to the Special Issue Recent Advances in High-Performance Steel)
Show Figures

Figure 1

12 pages, 3668 KB  
Article
The Study on the Electrochemical Efficiency of Yttrium-Doped High-Entropy Perovskite Cathodes for Proton-Conducting Fuel Cells
by Bingxue Hou, Xintao Wang, Rui Tang, Wenqiang Zhong, Meiyu Zhu, Zanxiong Tan and Chengcheng Wang
Materials 2025, 18(15), 3569; https://doi.org/10.3390/ma18153569 - 30 Jul 2025
Viewed by 850
Abstract
The commercialization of proton-conducting fuel cells (PCFCs) is hindered by the limited electroactivity and durability of cathodes at intermediate temperatures ranging from 400 to 700 °C, a challenge exacerbated by an insufficient understanding of high-entropy perovskite (HEP) materials for oxygen reduction reaction (ORR) [...] Read more.
The commercialization of proton-conducting fuel cells (PCFCs) is hindered by the limited electroactivity and durability of cathodes at intermediate temperatures ranging from 400 to 700 °C, a challenge exacerbated by an insufficient understanding of high-entropy perovskite (HEP) materials for oxygen reduction reaction (ORR) optimization. This study introduces an yttrium-doped HEP to address these limitations. A comparative analysis of Ce0.2−xYxBa0.2Sr0.2La0.2Ca0.2CoO3−δ (x = 0, 0.2; designated as CBSLCC and YBSLCC) revealed that yttrium doping enhanced the ORR activity, reduced the thermal expansion coefficient (19.9 × 10−6 K−1, 30–900 °C), and improved the thermomechanical compatibility with the BaZr0.1Ce0.7Y0.1Yb0.1O3−δ electrolytes. Electrochemical testing demonstrated a peak power density equal to 586 mW cm−2 at 700 °C, with a polarization resistance equaling 0.3 Ω cm2. Yttrium-induced lattice distortion promotes proton adsorption while suppressing detrimental Co spin-state transitions. These findings advance the development of durable, high-efficiency PCFC cathodes, offering immediate applications in clean energy systems, particularly for distributed power generation. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

Back to TopTop