Visualization of the Meissner Effect Using Miniaturized Quantum Magnetometers
Abstract
Featured Application
Abstract
1. Introduction
2. Experimental Methods
3. Results and Discussion
3.1. Comparison of Magnetic Field Profiles Below and Above
3.2. Magnetic Field Profiles as a Function of Distance from YBCO
3.3. Temperature Imaging of YBCO
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
YBCO | Yttrium Barium Copper Oxide |
NV | Nitrogen-vacancy |
Nd | Neodymium |
PL | Photoluminescence |
GRIN | Gradient-index |
ZFS | Zero-field splitting |
ODMR | Optically detected magnetic resonance |
References
- Meissner, W.; Ochsenfeld, R. Ein Neuer Effekt Bei Eintritt Der Supraleitfähigkeit. Naturwissenschaften 1933, 21, 787–788. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, S.-M.; Ni, Y.-Q. A Review of Levitation Control Methods for Low- and Medium-Speed Maglev Systems. Buildings 2024, 14, 837. [Google Scholar] [CrossRef]
- Lee, E.; Ma, K.B.; Wilson, T.L.; Chu, W.-K. Superconductor-Magnet Bearings with Inherent Stability and Velocity-Independent Drag Torque. In Proceedings of the 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No.99TH8399), Atlanta, GA, USA, 19–23 September 1999; pp. 806–811. [Google Scholar]
- Saipuddin, S.F.; Hashim, A.; Suhaimi, N.E. Type I and Type II Superconductivity. In Superconducting Materials: Fundamentals, Synthesis and Applications; Slimani, Y., Hannachi, E., Eds.; Springer Nature: Singapore, 2022; pp. 123–146. ISBN 978-981-19-1211-5. [Google Scholar]
- Nishio, T.; Dao, V.H.; Chen, Q.; Chibotaru, L.F.; Kadowaki, K.; Moshchalkov, V.V. Scanning SQUID Microscopy of Vortex Clusters in Multiband Superconductors. Phys. Rev. B 2010, 81, 020506. [Google Scholar] [CrossRef]
- Coffey, M.W. Magnetic Force Microscopy of Layered Superconductors. Phys. Rev. B 2000, 61, 15361–15369. [Google Scholar] [CrossRef]
- Loudon, J.C.; Midgley, P.A. Imaging Flux Vortices in Type II Superconductors with a Commercial Transmission Electron Microscope. Ultramicroscopy 2009, 109, 700–729. [Google Scholar] [CrossRef] [PubMed]
- On Ho, K.; Kuen Leung, W.; Yung Pang, Y.; Yau Yip, K.; Xie, J.; Man Liu, Y.; Sofia Rotelli, A.; Yin Leung, M.; Yin Chow, H.; To Lai, K.; et al. Studying Critical Parameters of Superconductor via Diamond Quantum Sensors. New J. Phys. 2025, 27, 023013. [Google Scholar] [CrossRef]
- Waxman, A.; Schlussel, Y.; Groswasser, D.; Acosta, V.M.; Bouchard, L.-S.; Budker, D.; Folman, R. Diamond Magnetometry of Superconducting Thin Films. Phys. Rev. B 2014, 89, 054509. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, Y.; Hui, Y.Y.; Su, Y.; Cheng, J.; Chang, H.-C.; Zhang, Y.; Shen, Y.R.; Tian, C. Mapping Dynamical Magnetic Responses of Ultrathin Micron-Size Superconducting Films Using Nitrogen-Vacancy Centers in Diamond. Nano Lett. 2019, 19, 5697–5702. Available online: https://pubs.acs.org/doi/10.1021/acs.nanolett.9b02298 (accessed on 25 July 2025). [CrossRef] [PubMed]
- Joshi, K.R.; Nusran, N.M.; Tanatar, M.A.; Cho, K.; Meier, W.R.; Bud’ko, S.L.; Canfield, P.C.; Prozorov, R. Measuring the Lower Critical Field of Superconductors Using Nitrogen-Vacancy Centers in Diamond Optical Magnetometry. Phys. Rev. Appl. 2019, 11, 014035. [Google Scholar] [CrossRef]
- Nusran, N.M.; Joshi, K.R.; Cho, K.; Tanatar, M.A.; Meier, W.R.; Bud’ko, S.L.; Canfield, P.C.; Liu, Y.; Lograsso, T.A.; Prozorov, R. Spatially-Resolved Study of the Meissner Effect in Superconductors Using NV-Centers-in-Diamond Optical Magnetometry. New J. Phys. 2018, 20, 043010. [Google Scholar] [CrossRef]
- Pelliccione, M.; Jenkins, A.; Ovartchaiyapong, P.; Reetz, C.; Emmanouilidou, E.; Ni, N.; Bleszynski Jayich, A.C. Scanned Probe Imaging of Nanoscale Magnetism at Cryogenic Temperatures with a Single-Spin Quantum Sensor. Nat. Nanotechnol. 2016, 11, 700–705. [Google Scholar] [CrossRef] [PubMed]
- Dailledouze, C.; Hilberer, A.; Schmidt, M.; Adam, M.-P.; Toraille, L.; Ho, K.O.; Forget, A.; Colson, D.; Loubeyre, P.; Roch, J.-F. Imaging the Meissner Effect and Flux Trapping of Superconductors under High Pressure Using N-V Centers. Phys. Rev. Appl. 2025, 23, 064067. [Google Scholar] [CrossRef]
- Le Sage, D.; Arai, K.; Glenn, D.R.; DeVience, S.J.; Pham, L.M.; Rahn-Lee, L.; Lukin, M.D.; Yacoby, A.; Komeili, A.; Walsworth, R.L. Optical Magnetic Imaging of Living Cells. Nature 2013, 496, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Barry, J.F.; Schloss, J.M.; Bauch, E.; Turner, M.J.; Hart, C.A.; Pham, L.M.; Walsworth, R.L. Sensitivity Optimization for NV-Diamond Magnetometry. Rev. Mod. Phys. 2020, 92, 015004. [Google Scholar] [CrossRef]
- Choi, W.; Park, C.; Lee, D.; Park, J.; Lee, M.; Kim, H.-Y.; Lee, K.-Y.; Lee, S.-D.; Jeon, D.; Kim, S.-H.; et al. Scanning Miniaturized Magnetometer Based on Diamond Quantum Sensors and Its Potential Application for Hidden Target Detection. Sensors 2025, 25, 1866. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.K.; Ashburn, J.R.; Torng, C.J.; Hor, P.H.; Meng, R.L.; Gao, L.; Huang, Z.J.; Wang, Y.Q.; Chu, C.W. Superconductivity at 93 K in a New Mixed-Phase Y-Ba-Cu-O Compound System at Ambient Pressure. Phys. Rev. Lett. 1987, 58, 908–910. [Google Scholar] [CrossRef] [PubMed]
- Gali, Á. Ab Initio Theory of the Nitrogen-Vacancy Center in Diamond. Nanophotonics 2019, 8, 1907–1943. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, W.; Park, C.; Park, J.; Lee, D.; Lee, M.; Kim, H.-Y.; Lee, K.Y.; Lee, S.D.; Cheon, D.J.; Kim, S.-H.; et al. Visualization of the Meissner Effect Using Miniaturized Quantum Magnetometers. Appl. Sci. 2025, 15, 9766. https://doi.org/10.3390/app15179766
Choi W, Park C, Park J, Lee D, Lee M, Kim H-Y, Lee KY, Lee SD, Cheon DJ, Kim S-H, et al. Visualization of the Meissner Effect Using Miniaturized Quantum Magnetometers. Applied Sciences. 2025; 15(17):9766. https://doi.org/10.3390/app15179766
Chicago/Turabian StyleChoi, Wookyoung, Chanhu Park, Jaebum Park, Dongkwon Lee, Myeongwon Lee, Hong-Yeol Kim, Keun Young Lee, Sung Dan Lee, Dong Jae Cheon, Seong-Hyok Kim, and et al. 2025. "Visualization of the Meissner Effect Using Miniaturized Quantum Magnetometers" Applied Sciences 15, no. 17: 9766. https://doi.org/10.3390/app15179766
APA StyleChoi, W., Park, C., Park, J., Lee, D., Lee, M., Kim, H.-Y., Lee, K. Y., Lee, S. D., Cheon, D. J., Kim, S.-H., & Lee, D. (2025). Visualization of the Meissner Effect Using Miniaturized Quantum Magnetometers. Applied Sciences, 15(17), 9766. https://doi.org/10.3390/app15179766