Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (19,113)

Search Parameters:
Keywords = work behaviors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3215 KB  
Article
Adsorption and Dilational Viscoelasticity of Saponin at the β-Pinene/Water and Air/Water Interfaces
by Feng Lin
Colloids Interfaces 2025, 9(5), 68; https://doi.org/10.3390/colloids9050068 (registering DOI) - 11 Oct 2025
Abstract
Understanding adsorption and interfacial properties of surface-active agents at interfaces is crucial to the formation and stability of colloidal systems such as emulsions and foams. In this work, interfacial tension and viscoelasticity of saponin at the β-pinene/water interface were studied using drop tensiometry [...] Read more.
Understanding adsorption and interfacial properties of surface-active agents at interfaces is crucial to the formation and stability of colloidal systems such as emulsions and foams. In this work, interfacial tension and viscoelasticity of saponin at the β-pinene/water interface were studied using drop tensiometry and dilational rheology measurement. For comparison, saponin at the air/water interface was also evaluated. Both saponin and β-pinene are bio-based, eco-friendly, and abundant in plants, trees, and agricultural wastes. Results showed that dynamic interfacial tensions σ(t) of saponin adsorbed at β-pinene/water and air/water interfaces could be well described by the Ward and Tordai model, suggesting that the saponin adsorption kinetics at both interfaces are controlled by a kinetically limited mechanism. The equilibrium interfacial pressure πe data prior to critical micelle concentration (cmc) were adequately fitted by the Gibbs adsorption isotherm. At the β-pinene/water interface, a higher cmc and a larger area per molecule, but a lower πe, were observed compared to the air/water interface. Interestingly, the dilational moduli of saponin at β-pinene/water increased with increasing oscillating frequency, but with less significant frequency dependence than their counterparts at the air/water interface. The dilational moduli of saponin at β-pinene/water passed through a minimum with increasing saponin bulk concentration, while the air/water interface exhibited a strikingly different trend in terms of concentration dependence and a higher magnitude for the dilational moduli. The correlation between adsorption behaviors and dilational properties of saponin at the two interfaces is discussed. Fundamental knowledge gained from this study will be beneficial for the rational development of new biocompatible emulsions and foam products for more sustainable applications. Full article
Show Figures

Graphical abstract

24 pages, 16090 KB  
Article
Iterative Investigation of the Nonlinear Fractional Cahn–Allen and Fractional Clannish Random Walker’s Parabolic Equations by Using the Hybrid Decomposition Method
by Sarfaraz Ahmed, Ibtisam Aldawish, Syed T. R. Rizvi and Aly R. Seadawy
Fractal Fract. 2025, 9(10), 656; https://doi.org/10.3390/fractalfract9100656 (registering DOI) - 11 Oct 2025
Abstract
In this work, we numerically investigate the fractional clannish random walker’s parabolic equations (FCRWPEs) and the nonlinear fractional Cahn–Allen (NFCA) equation using the Hybrid Decomposition Method (HDM). The analysis uses the Atangana–Baleanu fractional derivative (ABFD) in the Caputo sense, which has a nonsingular [...] Read more.
In this work, we numerically investigate the fractional clannish random walker’s parabolic equations (FCRWPEs) and the nonlinear fractional Cahn–Allen (NFCA) equation using the Hybrid Decomposition Method (HDM). The analysis uses the Atangana–Baleanu fractional derivative (ABFD) in the Caputo sense, which has a nonsingular and nonlocal Mittag–Leffler kernel (MLk) and provides a more accurate depiction of memory and heredity effects, to examine the dynamic behavior of the models. Using nonlinear analysis, the uniqueness of the suggested models is investigated, and distinct wave profiles are created for various fractional orders. The accuracy and effectiveness of the suggested approach are validated by a number of example cases, which also support the approximate solutions of the nonlinear FCRWPEs. This work provides significant insights into the modeling of anomalous diffusion and complex dynamic processes in fields such as phase transitions, biological transport, and population dynamics. The inclusion of the ABFD enhances the model’s ability to capture nonlocal effects and long-range temporal correlations, making it a powerful tool for simulating real-world systems where classical derivatives may be inadequate. Full article
(This article belongs to the Special Issue Applications of Fractional Calculus in Modern Mathematical Modeling)
24 pages, 13489 KB  
Review
Review of Oxides Prepared by a Short Process Using Rare-Earth Chlorides
by Jing Wei, Xue Bian, Xinmiao Zhu, Hao Huang, Chunlin Ye, Shuchen Sun, Liqin Zhong and Ganfeng Tu
Materials 2025, 18(20), 4669; https://doi.org/10.3390/ma18204669 (registering DOI) - 11 Oct 2025
Abstract
Direct thermal decomposition of rare-earth chlorides into rare-earth oxides (REOs) in a single step presents a short-process, wastewater-free, and environmentally friendly alternative to the conventional precipitation–calcination method, which produces large amounts of saline wastewater. While earlier reviews have primarily focused on summarizing reaction [...] Read more.
Direct thermal decomposition of rare-earth chlorides into rare-earth oxides (REOs) in a single step presents a short-process, wastewater-free, and environmentally friendly alternative to the conventional precipitation–calcination method, which produces large amounts of saline wastewater. While earlier reviews have primarily focused on summarizing reaction conditions and thermodynamic parameters, they have seldom discussed the critical variations in pyrolysis behavior across different rare-earth elements. This review highlights a novel classification of rare-earth chlorides into fixed-valence and variable-valence groups, revealing how their respective oxidation states govern thermodynamic stability, reaction pathways, and chlorine release behavior. Furthermore, a systematic comparison is provided on the effects of additives, temperature, and gas partial pressure on product purity, particle size, and microstructure, with particular attention to the mechanisms underlying oxychloride intermediate formation. Beyond fundamental reaction principles, this work uniquely evaluates the design and performance of existing pyrolysis reactors, outlining both opportunities and challenges in scaling up direct rare-earth chloride (REClx) pyrolysis for industrial REO production. By integrating mechanistic insights with reactor engineering considerations, this review offers advancements over previous descriptive summaries and proposes a strategic pathway toward sustainable rare-earth processing. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

28 pages, 45631 KB  
Article
Field Vibration Monitoring for Detecting Stiffness Variations in RC, PSC, Steel, and UHPC Bridge Girders
by Osazee Oravbiere, Mi G. Chorzepa and S. Sonny Kim
Infrastructures 2025, 10(10), 272; https://doi.org/10.3390/infrastructures10100272 (registering DOI) - 11 Oct 2025
Abstract
This study quantifies shear and flexural stiffnesses and their changes over time to support structural health monitoring of in-service bridge superstructures across four girder types: reinforced concrete (RC) beams, prestressed concrete (PSC) girders, steel girders, and ultra-high-performance concrete (UHPC) sections, using field ambient [...] Read more.
This study quantifies shear and flexural stiffnesses and their changes over time to support structural health monitoring of in-service bridge superstructures across four girder types: reinforced concrete (RC) beams, prestressed concrete (PSC) girders, steel girders, and ultra-high-performance concrete (UHPC) sections, using field ambient vibration testing. A total of 20 bridges across Georgia and Iowa are assessed, involving over 100 hours of on-site data collection and traffic control strategies. Results show that field-measured natural frequencies differ from theoretical predictions by average of 30–35% for RC, and 20–25% for PSC, 15–25% for steel and 2% for UHPC, reflecting the complexity of in situ structural dynamics and challenges in estimating material properties. Site-placed RC beams showed stiffness reduction due to deterioration, whereas prefabricated PSC girders maintained consistent stiffness with predictable variations. UHPC sections exhibited the highest stiffness, reflecting superior performance. Steel girders matched theoretical values, but a span-level test revealed that deck damage can reduce frequencies undetected by localized measurements. Importantly, vibration-based measurements revealed reductions in structural stiffness that were not apparent through conventional visual inspection, particularly in RC beams. The research significance of this work lies in establishing a portfolio-based framework that enables cross-comparison of stiffness behavior across multiple girder types, providing a scalable and field-validated approach for system-level bridge health monitoring and serving as a quantitative metric to support bridge inspections and decision-making. Full article
(This article belongs to the Section Infrastructures Inspection and Maintenance)
Show Figures

Figure 1

20 pages, 1821 KB  
Article
Vibration Analysis of Multilayer Stepped Cross-Sectional Carbon Nanotubes
by Yunus Onur Yildiz, Murat Sen, Osman Yigid, Mesut Huseyinoglu and Sertac Emre Kara
Nanomaterials 2025, 15(20), 1550; https://doi.org/10.3390/nano15201550 (registering DOI) - 11 Oct 2025
Abstract
This study comprehensively investigates the dynamic vibration behavior of multilayer carbon nanotubes with stepped cross-sectional geometries under various boundary conditions, which is crucial for their advanced engineering applications. The methodology integrates classical molecular dynamics simulations to determine the bending stiffness of single-walled and [...] Read more.
This study comprehensively investigates the dynamic vibration behavior of multilayer carbon nanotubes with stepped cross-sectional geometries under various boundary conditions, which is crucial for their advanced engineering applications. The methodology integrates classical molecular dynamics simulations to determine the bending stiffness of single-walled and multi-walled atomistic structures, which are subsequently utilized in the Euler–Bernoulli beam theory based on nonlocal elasticity for vibration analysis. The research focuses on elucidating the influence of the μ/L ratio (a key length parameter) and different support conditions on the natural frequencies and mode shapes of these nanostructures. Key findings reveal that the cross-sectional geometry significantly impacts the vibrational characteristics. A consistent trend observed across all examined boundary conditions is a decrease in natural frequencies as the μ/L ratio increases, indicating that increased free length or reduced fixed length leads to lower stiffness and, consequently, reduced natural frequencies. The study presents Frequency Response Functions (FRFs) and the first four mode shapes, which visually confirm these dynamic characteristics. Graphical representations further reinforce the sensitivity of natural frequencies to both the μ/L ratio and support conditions. The systematic analysis presented in this work provides vital data for predicting resonance phenomena, optimizing structural stability, and enabling precise control over the vibrational response of these advanced nanomaterials in diverse engineering applications. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
26 pages, 434 KB  
Article
Workplace Violence, Self-Perceived Resilience and Associations with Turnover Intention Among Emergency Department Nurses: A Cross-Sectional Study
by Anna T. El Riz, Maria Dimitriadou and Maria Karanikola
Healthcare 2025, 13(20), 2562; https://doi.org/10.3390/healthcare13202562 (registering DOI) - 11 Oct 2025
Abstract
Background/Objectives: Workplace violence remains an important vocational psycho-social risk for nurses employed in the emergency department (ED). We investigated the characteristics of workplace violence against ED nurses, and associations with self-assessed resilience, socio-demographic and vocational parameters, including turnover intention. Methods: ED [...] Read more.
Background/Objectives: Workplace violence remains an important vocational psycho-social risk for nurses employed in the emergency department (ED). We investigated the characteristics of workplace violence against ED nurses, and associations with self-assessed resilience, socio-demographic and vocational parameters, including turnover intention. Methods: ED nurses employed in all public hospitals in the Republic of Cyprus (RC) participated. After obtaining informed consent, data were collected using census sampling (January–June 2024) via the translated 2016 Italian National Survey on Violence towards Emergency Nurses Questionnaire (QuINVIP16) for investigating workplace violence characteristics, and the Connor-Davidson Resilience Scale (CD-RISC-25) for assessing self-perceived resilience. Results: A total of 132 nurses (53.0% response rate) participated. Verbal violence was reported by 70.5% to 92.4% of participants. Long waiting times, overcrowded EDs, and perception of inadequate attention from healthcare professionals were reported as the primary triggers for violence towards participants by patients/visitors. One-third of participants reported that violence-reporting systems were unclear, while 1 out of 4 reported inadequate safety measures against violence. Participants with higher scores of self-perceived resilience were less likely to report turnover intention due to workplace violence (p < 0.001), while those with lower self-perceived resilience reported a significant decrease in work motivation (p = 0.005). Those who experienced decreased work motivation after exposure to a violent episode were more likely to consider a) leaving the profession [OR (95%CI): 79.1(17.7–353.2); p < 0.01], and b) moving to a different work setting [OR (95%CI): 17.0(3.8–76.2); p < 0.01], and actually applying to be transferred to a different work setting [OR (95%CI): 19.6(4.2–91.5); p < 0.01]. Moreover, those who had not attended communication skills training were 4 times more likely to consider leaving the profession following exposure to violence [OR (95%CI): 4.2(1.1–16.2); p = 0.04]. Conclusions: This study is among the few to link workplace violence with both resilience and actual turnover behaviors among emergency nurses, in general and particularly in the post-pandemic era. By showing how personal resilience in the face of violence is shaped by organizational support, such as reporting systems and training, the present findings move beyond individuals-level explanations, and highlight workplace violence as a systematic administrative challenge. This insight represents an important advance in current knowledge, and calls for multifaceted interventions that strengthen both personal and institutional capacity to address violence. Full article
(This article belongs to the Special Issue Enhancing Patient Safety in Critical Care Settings)
15 pages, 4613 KB  
Article
Hydrogen Does Not Embrittle Materials Themselves but Inhibits the Work Hardening of Materials
by Toshio Ogata
Processes 2025, 13(10), 3236; https://doi.org/10.3390/pr13103236 (registering DOI) - 11 Oct 2025
Abstract
High-pressure hydrogen compatibility evaluations of alloys using hollow specimens were performed in accordance with ISO 7039. Hollow tensile specimens containing high-pressure hydrogen gas in a small-diameter hole along the axis can also be used to evaluate the influence of hydrogen gas without using [...] Read more.
High-pressure hydrogen compatibility evaluations of alloys using hollow specimens were performed in accordance with ISO 7039. Hollow tensile specimens containing high-pressure hydrogen gas in a small-diameter hole along the axis can also be used to evaluate the influence of hydrogen gas without using high-pressure vessels. This method is not only simpler and less costly than the conventional approach, but it can also evaluate the instantaneous change in the environmental gas at specimen break. The following findings were obtained from slow-strain-rate tensile (SSRT) tests in a high-pressure hydrogen gas environment using hollow specimens of austenitic stainless steels: (1) the work hardening of the specimen in the SSRT tests stopped several minutes before the crack reached the outer surface owing to the influence of hydrogen; (2) the work hardening of the specimen resumed immediately after the hydrogen gas was released; (3) the crack growth took several minutes to reach the specimen’s surface; and (4) the fracture surface was not a cleavage fracture. These results indicate that materials are still ductile after exposure to the high-pressure hydrogen environment. This can be explained by the fact that hydrogen does not embrittle the material itself but inhibits the work hardening of the material. This phenomenon can be explained by the behavior of chemical bonds among atoms, and more discussion on strength from the perspective of chemical bonds is expected. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

20 pages, 2594 KB  
Article
Evaluating the Generalization Gaps of Intrusion Detection Systems Across DoS Attack Variants
by Roshan Jameel, Khyati Marwah, Sheikh Mohammad Idrees and Mariusz Nowostawski
J. Cybersecur. Priv. 2025, 5(4), 85; https://doi.org/10.3390/jcp5040085 (registering DOI) - 11 Oct 2025
Abstract
Intrusion Detection Systems (IDS) play a vital role in safeguarding networks, yet their effectiveness is often challenged, as cyberattacks evolve in new and unexpected ways. Machine learning models, although very powerful, usually perform well only on data that closely resembles what they were [...] Read more.
Intrusion Detection Systems (IDS) play a vital role in safeguarding networks, yet their effectiveness is often challenged, as cyberattacks evolve in new and unexpected ways. Machine learning models, although very powerful, usually perform well only on data that closely resembles what they were trained on. When faced with unfamiliar traffic, they often misclassify. In this work, we examine this generalization gap by training IDS models on one Denial-of-Service (DoS) variant, DoS Hulk, and testing them against other variants such as Goldeneye, Slowloris, and Slowhttptest. Our approach combines careful preprocessing, dimensionality reduction with Principal Component Analysis (PCA), and model training using Random Forests and Deep Neural Networks. To better understand model behavior, we tuned decision thresholds beyond the default 0.5 and found that small adjustments can significantly affect results. We also applied Shapley Additive Explanations (SHAP) to shed light on which features the models rely on, revealing a tendency to focus on fixed components that do not generalize well. Finally, using Uniform Manifold Approximation and Projection (UMAP), we visualized feature distributions and observed overlaps between training and testing datasets, but these did not translate into improved detection performance. Our findings highlight an important lesson: visual or apparent similarity between datasets does not guarantee generalization, and building robust IDS requires exposure to diverse attack patterns during training. Full article
Show Figures

Figure 1

23 pages, 5973 KB  
Article
Application of a Total Pressure Sensor in Supersonic Flow for Shock Wave Analysis Under Low-Pressure Conditions
by Michal Bílek, Jiří Maxa, Pavla Šabacká, Robert Bayer, Tomáš Binar, Petr Bača, Jiří Votava, Martin Tobiáš and Marek Žák
Sensors 2025, 25(20), 6291; https://doi.org/10.3390/s25206291 - 10 Oct 2025
Abstract
This study examines the design and implementation of a sensor developed to measure total pressure in supersonic flow conditions using nitrogen as the working fluid. Using a combination of absolute and differential pressure sensors, the total pressure distribution downstream of a nozzle—where normal [...] Read more.
This study examines the design and implementation of a sensor developed to measure total pressure in supersonic flow conditions using nitrogen as the working fluid. Using a combination of absolute and differential pressure sensors, the total pressure distribution downstream of a nozzle—where normal shock waves are generated—was characterized across a range of low-pressure regimes. The experimental results were employed to validate and calibrate computational fluid dynamics (CFD) models, particularly within pressure ranges approaching the limits of continuum mechanics. The validated analyses enabled a more detailed examination of shock-wave behavior under near-continuum conditions, with direct relevance to the operational environment of differentially pumped chambers in Environmental Scanning Electron Microscopy (ESEM). Furthermore, an entropy increase across the normal shock wave at low pressures was quantified, attributed to the extended molecular mean free path and local deviations from thermodynamic equilibrium. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

19 pages, 4401 KB  
Article
Experimental Shear Behavior of Macro-Synthetic Fiber-Reinforced Concrete Panels
by John P. Gaston, Benedikt F. Farag, Travis Thonstad and Paolo M. Calvi
Fibers 2025, 13(10), 136; https://doi.org/10.3390/fib13100136 - 10 Oct 2025
Abstract
The combined use of macro-synthetic fibers and traditional steel reinforcement in structural concrete shows promise for enhancing shear behavior, particularly with respect to crack control, ductility, and potentially strength. However, experimental data on such systems remain scarce, especially for elements subjected to pure [...] Read more.
The combined use of macro-synthetic fibers and traditional steel reinforcement in structural concrete shows promise for enhancing shear behavior, particularly with respect to crack control, ductility, and potentially strength. However, experimental data on such systems remain scarce, especially for elements subjected to pure in-plane shear, where the interaction between fibers and conventional reinforcement is not well understood. This study contributes essential experimental evidence toward addressing this gap. Nine reinforced concrete panels were tested under monotonic in-plane shear, with transverse reinforcement ratios ranging from ρv = 0% to 0.91%, and macro-synthetic fiber contents from Vf = 0% to 0.52% by volume. Results showed that fibers were highly effective in reducing crack widths at low reinforcement levels. For specimens with ρv = 0.34%, increasing Vf from 0% to 0.52% halved the maximum crack width (from 0.6 mm to 0.3 mm) and reduced the average crack width by 22% (from 0.32 mm to 0.25 mm). Potential ductility improvements were also detected at low reinforcement ratios, with increased shear strain capacities observed as fiber content increased. In contrast, the influence of fibers on shear strength was minimal across all reinforcement levels. These findings highlight the potential of macro-synthetic fibers to enhance the performance of shear-critical elements, particularly in lightly reinforced systems, while also illustrating the need for further experimental and numerical work. The results presented here provide a fundamental dataset that can support future efforts to develop reliable assessment and design approaches accounting for the simultaneous presence of steel reinforcement and synthetic fibers in concrete elements subjected to shear. Full article
Show Figures

Figure 1

24 pages, 10080 KB  
Article
Exploring Structural, Optoelectronic, Phonon, Spintronic, and Thermodynamic Properties of Novel Full-Heusler Compounds TiMCu2 (M = Al, Ga, In): Eco-Friendly Materials for Next-Generation Renewable Energy Technologies
by Zeesham Abbas, Amna Parveen, H. I. Elsaeedy, Nejla Mahjoub Said and Mohd Taukeer Khan
Crystals 2025, 15(10), 876; https://doi.org/10.3390/cryst15100876 - 10 Oct 2025
Abstract
This work presents a comprehensive first-principles investigation of the structural, electronic, magnetic, optical, and thermodynamic properties of Ti-based full-Heusler compounds TiMCu2 (M = Al, Ga, In). Using density functional theory within the GGA+U framework, the compounds were optimized and analyzed to evaluate [...] Read more.
This work presents a comprehensive first-principles investigation of the structural, electronic, magnetic, optical, and thermodynamic properties of Ti-based full-Heusler compounds TiMCu2 (M = Al, Ga, In). Using density functional theory within the GGA+U framework, the compounds were optimized and analyzed to evaluate their stability and potential for functional applications. The results confirm robust structural and dynamic stability, as verified by elastic constants and phonon dispersion curves. All studied systems exhibit metallic character with pronounced spin polarization, while TiGaCu2 shows the strongest total magnetization, highlighting its suitability for spintronic devices. Optical analyses reveal strong absorption across the visible and near-UV regions, low reflectivity, and favorable dielectric behavior, indicating promise for photovoltaic and optoelectronic applications. Thermodynamic modeling further confirms stability under high temperature and pressure, reinforcing their practical viability. Overall, the TiMCu2 family demonstrates multifunctional characteristics, positioning them as eco-friendly and cost-effective candidates for next-generation renewable energy, spintronic, and optoelectronic technologies. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

18 pages, 768 KB  
Article
What Influences the Public to Work as Crowdshippers Using Cargo Bikes? An Extended Theory of Planned Behavior
by Sunho Bang, Jiarong Chen, Kwangsup Shin and Woojung Kim
Systems 2025, 13(10), 895; https://doi.org/10.3390/systems13100895 - 10 Oct 2025
Abstract
Driven by the green and low-carbon transformation of urban logistics, the integration of crowdsourced delivery and green transportation is considered an important pathway to achieving sustainable last-mile delivery. This study focuses on urban crowdsourced delivery using cargo bikes and develops an extended behavioral [...] Read more.
Driven by the green and low-carbon transformation of urban logistics, the integration of crowdsourced delivery and green transportation is considered an important pathway to achieving sustainable last-mile delivery. This study focuses on urban crowdsourced delivery using cargo bikes and develops an extended behavioral model based on the Theory of Planned Behavior (TPB). The model systematically examines the key factors influencing the public’s behavioral intention (BI) to participate as crowdshippers. While retaining the core structure of TPB, the model incorporates external variables—perceived risk (PR), policy support (PS), and infrastructure conditions (IC)—to improve its explanatory power and applicability to real-world delivery scenarios. A questionnaire survey was conducted in South Korea, yielding 600 valid responses. The results indicate that usage attitude and perceived behavioral control exert significant positive effects on BI. PR has a significant negative effect on both attitude and BI. PS indirectly enhances BI by improving attitudes, whereas IC primarily influences BI by strengthening the public’s sense of control. This study not only expands the theoretical explanatory power of the TPB model in the context of green crowdsourced delivery but also provides empirical evidence for policymakers and platform operators. Full article
Show Figures

Figure 1

10 pages, 419 KB  
Article
Benchmarking the Cumulant Expansion Method Using Dicke Superradiance
by Martin Fasser, Claudiu Genes, Helmut Ritsch and Raphael Holzinger
Photonics 2025, 12(10), 996; https://doi.org/10.3390/photonics12100996 - 10 Oct 2025
Abstract
Collective superradiant decay of a tightly packed inverted quantum emitter ensemble is among the most intensely studied phenomena in quantum optics. Since the seminal work of Dicke more than half a century ago, a plethora of theoretical calculations in quantum many-body physics have [...] Read more.
Collective superradiant decay of a tightly packed inverted quantum emitter ensemble is among the most intensely studied phenomena in quantum optics. Since the seminal work of Dicke more than half a century ago, a plethora of theoretical calculations in quantum many-body physics have followed. Widespread experimental efforts range from the microwave to the X-ray regime. Nevertheless, accurate calculations of the time dynamics of the superradiant emission pulse still remain a challenging task requiring approximate methods for large ensembles. Here, we benchmark the cumulant expansion method for describing collective superradiant decay against a newly found exact solution. The application of two variants of the cumulant expansion exhibits reliable convergence of time and magnitude of the maximum emission power with increasing truncation order. The long-term population evolution is only correctly captured for low emitter numbers, where an individual spin-based cumulant expansion proves more reliable than the collective spin-based variant. Surprisingly, odd orders show unphysical behavior. At sufficiently high spin numbers, both chosen cumulant methods agree, but still fail to reliably converge to the numerically exact result. Generally, on longer time scales the expansions substantially overestimate the remaining population. While numerically fast and efficient, cumulant expansion methods need to be treated with sufficient caution when used for long-time evolution or reliably finding steady states. Full article
(This article belongs to the Special Issue Collective Effects in Light-Matter Interactions)
14 pages, 535 KB  
Review
Problems of Synurbization—Wild Boar in the City
by Anna Rekiel, Marcin Sońta, Justyna Więcek and Maja Dudzik
Sustainability 2025, 17(20), 8988; https://doi.org/10.3390/su17208988 - 10 Oct 2025
Abstract
This work addresses the problem of synurbization, with its causes and effects specified using the example of wild boar (Sus scrofa). It presents basic biological parameters of the species, including those that promote its synurbization—small habitat demands, omnivorism, as well as [...] Read more.
This work addresses the problem of synurbization, with its causes and effects specified using the example of wild boar (Sus scrofa). It presents basic biological parameters of the species, including those that promote its synurbization—small habitat demands, omnivorism, as well as ecological, behavioral, and demographic flexibility. It also discusses intra-species transformations stemming from wild boar adaptation to the urban space and pinpoints habitat fragmentation, ecological restoration, and phenotypic flexibility as the underlying causes of people–wild boar interactions. These interactions are primarily negative because wild boars attack humans and domestic animals and cause many traffic accidents. An analysis of the literature included in this study shows that, unfortunately, there are currently no fully effective methods that could protect urban areas and their inhabitants from the threats posed by wild boars. In order for sustainable urban development policies to be effectively implemented, there is a need for intensive, holistic research and cooperation between experts in many fields: wildlife, economics, public health, sociology, ethics, psychology, and urban planning. The synurbanization of wild boars is a large and growing social problem, but from an ecological perspective, there is a need to take action and develop methods to mitigate human/wild animal conflicts, not only from a human perspective. A one-sided view and action can be a threat to many animal species. Full article
(This article belongs to the Special Issue Human–Wildlife Coexistence—Future Solution)
16 pages, 4408 KB  
Article
AlphaFold-Guided Semi-Rational Engineering of an (R)-Amine Transaminase for Green Synthesis of Chiral Amines
by Xiaole Yang, Xia Tian, Ruizhou Tang, Jiahuan Li, Xuning Zhang and Tingting Li
Biomolecules 2025, 15(10), 1435; https://doi.org/10.3390/biom15101435 - 10 Oct 2025
Abstract
Chiral amines are vital structural motifs in pharmaceuticals and agrochemicals, where enantiomeric purity governs bioactivity and environmental behavior. We identified a novel (R)-selective amine transaminase (MwoAT) from Mycobacterium sp. via genome mining, which exhibits activity toward the synthesis of the chiral [...] Read more.
Chiral amines are vital structural motifs in pharmaceuticals and agrochemicals, where enantiomeric purity governs bioactivity and environmental behavior. We identified a novel (R)-selective amine transaminase (MwoAT) from Mycobacterium sp. via genome mining, which exhibits activity toward the synthesis of the chiral amine (R)-1-methyl-3-phenylpropylamine. The enzyme displayed optimal activity at pH 7.0 and 40 °C, with high thermostability and solvent tolerance. Using an AlphaFold3-guided semi-rational engineering strategy integrating molecular docking, alanine scanning, and saturation mutagenesis, residue L175 was pinpointed as critical for substrate binding. The resulting L175G variant exhibited a 2.1-fold increase in catalytic efficiency (kcat/Km) and improved thermal stability. Applied to the asymmetric synthesis of (R)-1-methyl-3-phenylpropylamine—a precursor for the antihypertensive drug dilevalol and potential scaffold for crop protection agents—the mutant achieved 26.4% conversion with ≥99.9% ee. The enzyme also accepted several ketones relevant to agrochemical synthesis, underscoring its versatility. This work delivers an engineered biocatalyst for sustainable chiral amine production and demonstrates an AI-assisted protein engineering framework applicable to both medicinal and agricultural chemistry. Full article
(This article belongs to the Section Enzymology)
Back to TopTop