Application of a Total Pressure Sensor in Supersonic Flow for Shock Wave Analysis Under Low-Pressure Conditions
Abstract
1. Introduction
2. Methodology
2.1. Pitot Tube
2.1.1. Incompressible Flow Regime
2.1.2. Subsonic Compressible Flow Regime
2.1.3. Supersonic Compressible Flow Regime
2.2. Ansys Fluent Settings
2.3. Experimental Measurement Settings
3. Results
Experimental Measurement Verification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maxa, J.; Neděla, V.; Šabacká, P.; Binar, T. Impact of Supersonic Flow in Scintillator Detector Apertures on the Resulting Pumping Effect of the Vacuum Chambers. Sensors 2023, 23, 4861. [Google Scholar] [CrossRef] [PubMed]
- Đorđević, B.; Neděla, V.; Tihlaříková, E.; Trojan, V.; Havel, L. Effects of copper and arsenic stress on the development of Norway spruce somatic embryos and their visualization with the environmental scanning electron microscope. New Biotechnol. 2019, 48, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Neděla, V.; Konvalina, I.; Lencová, B.; Zlámal, J. Comparison of Calculated, Simulated and Measured Signal Amplification in a Variable Pressure Sem. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2011, 645, 79–83. [Google Scholar] [CrossRef]
- Neděla, V. Controlled Dehydration of a Biological Sample Using an Alternative form of Environmental Sem. J. Microsc. 2010, 237, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Tihlaříková, E.; Neděla, V.; Dordevic, B. In-Situ Preparation of Plant Samples in Esem for Energy Dispersive X-Ray Microanalysis and Repetitive Observation in Sem and Esem. Sci. Rep. 2019, 9, 2300. [Google Scholar] [CrossRef] [PubMed]
- Neděla, V.; Hřib, J.; Havel, L.; Hudec, J.; Runštuk, J. Imaging of Norway Spruce Early Somatic Embryos with the Esem, Cryo-Sem and Laser Scanning Microscope. Micron 2016, 84, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Neděla, V.; Hřib, J.; Vooková, B. Imaging of early conifer embryogenic tissues with the environmental scanning electron microscope. Biol. Plant. 2012, 56, 595–598. [Google Scholar] [CrossRef]
- Šabacká, P.; Maxa, J.; Bayer, R.; Binar, T.; Bača, P.; Švecová, J.; Talár, J.; Vlkovský, M. An Experimental and Numerical Analysis of the Influence of Surface Roughness on Supersonic Flow in a Nozzle Under Atmospheric and Low-Pressure Conditions. Technologies 2025, 13, 160. [Google Scholar] [CrossRef]
- Maxa, J.; Šabacká, P.; Mazal, J.; Neděla, V.; Binar, T.; Bača, P.; Talár, J.; Bayer, R.; Čudek, P. The Impact of Nozzle Opening Thickness on Flow Characteristics and Primary Electron Beam Scattering in an Environmental Scanning Electron Microscope. Sensors 2024, 24, 2166. [Google Scholar] [CrossRef] [PubMed]
- Daněk, M. Aerodynamika a Mechanika Letu; VVLŠ SNP: Košice, Slovakia, 1990. [Google Scholar]
- Brer, D.W.; Pankhurst, R.C. Pressure-Probe Methods for Determining Wind Speed and Flow Direction; Her Majesty´s Stationery Office: London, UK, 1971. [Google Scholar]
- Chue, S.H. Pressure Probes for Fluid Measurement. Prog. Aerosp. Sci. 2004, 16, 147–233. [Google Scholar] [CrossRef]
- Dejč, M.J. Technická Dynamika Plynů; SNTL: Praha, Czech Republic, 1967. [Google Scholar]
- Škorpík, J. Proudění Plynů a Par Tryskami, Transformační Technologie; Pokračující Zdroj: Brno, Czech Republic, 2006; ISSN 1804-8293. [Google Scholar]
- Moran, M.; Shapiro, H. Fundamentals of Engineering Thermodynamics, 3rd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1996. [Google Scholar]
- Ferziger, J.H.; Perić, M. Computational Methods for Fluid Dynamics, 3rd ed.; Springer GmbH & Co.: New York, NY, USA, 2002; pp. 157–206. [Google Scholar]
- Urban, R.; Drexler, P.; Fiala, P.; Nespor, D. Numerical Model of a Large Periodic Structure. Prog. Electromagn. Res. Symp. 2014, 2350–2354. [Google Scholar]
- Baehr, H.D.; Kabelac, S. Thermodynamik, 14th ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Dutta, P.P.; Benken, A.C.; Li, T.; Ordonez-Varela, J.R.; Gianchandani, Y.B. Passive Wireless Pressure Gradient Measurement System for Fluid Flow Analysis. Sensors 2023, 23, 2525. [Google Scholar] [CrossRef] [PubMed]
- Chorin, A.J. Numerical solution of navier-stokes equations. Math. Comput. 1968, 22, 745–762. [Google Scholar] [CrossRef]
- Versteeg, H.K.; Malalasekera, W. An Introductiom Tp Computational Fluid Dynamics: The Finite Volume Method; John Wiley & Sons: New York, NY, USA, 1955; pp. 10–39. [Google Scholar]
- Barth, T.J.; Jespersen, D. The design and application of upwind schemes on unstructured meshes. In Proceedings of the Technical Report AIAA-89-0366, AIAA 27th Aerospace Sciences Meeting, Reno, NV, USA, 9–12 January 1989. [Google Scholar]
- Van Leer, B. Toward the Ultimate Concervative Difference Scheme. IV. A Second Order Sequel to Godunov’s Method. J. Comput. Phys. 1979, 32, 101–136. [Google Scholar] [CrossRef]
- West, L.G.M.; Simões, A.J.R.; Teixeira, L.d.R.; dos Anjos, I.S.M.; Devesa, A.S.B.d.F.; Oliveira, L.R.; Gomes, J.G.d.C.; Gomes, L.R.T.C.; Pereira, L.G.; Soares Junior, L.C.S.; et al. Experimental and Numerical Analysis of Nozzle-Induced Cavitating Jets: Optical Instrumentation, Pressure Fluctuations and Anisotropic Turbulence Modeling. Fluids 2025, 10, 223. [Google Scholar] [CrossRef]
- Mendoza-Anchondo, R.J.; Alvarez-Herrera, C.; Murillo-Ramírez, J.G. Visualization and Parameters Determination of Supersonic Flows in Convergent-Divergent Micro-Nozzles Using Schlieren Z-Type Technique and Fluid Mechanics. Fluids 2025, 10, 40. [Google Scholar] [CrossRef]
- Ansys Fluent Theory Guide. Available online: https://www.ansys.com (accessed on 21 October 2022).
- Pfeiffer Vacuum. Available online: https://www.pfeiffer-vacuum.com/global/en/shop/products/PT_R24_601 (accessed on 3 October 2024).
- BD Sensors. Available online: https://www.bdsensors.cz/tlak/diferencni-snimace-tlaku/detail/produkt/dps-300 (accessed on 3 October 2024).
- Pieniążek, J.; Cieciński, P.; Ficek, D.; Szumski, M. Dynamic Response of the Pitot Tube with Pressure Sensor. Sensors 2023, 23, 2843. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.W.; Cheng, K.X.; Huang, H.X.; Zhang, J.Z. Numerical Investigation Of Pressure Measurement By Pitot Tubes In Microscale Taylor–Couette Flow with Hyper-Rotate Speed and Its Correction. Phys. Fluids 2024, 36, 12. [Google Scholar] [CrossRef]
- Šabacká, P.; Maxa, J.; Bayer, R.; Vyroubal, P.; Binar, T. Slip Flow Analysis in an Experimental Chamber Simulating Differential Pumping in an Environmental Scanning Electron Microscope. Sensors 2022, 22, 9033. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.D.J. Modern Compressible Flow: With Historical Perspective, 2nd ed.; Mc-Graw Hill: New York, NY, USA, 2003; p. 86. [Google Scholar]
- | Sensor Name | Scale | Error |
---|---|---|---|
1 | Pfeiffer CMR 361 | 110 kPa | ±0.2% of the measured value |
2 | Pfeiffer CMR 362 | 11 kPa | ±0.2% of the measured value |
3 | DPS 300 | 25 kPa | ±1% Full Scale Output BFSL (above 0.6 kPa) |
Position | L [mm] |
---|---|
Aperture | 0 |
Point 1 | 7.2 |
Point 2 | 12 |
Point 3 | 15 |
Point 4 | 16 |
Point 5 | 22 |
Probe 1 V1 [Pa] | Probe 2 V2 [Pa] | Probe 3 Difference [Pa] | Total Pressure [Pa] |
---|---|---|---|
Position 7.2 [mm] | |||
109,000 | 9051 | 30,000 | 39,051 |
80,000 | 6692 | 18,900 | 25,592 |
65,000 | 5481 | 17,500 | 22,981 |
40,000 | 3385 | 10,450 | 13,835 |
Position 12 [mm] | |||
109,000 | 9332 | 39,100 | 48,432 |
80,000 | 6850 | 30,200 | 37,050 |
65,000 | 5583 | 25,000 | 30,583 |
40,000 | 3454 | 19,400 | 22,854 |
Position 15 [mm] | |||
109,000 | 9388 | 60,100 | 69,488 |
80,000 | 6889 | 44,300 | 51,189 |
65,000 | 5608 | 36,100 | 41,708 |
40,000 | 3466 | 22,000 | 25,466 |
Position 16 [mm] | |||
109,000 | 9392 | 67,500 | 76,892 |
80,000 | 6894 | 50,300 | 57,194 |
65,000 | 5610 | 41,400 | 47,010 |
40,000 | 3462 | 27,000 | 30,462 |
Position 22 [mm] | |||
109,000 | 9398 | 65,000 | 74,398 |
80,000 | 6920 | 47,800 | 54,720 |
65,000 | 5608 | 38,898 | 44,506 |
40,000 | 3468 | 26,988 | 30,456 |
Measurement Number | Pressure [Pa] |
---|---|
1 | 48,432 |
2 | 48,450 |
3 | 48,430 |
4 | 48,431 |
5 | 48,442 |
6 | 48,439 |
7 | 48,430 |
8 | 48,449 |
Arithmetic mean [Pa] | 48,438 |
σ | 8.41 |
SEM [Pa] | 2.97 |
Mean (value of the quantity) | 48,437.88 |
Sample standard deviation s | 8.408 |
Standard uncertainty of the mean (Type A) | 2.973 |
Degrees of freedom (Welch–Satterthwaite) | 7 |
Expansion factor for 95% | 2.365 |
Expanded uncertainty (95% confidence) | 7.03 |
Final result (95% confidence interval) y |
Experimental Sensor Position from Aperture [mm] | |||||
---|---|---|---|---|---|
7.2 | 12 | 15 | 16 | 22 | |
109,000 Pa | |||||
Experiment [Pa] | 39,051 | 48,432 | 69,488 | 76,892 | 74,398 |
CFD [Pa] | 31,540 | 47,962 | 64,992 | 73,259 | 75,264 |
Rel. Error [%] | 19.23382 | 0.970433 | 6.470182 | 4.724809 | −1.16401 |
80,000 Pa | |||||
Experiment [Pa] | 25,592 | 37,050 | 51,189 | 57,194 | 54,720 |
CFD [Pa] | 20,853 | 36,590 | 47,170 | 55,809 | 60,339 |
Rel. Error [%] | 18.51751 | 1.241565 | 7.851296 | 2.421583 | −10.2686 |
65,000 Pa | |||||
Experiment [Pa] | 22,981 | 30,583 | 41,708 | 47,010 | 44,506 |
CFD [Pa] | 19,286 | 31,811 | 38,999 | 44,236 | 45,332 |
Rel. Error [%] | 16.0785 | −4.0153 | 6.495157 | 5.900872 | −1.85593 |
40,000 Pa | |||||
Experiment [Pa] | 13,835 | 22,854 | 25,466 | 30,462 | 30,456 |
CFD [Pa] | 13,499 | 25,931 | 28,402 | 32,658 | 32,898 |
Rel. Error [%] | 2.428623 | −13.4637 | −11.5291 | −7.20898 | −8.01812 |
Variant | Mach Number in Front of the 2nd Shock Wave | Mach Number Behind the 2nd Shock Wave | Difference | T2o1 [Pa] | T2o2 [Pa] | Difference | Ratio |
---|---|---|---|---|---|---|---|
109,000 | 2.98 | 0.36 | 2.62 | 73,262 | 28,472 | 44,790 | 0.389 |
80,000 | 2.94 | 0.33 | 2.61 | 61,507 | 19,050 | 42,457 | 0.342 |
65,000 | 2.88 | 0.32 | 2.56 | 48,852 | 17,004 | 31,848 | 0.348 |
40,000 | 3 | 0.32 | 2.68 | 35,731 | 11,113 | 34,618 | 0.311 |
Variant | ∆S | ∆S | S2 | S1 | Difference | |
---|---|---|---|---|---|---|
109,000 | 0.389 | 280.54 | 280 | 7200 | 6920 | 0.54 |
80,000 | 0.342 | 318.55 | 320 | 7315 | 6995 | −1.45 |
65,000 | 0.35 | 313.20 | 312 | 7356 | 7044 | 1.03 |
40,000 | 0.31 | 346.65 | 341 | 7480 | 7139 | 5.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bílek, M.; Maxa, J.; Šabacká, P.; Bayer, R.; Binar, T.; Bača, P.; Votava, J.; Tobiáš, M.; Žák, M. Application of a Total Pressure Sensor in Supersonic Flow for Shock Wave Analysis Under Low-Pressure Conditions. Sensors 2025, 25, 6291. https://doi.org/10.3390/s25206291
Bílek M, Maxa J, Šabacká P, Bayer R, Binar T, Bača P, Votava J, Tobiáš M, Žák M. Application of a Total Pressure Sensor in Supersonic Flow for Shock Wave Analysis Under Low-Pressure Conditions. Sensors. 2025; 25(20):6291. https://doi.org/10.3390/s25206291
Chicago/Turabian StyleBílek, Michal, Jiří Maxa, Pavla Šabacká, Robert Bayer, Tomáš Binar, Petr Bača, Jiří Votava, Martin Tobiáš, and Marek Žák. 2025. "Application of a Total Pressure Sensor in Supersonic Flow for Shock Wave Analysis Under Low-Pressure Conditions" Sensors 25, no. 20: 6291. https://doi.org/10.3390/s25206291
APA StyleBílek, M., Maxa, J., Šabacká, P., Bayer, R., Binar, T., Bača, P., Votava, J., Tobiáš, M., & Žák, M. (2025). Application of a Total Pressure Sensor in Supersonic Flow for Shock Wave Analysis Under Low-Pressure Conditions. Sensors, 25(20), 6291. https://doi.org/10.3390/s25206291