Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (708)

Search Parameters:
Keywords = woody production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 9116 KiB  
Article
Habitat Loss and Other Threats to the Survival of Parnassius apollo (Linnaeus, 1758) in Serbia
by Dejan V. Stojanović, Vladimir Višacki, Dragana Ranđelović, Jelena Ivetić and Saša Orlović
Insects 2025, 16(8), 805; https://doi.org/10.3390/insects16080805 - 4 Aug 2025
Viewed by 219
Abstract
The cessation of traditional mountain grazing has emerged as a principal driver of habitat degradation and the local extinction of Parnassius apollo (Linnaeus, 1758) in Serbia. While previous studies have cited multiple contributing factors, our research provides evidence that the abandonment of extensive [...] Read more.
The cessation of traditional mountain grazing has emerged as a principal driver of habitat degradation and the local extinction of Parnassius apollo (Linnaeus, 1758) in Serbia. While previous studies have cited multiple contributing factors, our research provides evidence that the abandonment of extensive livestock grazing has triggered vegetation succession, the disappearance of the larval host plant (Sedum album), and a reduction in microhabitat heterogeneity—conditions essential for the persistence of this stenophagous butterfly species. Through satellite-based analysis of vegetation dynamics (2015–2024), we identified clear structural differences between habitats that currently support populations and those where the species is no longer present. Occupied sites were characterized by low levels of exposed soil, moderate grass coverage, and consistently high shrub and tree density, whereas unoccupied sites exhibited dense encroachment of grasses and woody vegetation, leading to structural instability. Furthermore, MODIS-derived indices (2010–2024) revealed a consistent decline in vegetation productivity (GPP, FPAR, LAI) in succession-affected areas, alongside significant correlations between elevated land surface temperatures (LST), thermal stress (TCI), and reduced photosynthetic capacity. A wildfire event on Mount Stol in 2024 further exacerbated habitat degradation, as confirmed by remote sensing indices (BAI, NBR, NBR2), which documented extensive burn scars and post-fire vegetation loss. Collectively, these findings indicate that the decline of P. apollo is driven not only by ecological succession and climatic stressors, but also by the abandonment of land-use practices that historically maintained suitable habitat conditions. Our results underscore the necessity of restoring traditional grazing regimes and integrating ecological, climatic, and landscape management approaches to prevent further biodiversity loss in montane environments. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

37 pages, 4320 KiB  
Article
Proof of Concept for Enhanced Sugar Yields and Inhibitors Reduction from Aspen Biomass via Novel, Single-Step Nitrogen Explosive Decompression (NED 3.0) Pretreatment Method
by Damaris Okafor, Lisandra Rocha-Meneses, Vahur Rooni and Timo Kikas
Energies 2025, 18(15), 4026; https://doi.org/10.3390/en18154026 - 29 Jul 2025
Viewed by 261
Abstract
The transition to sustainable energy sources has intensified interest in lignocellulosic biomass (LCB) as a feedstock for second-generation biofuels. However, the inherent structural recalcitrance of LCB requires the utilization of an effective pretreatment to enhance enzymatic hydrolysis and subsequent fermentation yields. This manuscript [...] Read more.
The transition to sustainable energy sources has intensified interest in lignocellulosic biomass (LCB) as a feedstock for second-generation biofuels. However, the inherent structural recalcitrance of LCB requires the utilization of an effective pretreatment to enhance enzymatic hydrolysis and subsequent fermentation yields. This manuscript presents a novel, single-step, and optimized nitrogen explosive decompression system (NED 3.0) designed to address the critical limitations of earlier NED versions by enabling the in situ removal of inhibitory compounds from biomass slurry and fermentation inefficiency at elevated temperatures, thereby reducing or eliminating the need for post-treatment detoxification. Aspen wood (Populus tremula) was pretreated by NED 3.0 at 200 °C, followed by enzymatic hydrolysis and fermentation. The analytical results confirmed substantial reductions in common fermentation inhibitors, such as acetic acid (up to 2.18 g/100 g dry biomass) and furfural (0.18 g/100 g dry biomass), during early filtrate recovery. Hydrolysate analysis revealed a glucose yield of 26.41 g/100 g dry biomass, corresponding to a hydrolysis efficiency of 41.3%. Fermentation yielded up to 8.05 g ethanol/100 g dry biomass and achieved a fermentation efficiency of 59.8%. Inhibitor concentrations in both hydrolysate and fermentation broth remained within tolerable limits, allowing for effective glucose release and sustained fermentation performance. Compared with earlier NED configurations, the optimized system improved sugar recovery and ethanol production. These findings confirm the operational advantages of NED 3.0, including reduced inhibitory stress, simplified process integration, and chemical-free operation, underscoring its potential for scalability in line with the EU Green Deal for bioethanol production from woody biomass. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

15 pages, 5226 KiB  
Article
Enhancing Conservation Efforts of Stephanopodium engleri Through Vegetative Propagation: Effects of IBA and Cutting Types
by Giselly Mota da Silva, Evandro Alves Vieira, Luiz Palhares Neto, Silvio Ramos, Markus Gastauer and Cecílio Frois Caldeira
Plants 2025, 14(14), 2116; https://doi.org/10.3390/plants14142116 - 9 Jul 2025
Cited by 1 | Viewed by 394
Abstract
Stephanopodium engleri Baill. is an endangered tree species from the Dichapetalaceae family and endemic to the Iron Quadrangle region of Brazil. Recalcitrance and low seed viability limit conventional seedling production, making vegetative propagation a crucial alternative for conservation efforts. This study evaluated the [...] Read more.
Stephanopodium engleri Baill. is an endangered tree species from the Dichapetalaceae family and endemic to the Iron Quadrangle region of Brazil. Recalcitrance and low seed viability limit conventional seedling production, making vegetative propagation a crucial alternative for conservation efforts. This study evaluated the rooting and sprouting potential of different cutting types (apical, middle, and basal segments from the main stem, as well as the tip and the herbaceous and woody segments from the lateral branches) treated with Indole-3-Butyric Acid (IBA) at varying concentrations (0, 1, 2, 3, and 4 g L−1) and immersion durations (5 s to 10 min). Cuttings were collected from 12-month-old plants grown under controlled conditions and planted in Carolina Soil® substrate after treatment. Sprouting and rooting rates varied significantly between cutting types, with basal main stem cuttings showing the highest rooting success, particularly at 3 g L−1 of IBA. These cuttings also exhibited more and longer roots and enhanced sprouting-related biometric traits. Shorter immersion times (15 s and 1 min) were the most effective, promoting root formation while avoiding the potential inhibitory effects of prolonged exposure. Our findings provide a practical protocol for large-scale seedling production of S. engleri while minimizing impacts on wild populations. The effective use of vegetative propagation could facilitate the expansion of S. engleri populations in their natural habitats, enhancing conservation efforts and ensuring sustainable species management. Full article
(This article belongs to the Special Issue Physiology and Seedling Production of Plants)
Show Figures

Figure 1

18 pages, 1874 KiB  
Article
Soil Drenching with Wood Distillate Modifies the Nutritional Properties of Chickpea (Cicer arietinum L.) Seeds by Increasing the Protein Content and Inducing Targeted Changes in the Proteomic Profile
by Rossana De Salvo, Riccardo Fedeli, Alfonso Carleo, Luca Bini, Stefano Loppi and Laura Bianchi
Plants 2025, 14(13), 2046; https://doi.org/10.3390/plants14132046 - 3 Jul 2025
Viewed by 471
Abstract
The production of food with a naturally enriched protein content is a strategic response to the growing global demand for sustainable protein sources. Wood distillate (WD), a by-product of the pyrolysis of woody biomass, has previously been shown to increase the protein concentration [...] Read more.
The production of food with a naturally enriched protein content is a strategic response to the growing global demand for sustainable protein sources. Wood distillate (WD), a by-product of the pyrolysis of woody biomass, has previously been shown to increase the protein concentration and bioavailability in chickpea seeds. Here, we evaluated the effect of 0.5% (v/v) WD soil drenching on chickpea productivity, nutritional profile, and proteomic pattern. WD treatment significantly improved the yield by increasing plant biomass (+144%), number of pods and seeds (+148% and +147%), and seed size (diameter: +6%; weight: +25%). Nutritional analyses revealed elevated levels of soluble proteins (+15%), starch (+11%), fructose (+135%), and polyphenols (+14%) and a greater antioxidant capacity (25%), alongside a reduction in glucose content, albeit not statistically significant, suggesting an unchanged or even lowered glycemic index. Although their concentration decreased, Ca (−31%), K (−12%), P (−5%), and Zn (−14%) in WD-treated plants remained within normal ranges. To preliminary assess the quality and safety of the protein enrichment, a differential proteomic analysis was performed on coarse flours from individual seeds. Despite the higher protein content, the overall protein profiles of the WD-treated seeds showed limited variation, with only a few storage proteins, identified as legumin and vicilin-like isoforms, being differentially abundant. These findings indicate a general protein concentration increase without a major alteration in the proteoform composition or differential protein synthesis. Overall, WD emerged as a promising and sustainable biostimulant for chickpea cultivation, capable of enhancing both yield and nutritional value, while maintaining the proteomic integrity and, bona fide, food safety. Full article
(This article belongs to the Special Issue Bio-Based Solutions for Sustainable Plant Systems)
Show Figures

Figure 1

23 pages, 5627 KiB  
Article
Evaluation of Noah-MP Land Surface Model-Simulated Water and Carbon Fluxes Using the FLUXNET Dataset
by Bofeng Pan, Xiaolu Wu and Xitian Cai
Land 2025, 14(7), 1400; https://doi.org/10.3390/land14071400 - 3 Jul 2025
Viewed by 390
Abstract
Land surface models (LSMs) play a crucial role in climate prediction and carbon cycle assessment. To ensure their reliability, it is crucial to evaluate their performance in simulating key processes, such as evapotranspiration (ET) and gross primary productivity (GPP), across various temporal scales [...] Read more.
Land surface models (LSMs) play a crucial role in climate prediction and carbon cycle assessment. To ensure their reliability, it is crucial to evaluate their performance in simulating key processes, such as evapotranspiration (ET) and gross primary productivity (GPP), across various temporal scales and vegetation types. This study systematically evaluates the performance of the newly modernized Noah-MP LSM version 5.0 in simulating water and carbon fluxes, specifically ET and GPP, across temporal scales ranging from half-hourly (capturing diurnal cycles) to annual using observational data from 105 sites within the globally FLUXNET2015 dataset. The results reveal that Noah-MP effectively captured the overall variability of both ET and GPP, particularly at short temporal scales. The model successfully simulated the diurnal and seasonal cycles of both fluxes, though cumulative errors increased at the annual scale. Diurnally, the largest simulation biases typically occurred around noon; while, seasonally, biases were smallest in winter. Performance varied significantly across vegetation types. For ET, the simulations were most accurate for open shrublands and deciduous broadleaf forests, while showing the largest deviation for woody savannas. Conversely, GPP simulations were most accurate for wetlands and closed shrublands, showing the largest deviation for evergreen broadleaf forests. Furthermore, an in-depth analysis stratified by the climate background revealed that ET simulations failed to capture inter-annual variability in the temperate and continental zones, while GPP was severely overestimated in arid and temperate climates. This study identifies the strengths and weaknesses of Noah-MP in simulating water and carbon fluxes, providing valuable insights for future model improvements. Full article
(This article belongs to the Section Land–Climate Interactions)
Show Figures

Figure 1

24 pages, 3225 KiB  
Article
Assessment of Paulownia tomentosa Steud. Regeneration Capacity Through Root Cutting Diameters, Growth Hormone doses and Soil Types
by Afef H. Nasraoui, Yasmin M. Heikal, Mohammed Ali, Chedly Abidi and Youssef Ammari
Int. J. Plant Biol. 2025, 16(3), 73; https://doi.org/10.3390/ijpb16030073 - 1 Jul 2025
Viewed by 273
Abstract
This investigation proposes an effective protocol (cutting) for Paulownia tomentosa production in Tunisia during the 2022–2024 period. The effects of the three interactive parameters: root cutting diameter (L1, 0.5; L2, 0.8; L3, 1.25; and L4, 2 cm), indole-3-butyric acid (IBA) hormone concentrations (C, [...] Read more.
This investigation proposes an effective protocol (cutting) for Paulownia tomentosa production in Tunisia during the 2022–2024 period. The effects of the three interactive parameters: root cutting diameter (L1, 0.5; L2, 0.8; L3, 1.25; and L4, 2 cm), indole-3-butyric acid (IBA) hormone concentrations (C, 0; T1, 0.1%; and T2, 0.3%), and soil type (S1: 50% silt + 50% potting soil, and S2: 43% potting soil + 43% silt + 14% sand), were investigated. The data showed that cutting roots with 0.5 cm dimensions, a cutting treatment with hormone (0.3%), and the S2 soil type corresponded to a growth enhancement in height. These results revealed the broad changes in flowering of P. tomentosa. Also, data revealed that the root cutting diameter had the greatest influence on the biochemical contents of 4-month-old P. tomentosa sprouts. The studied pathway revealed that the auxin precursor IBA contributes toward active auxin [indole-3-acetic acid (IAA)] biosynthesis. Overall, this study found substantial changes in the morphological, biochemical, and floral features of new P. tomentosa sprouts under the interactive factors. To summarize, vegetative propagation of Paulownia, particularly through root cutting, allows for proliferation and plantation development. These findings can be applied to future breeding efforts with Paulownia to improve and protect it as a woody species, forage, and medicinal plant. Full article
Show Figures

Figure 1

18 pages, 6596 KiB  
Article
Food-Grade Polar Extracts from Sea Fennel (Crithmum maritimum L.) By-Products: Unlocking Potential for the Food Industry
by Aizhan Ashim, Lama Ismaiel, Benedetta Fanesi, Ancuta Nartea, Antonietta Maoloni, Oghenetega Lois Orhotohwo, Helen Stephanie Ofei Darko, Paolo Lucci, Lucia Aquilanti, Deborah Pacetti, Roberta Pino, Rosa Tundis and Monica Rosa Loizzo
Foods 2025, 14(13), 2304; https://doi.org/10.3390/foods14132304 - 28 Jun 2025
Viewed by 412
Abstract
Crithmum maritimum L. is a halophyte with antioxidant and antimicrobial potential for the food industry. Pruning generates a by-product composed of woody stems, old leaves, and flowers. To valorize this underutilized and largely unexplored biomass, food-grade polar extraction (hydroethanolic vs. aqueous) was applied. [...] Read more.
Crithmum maritimum L. is a halophyte with antioxidant and antimicrobial potential for the food industry. Pruning generates a by-product composed of woody stems, old leaves, and flowers. To valorize this underutilized and largely unexplored biomass, food-grade polar extraction (hydroethanolic vs. aqueous) was applied. The extracts were characterized for their bioactive compounds (polyphenols, tocopherols, carotenoids, total phenols (TPC) and total flavonoids (TFC)). Further, the extracts were assessed for their in vitro antioxidant activity (ABTS, DPPH, FRAP, and β-carotene bleaching) and antimicrobial activity against eight target strains ascribed to Escherichia coli, Staphylococcus aureus, and Listeria innocua. The hydroethanolic extract exhibited higher concentration of bioactives compared to the water extract and raw by-product. The β-carotene bleaching test revealed that both extracts are potent inhibitors of lipid peroxidation. The aqueous extract showed no antimicrobial activity, while the ethanolic extract exhibited strain-dependent behavior against S. aureus and L. innocua but not E. coli. The minimum inhibitory concentration and the minimum bactericidal concentration of the ethanolic extract against S. aureus were 2.5 MIC and 10.0 MBC mg/mL, respectively. Ethanolic extracts could potentially be used in food formulations to enhance lipid peroxidation resistance and antimicrobial capacity as food-grade natural preservatives. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

15 pages, 4388 KiB  
Article
Metabolomic Insights into Volatile Profiles and Flavor Enhancement of Spice-Smoked Chicken Wings
by Yajiao Zhao, Ye Guo, Danni Zhang, Quanlong Zhou, Xiaoxiao Feng and Yuan Liu
Foods 2025, 14(13), 2270; https://doi.org/10.3390/foods14132270 - 26 Jun 2025
Viewed by 407
Abstract
Traditional smoking techniques, while historically valued for preservation and flavor enhancement, face limitations in aromatic diversity and safety, prompting exploration of spice-derived alternatives to meet modern culinary demands. This study explores the volatile compound profiles and aroma modulation of chicken wings smoked with [...] Read more.
Traditional smoking techniques, while historically valued for preservation and flavor enhancement, face limitations in aromatic diversity and safety, prompting exploration of spice-derived alternatives to meet modern culinary demands. This study explores the volatile compound profiles and aroma modulation of chicken wings smoked with four spices—cardamom, rosemary, mint, and rose—using a novel, household-friendly smoking protocol. The method combines air fryer pre-cooking (180 °C, 16 min) with electric griddle-based smoke infusion, followed by HS-SPME/GC-TOF/MS, relative odor activity value (ROAV) calculations, and metabolomic analysis. A total of 314 volatile compounds were identified across five samples. Among them, 45 compounds demonstrated odor activity values (ROAV) ≥ 1, contributing to green, woody, floral, and sweet aroma attributes. Eucalyptol displayed the highest ROAV (2543), underscoring its dominant sensory impact. Metabolomic profiling revealed a general upregulation of differential volatiles post-smoking: terpenes were enriched in wings smoked with cardamom, rosemary, and mint, while aldehydes and alcohols predominated in rose-smoked samples. An integrated screening based on ROAV and metabolomic data identified 24 key volatiles, including eucalyptol, β-myrcene, methanethiol, and α-pinene, which collectively defined the aroma signatures of spice-smoked wings. Spice-specific aroma enrichment and sensory properties were evident: rosemary intensified woody–spicy notes, mint enhanced herbal freshness, and rose amplified floral attributes. The proposed method demonstrated advantages in safety, ease of use, and flavor customization, aligning with clean-label trends and supporting innovation in home-based culinary practices. Moreover, it facilitates the tailored modulation of smoked meat flavor profiles, thereby enhancing product differentiation and broadening consumer acceptance. Full article
(This article belongs to the Special Issue Foodomics Fifteen Years On From. Where Are We Now, What’s Next)
Show Figures

Graphical abstract

21 pages, 3937 KiB  
Article
Identification, Cloning, and Functional Characterization of Carotenoid Cleavage Dioxygenase (CCD) from Olea europaea and Ipomoea nil
by Kaixuan Ke, Yufeng Zhang, Xinyi Wang, Zhaoyan Luo, Yangyang Chen, Xianying Fang and Linguo Zhao
Biology 2025, 14(7), 752; https://doi.org/10.3390/biology14070752 - 24 Jun 2025
Viewed by 398
Abstract
The aromatic C13 apocarotenoid β-ionone is a high-value natural-flavor and -fragrance compound derived from the oxidative cleavage of carotenoids. Carotenoid cleavage dioxygenases (CCDs) play a pivotal role in the biosynthesis of volatile apocarotenoids, particularly β-ionone. In this study, we report the identification, [...] Read more.
The aromatic C13 apocarotenoid β-ionone is a high-value natural-flavor and -fragrance compound derived from the oxidative cleavage of carotenoids. Carotenoid cleavage dioxygenases (CCDs) play a pivotal role in the biosynthesis of volatile apocarotenoids, particularly β-ionone. In this study, we report the identification, cloning, and functional characterization of two CCD1 homologs: OeCCD1 from Olea europaea and InCCD1 from Ipomoea nil. These two species, which, respectively, represent a woody perennial and a herbaceous annual, were selected to explore the potential functional divergence of CCD1 enzymes across different plant growth forms. These CCD1 genes were synthesized using codon optimization for Escherichia coli expression, followed by heterologous expression and purification using a GST-fusion system. In vitro assays confirmed that both enzymes cleave β-carotene at the 9,10 (9′,10′) double bond to yield β-ionone, but only OeCCD1 exhibits detectable activity on zeaxanthin; InCCD1 shows no in vitro cleavage of zeaxanthin. Kinetic characterization using β-apo-8′-carotenal as substrate revealed, for OeCCD1, a Km of 0.82 mM, Vmax of 2.30 U/mg (kcat = 3.35 s−1), and kcat/Km of 4.09 mM−1·s−1, whereas InCCD1 displayed Km = 0.69 mM, Vmax = 1.22 U/mg (kcat = 1.82 s−1), and kcat/Km = 2.64 mM−1·s−1. The optimization of expression parameters, as well as the systematic evaluation of temperature, pH, solvent, and metal ion effects, provided further insights into the stability and functional diversity within the plant CCD1 family. Overall, these findings offer promising enzymatic tools for the sustainable production of β-ionone and related apocarotenoids in engineered microbial cell factories. Full article
(This article belongs to the Section Biotechnology)
Show Figures

Graphical abstract

15 pages, 1027 KiB  
Article
Formation Mechanisms and Kinetic Modeling of Key Aroma Compounds During Qidan Tea Roasting
by Xing Gao, Siyuan Wang, Ying Wang and Huanlu Song
Foods 2025, 14(12), 2125; https://doi.org/10.3390/foods14122125 - 18 Jun 2025
Viewed by 418
Abstract
Understanding the changes in tea aroma and non-volatile substances during roasting is essential for optimizing tea processing and enhancing tea quality. In this study, the Carbon Module Labeling (CAMOLA) technique was employed to simulate the roasting conditions of Qidan, thereby elucidating the formation [...] Read more.
Understanding the changes in tea aroma and non-volatile substances during roasting is essential for optimizing tea processing and enhancing tea quality. In this study, the Carbon Module Labeling (CAMOLA) technique was employed to simulate the roasting conditions of Qidan, thereby elucidating the formation pathway of the theanine-glucose Maillard system. Combined with sensory evaluation, the results indicated that the floral and fruity aromas of Qidan tea decreased, while the woody, roasted, smoky, and herbal aromas increased with prolonged roasting time. Kinetic modeling demonstrated that higher temperatures favored the production of benzaldehyde, which was directly proportional to the heating temperature. In contrast, pyrazines exhibited zero-order kinetics, influenced by both temperature and time. An increasing trend in furans was observed with rising temperature and extended heating time. The kinetic equations effectively describe the changes in aroma compounds associated with merad, highlighting the differences in the production patterns of aroma compounds under varying roasting conditions. This study provides a theoretical foundation for optimizing roasting parameters to enhance tea quality. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

25 pages, 1223 KiB  
Review
The Impact of Cattle Grazing on Shrub Biomass: A Review on Temperate Ecosystems
by Dimitrios Oikonomou, Maria Yiakoulaki, Yannis Kazoglou, Michael Vrahnakis and Gavriil Xanthopoulos
Land 2025, 14(6), 1277; https://doi.org/10.3390/land14061277 - 14 Jun 2025
Viewed by 735
Abstract
Cattle grazing is particularly important to natural and semi-natural ecosystems, having often replaced grazing by smaller domestic ruminants such as goats and sheep. While cattle are mainly considered grazers rather than browsers, the pressures, direct or indirect, they exert on shrub encroachment are [...] Read more.
Cattle grazing is particularly important to natural and semi-natural ecosystems, having often replaced grazing by smaller domestic ruminants such as goats and sheep. While cattle are mainly considered grazers rather than browsers, the pressures, direct or indirect, they exert on shrub encroachment are significant. Thus, their grazing and browsing activities can often be considered complementary to ecosystem management, especially in landscapes characterized by shrub presence and frequent wildfires. Several factors may influence the impact of cattle browsing, including the stocking rate, the specific breed of cattle, and their adaptation to the respective ecosystem, as well as the particular type of ecosystem. This review examines the impact of cattle browsing on shrubs across various temperate ecosystems. Findings indicate that cattle usually consume only 5–10% of woody forage, but exceptional browsers like Highland cattle can consume up to 45%, making them promising for controlling shrub encroachment. Nevertheless, grazing often negatively impacts shrub richness, especially when combined with management interventions or wildfires, thereby raising concerns about plant regeneration. Future research should prioritize the ecological value of indigenous browsing cattle breeds over productivity-focused goals; however, several studies fail to specify the breeds examined, thereby limiting the ability to draw breed-specific conclusions. Full article
Show Figures

Figure 1

11 pages, 635 KiB  
Article
Energy Production and Process Costing for Biomass Obtained from Underutilized Plant Species in México and Colombia
by Julio César Ríos-Saucedo, Rigoberto Rosales-Serna, Artemio Carrillo-Parra, Cynthia Adriana Nava-Berumen, Antonio Cano-Pineda, Martín Aquino-Ramírez and Jesús Manuel Martínez-Villela
Processes 2025, 13(6), 1878; https://doi.org/10.3390/pr13061878 - 13 Jun 2025
Viewed by 495
Abstract
The objectives were to evaluate the energy potential of biomass and pellets produced from five underutilized herbaceous and woody plant species in México and Colombia; characterize pellet quality parameters; and calculate the preliminary production costs and energy requirement during the densification process. Harvest [...] Read more.
The objectives were to evaluate the energy potential of biomass and pellets produced from five underutilized herbaceous and woody plant species in México and Colombia; characterize pellet quality parameters; and calculate the preliminary production costs and energy requirement during the densification process. Harvest and sawmill residues were obtained for five non-timber and woody plant species. The volatile compounds, ash, and fixed carbon were evaluated, as well as the higher heating value (HHV) and pellet impact resistance (PIR); in addition, lignin, hemicellulose, and cellulose were quantified. The data were analyzed using descriptive statistics, including mean and standard deviation. The volatile compounds ranged from 65.9–77.5%, ash 2.5–17.2%, fixed carbon 5.4–19.9%, HHV 16.4–21.9 MJ kg1, and PIR (0.6–99.1%). Considerable intra- and inter-specific differences were observed for all the variables, which expanded the options for the selection of biomass sources used in bioenergy production. Biomass processing costs ranged from 675.9 to 679.3 EUR t1. Optimization of these processes is required to implement more efficient technologies that significantly reduce operating costs in biomass use in biofuel industry. The systematic study of different plant species, both introduced and native, will provide new sources of biomass to produce bioenergy, fertilizers, and other organic inputs. Full article
(This article belongs to the Special Issue Biomass Energy Conversion for Efficient and Sustainable Utilization)
Show Figures

Figure 1

23 pages, 1892 KiB  
Review
A Review on Carbon-Negative Woody Biomass Biochar System for Sustainable Urban Management in the United States of America
by Gamal El Afandi, Muhammad Irfan, Amira Moustafa, Salem Ibrahim and Santosh Sapkota
Urban Sci. 2025, 9(6), 214; https://doi.org/10.3390/urbansci9060214 - 10 Jun 2025
Viewed by 1855
Abstract
It is essential to emphasize the significant impacts of climate change, which are evident in the form of severe and prolonged droughts, hurricanes, snowstorms, and other climatic disturbances. These challenges are particularly pronounced in urban environments and among human populations. The situation is [...] Read more.
It is essential to emphasize the significant impacts of climate change, which are evident in the form of severe and prolonged droughts, hurricanes, snowstorms, and other climatic disturbances. These challenges are particularly pronounced in urban environments and among human populations. The situation is further aggravated by the increasing utilization of available open spaces for residential and industrial development, leading to heightened energy consumption, elevated pollution levels, and increased carbon emissions, all of which negatively affect public health. The primary objective of this review article is to provide a comprehensive evaluation of current research, with a particular focus on the innovative use of residual biomass from urban vegetation for biochar production in the United States. This research entails an exhaustive review of existing literature to assess the implementation of a carbon-negative wood biomass biochar system as a strategic approach to sustainable urban management. By transforming urban wood waste—including tree trimmings, construction debris, and storm-damaged timber—into biochar through pyrolysis, a thermochemical process that sequesters carbon while generating renewable energy, we can leverage this valuable resource. The resulting biochar offers a range of co-benefits: it enhances soil health, improves water retention, reduces stormwater runoff, and lowers greenhouse gas emissions when applied in urban green spaces, agriculture, and land restoration projects. This review highlights the advantages and potential of converting urban wood waste into biochar while exploring how municipalities can strengthen their green ecosystems. Furthermore, it aims to provide a thorough understanding of how the utilization of woody biomass biochar can contribute to mitigating urban carbon emissions across the United States. Full article
(This article belongs to the Special Issue Sustainable Energy Management and Planning in Urban Areas)
Show Figures

Figure 1

23 pages, 1224 KiB  
Review
Physiologic, Genetic and Epigenetic Determinants of Water Deficit Tolerance in Fruit Trees
by Marie Bonnin, Khadidiatou Diop, Gabriel Cavelier, Mathieu Crastes, Renel Groenewald, Hong Thu Nguyen, Raphaël Morillon and Frédéric Pontvianne
Plants 2025, 14(12), 1769; https://doi.org/10.3390/plants14121769 - 10 Jun 2025
Viewed by 949
Abstract
Fruits are increasingly recognized as an important part of a healthy diet. Fruit crops represent a wide range of woody perennial species grown in orchards. Water availability is a primary environmental factor limiting fruit crop growth and productivity. Erratic rainfall patterns and increased [...] Read more.
Fruits are increasingly recognized as an important part of a healthy diet. Fruit crops represent a wide range of woody perennial species grown in orchards. Water availability is a primary environmental factor limiting fruit crop growth and productivity. Erratic rainfall patterns and increased temperatures due to climate change are likely to increase the duration of droughts. This review aims to highlight the different mechanisms by which fruit crops respond to water stress deficits. Emphasis is placed on physiological, genetic and epigenetic determinants of stress response in fruit crops. These findings can contribute to a deeper understanding of the underlying effects of drought. We also describe new research opportunities made possible by the increasing availability of population-level genomic data from the field, including genome-wide association studies (GWAS) and high-throughput phenotyping. Full article
(This article belongs to the Special Issue Advances in Plant Genetics and Breeding Improvement)
Show Figures

Figure 1

24 pages, 2492 KiB  
Review
Antioxidant Peptides Derived from Woody Oil Resources: Mechanisms of Redox Protection and Emerging Therapeutic Opportunities
by Jia Tu, Jie Peng, Li Wen, Changzhu Li, Zhihong Xiao, Ying Wu, Zhou Xu, Yuxi Hu, Yan Zhong, Yongjun Miao, Jingjing Xiao and Sisi Liu
Pharmaceuticals 2025, 18(6), 842; https://doi.org/10.3390/ph18060842 - 4 Jun 2025
Viewed by 708
Abstract
Antioxidant peptides derived from woody oil resource by-products exhibit strong free radical scavenging abilities and offer potential applications in functional foods, nutraceuticals, and cosmetics. This review summarizes the latest advances in preparation technologies, including enzymatic hydrolysis, microbial fermentation, chemical synthesis, recombinant expression, and [...] Read more.
Antioxidant peptides derived from woody oil resource by-products exhibit strong free radical scavenging abilities and offer potential applications in functional foods, nutraceuticals, and cosmetics. This review summarizes the latest advances in preparation technologies, including enzymatic hydrolysis, microbial fermentation, chemical synthesis, recombinant expression, and molecular imprinting, each with distinct advantages in yield, selectivity, and scalability. The structure–activity relationships of antioxidant peptides are explored with respect to amino acid composition, molecular weight, and 3D conformation, which collectively determine their bioactivity and stability. Additionally, emerging delivery systems—such as nanoliposomes, microencapsulation, and cell-penetrating peptides—are discussed for their role in enhancing peptide stability, absorption, and targeted release. Mechanistic studies reveal that antioxidant peptides from woody oil resources act through network pharmacology, engaging core signaling pathways, including Nrf2/ARE, PI3K/Akt, AMPK, and JAK/STAT, to regulate oxidative stress, mitochondrial health, and inflammation. Preliminary safety data from in vitro, animal, and early clinical studies suggest low toxicity and favorable tolerability. The integration of omics technologies, molecular docking, and bioinformatics is accelerating the mechanism-driven design and functional validation of peptides. In conclusion, antioxidant peptides derived from woody oil resources represent a sustainable, multifunctional, and scalable solution for improving human health and promoting a circular bioeconomy. Future research should focus on structural optimization, delivery enhancement, and clinical validation to facilitate their industrial translation. Full article
Show Figures

Figure 1

Back to TopTop