Proof of Concept for Enhanced Sugar Yields and Inhibitors Reduction from Aspen Biomass via Novel, Single-Step Nitrogen Explosive Decompression (NED 3.0) Pretreatment Method
Abstract
1. Introduction
2. Materials and Methods
2.1. Biomass
2.2. Pretreatment with the NED 3.0 System
2.3. Enzymatic Hydrolysis
2.4. Fermentation
2.5. HPLC Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Fiber Analysis
3.2. SEM Characterization
3.3. Condensate Inhibitors
3.4. Filtrate Inhibitors and Sugars Profile
3.5. Hydrolysate Inhibitors and Sugars Profile
3.6. Fermentation Inhibitors, Residual Sugars, and Ethanol Profiles
4. Current Challenges and Future Trends in Lignocellulosic Biomass Pretreatment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Comprehensive Summary of All Inhibitors and Byproducts from NED 3.0
Compound | Yield (g/100 g Dry Biomass) | Relative Composition (%) | Classification | Inhibitory Potential | Source | Sample |
Formic acid | 0.60 | 34.5 | Organic acid | Moderate | Condensate | – |
Lactic acid | 0.45 | 25.9 | Biomolecule | Low | Condensate | – |
Acetic acid | 0.44 | 25.3 | Organic acid | Moderate | Condensate | – |
Furfural | 0.20 | 11.5 | Furan-based inhibitor | High | Condensate | – |
Glycerin | 0.04 | 2.3 | Biomolecule (byproduct) | Low | Condensate | – |
HMF | 0.01 | 0.6 | Furan-based inhibitor | High | Condensate | – |
Levulinic acid | 1.09 | 19 | Organic acid | Moderate | Filtrate | – |
Acetic acid | 2.18 | 37 | Organic acid | Moderate | Filtrate | – |
Lactic acid | 1.35 | 23 | Organic acid | Moderate | Filtrate | – |
Glycerin | 0.93 | 16 | Biomolecule (byproduct) | Low | Filtrate | – |
HMF | 0.13 | 2 | Furan-based inhibitor | High | Filtrate | – |
Furfural | 0.18 | 3 | Furan-based inhibitor | High | Filtrate | – |
Acetic acid | 0.41 | 31.5 | Organic acid | Moderate | Hydrolysate | Untreated samples 24 h |
Acetic acid | 0.39 | 31.5 | Organic acid | Moderate | Hydrolysate | Untreated samples 48 h |
Acetic acid | 0.39 | 32.5 | Organic acid | Moderate | Hydrolysate | Untreated samples 72 h |
Acetic acid | 1.40 | 60.1 | Organic acid | Moderate | Hydrolysate | Pretreated 24 h |
Acetic acid | 1.46 | 78.5 | Organic acid | Moderate | Hydrolysate | Pretreated 48 h |
Acetic acid | 1.25 | 72.3 | Organic acid | Moderate | Hydrolysate | Pretreated 72 h |
Lactic acid | 0.61 | 46.9 | Biomolecule | Low | Hydrolysate | Untreated samples 24 h |
Lactic acid | 0.58 | 46.8 | Biomolecule | Low | Hydrolysate | Untreated samples 48 h |
Lactic acid | 0.55 | 45.8 | Biomolecule | Low | Hydrolysate | Untreated samples 72 h |
Lactic acid | 0.88 | 37.8 | Biomolecule | Low | Hydrolysate | Pretreated 24 h |
Lactic acid | 0.35 | 18.8 | Biomolecule | Low | Hydrolysate | Pretreated 48 h |
Lactic acid | 0.44 | 25.4 | Biomolecule | Low | Hydrolysate | Pretreated 72 h |
Glycerin | 0.26 | 20.0 | Biomolecule (byproduct) | Low | Hydrolysate | Untreated samples 24 h |
Glycerin | 0.25 | 20.2 | Biomolecule (byproduct) | Low | Hydrolysate | Untreated samples 48 h |
Glycerin | 0.24 | 20.0 | Biomolecule (byproduct) | Low | Hydrolysate | Untreated samples 72 h |
Glycerin | 0.00 | 0.0 | Biomolecule (byproduct) | Low | Hydrolysate | Pretreated 24 h |
Glycerin | 0.00 | 0.0 | Biomolecule (byproduct) | Low | Hydrolysate | Pretreated 48 h |
Glycerin | 0.00 | 0.0 | Biomolecule (byproduct) | Low | Hydrolysate | Pretreated 72 h |
HMF | 0.00 | 0.0 | Furan-based inhibitor | High | Hydrolysate | Untreated samples 24 h |
HMF | 0.00 | 0.0 | Furan-based inhibitor | High | Hydrolysate | Untreated samples 48 h |
HMF | 0.00 | 0.0 | Furan-based inhibitor | High | Hydrolysate | Untreated samples 72 h |
HMF | 0.02 | 0.9 | Furan-based inhibitor | High | Hydrolysate | Pretreated 24 h |
HMF | 0.02 | 1.1 | Furan-based inhibitor | High | Hydrolysate | Pretreated 48 h |
HMF | 0.01 | 0.6 | Furan-based inhibitor | High | Hydrolysate | Pretreated 72 h |
Furfural | 0.02 | 1.5 | Furan-based inhibitor | High | Hydrolysate | Untreated samples 24 h |
Furfural | 0.02 | 1.6 | Furan-based inhibitor | High | Hydrolysate | Untreated samples 48 h |
Furfural | 0.02 | 1.7 | Furan-based inhibitor | High | Hydrolysate | Untreated samples 72 h |
Furfural | 0.03 | 1.3 | Furan-based inhibitor | High | Hydrolysate | Pretreated 24 h |
Furfural | 0.03 | 1.6 | Furan-based inhibitor | High | Hydrolysate | Pretreated 48 h |
Furfural | 0.03 | 1.7 | Furan-based inhibitor | High | Hydrolysate | Pretreated 72 h |
Acetic acid | 0.33 | 20.5 | Organic acid | Moderate | Fermentation broth | Untreated samples 7 days |
Acetic acid | 0.41 | 20.9 | Organic acid | Moderate | Fermentation broth | Untreated samples 14 days |
Acetic acid | 0.4 | 21.6 | Organic acid | Moderate | Fermentation broth | Untreated samples 21 days |
Acetic acid | 0.58 | 22.3 | Organic acid | Moderate | Fermentation broth | Untreated samples 28 days |
Acetic acid | 0.99 | 41.4 | Organic acid | Moderate | Fermentation broth | Pretreated 7 days |
Acetic acid | 1.03 | 36.3 | Organic acid | Moderate | Fermentation broth | Pretreated 14 days |
Acetic acid | 0.89 | 35.9 | Organic acid | Moderate | Fermentation broth | Pretreated 21 days |
Acetic acid | 0.86 | 36.6 | Organic acid | Moderate | Fermentation broth | Pretreated 28 days |
Lactic acid | 0.92 | 57.1 | Biomolecule | Low | Fermentation broth | Untreated samples 7 days |
Lactic acid | 1.2 | 61.2 | Biomolecule | Low | Fermentation broth | Untreated samples 14 days |
Lactic acid | 1.18 | 63.8 | Biomolecule | Low | Fermentation broth | Untreated samples 21 days |
Lactic acid | 1.7 | 65.4 | Biomolecule | Low | Fermentation broth | Untreated samples 28 days |
Lactic acid | 1.0 | 41.8 | Biomolecule | Low | Fermentation broth | Pretreated 7 days |
Lactic acid | 1.19 | 41.9 | Biomolecule | Low | Fermentation broth | Pretreated 14 days |
Lactic acid | 1.04 | 41.9 | Biomolecule | Low | Fermentation broth | Pretreated 21 days |
Lactic acid | 0.98 | 41.7 | Biomolecule | Low | Fermentation broth | Pretreated 28 days |
Glycerin | 0.34 | 21.1 | Biomolecule (byproduct) | Low | Fermentation broth | Untreated samples 7 days |
Glycerin | 0.33 | 16.8 | Biomolecule (byproduct) | Low | Fermentation broth | Untreated samples 14 days |
Glycerin | 0.25 | 13.5 | Biomolecule (byproduct) | Low | Fermentation broth | Untreated samples 21 days |
Glycerin | 0.3 | 11.5 | Biomolecule (byproduct) | Low | Fermentation broth | Untreated samples 28 days |
Glycerin | 0.39 | 16.3 | Biomolecule (byproduct) | Low | Fermentation broth | Pretreated 7 days |
Glycerin | 0.61 | 21.5 | Biomolecule (byproduct) | Low | Fermentation broth | Pretreated 14 days |
Glycerin | 0.54 | 21.8 | Biomolecule (byproduct) | Low | Fermentation broth | Pretreated 21 days |
Glycerin | 0.5 | 21.3 | Biomolecule (byproduct) | Low | Fermentation broth | Pretreated 28 days |
HMF | 0.0 | 0.0 | Furan-based inhibitor | High | Fermentation broth | Untreated samples 7 days |
HMF | 0.0 | 0.0 | Furan-based inhibitor | High | Fermentation broth | Untreated samples 14 days |
HMF | 0.0 | 0.0 | Furan-based inhibitor | High | Fermentation broth | Untreated samples 21 days |
HMF | 0.0 | 0.0 | Furan-based inhibitor | High | Fermentation broth | Untreated samples 28 days |
HMF | 0.0 | 0.0 | Furan-based inhibitor | High | Fermentation broth | Pretreated 7 days |
HMF | 0.0 | 0.0 | Furan-based inhibitor | High | Fermentation broth | Pretreated 14 days |
HMF | 0.0 | 0.0 | Furan-based inhibitor | High | Fermentation broth | Pretreated 21 days |
HMF | 0.0 | 0.0 | Furan-based inhibitor | High | Fermentation broth | Pretreated 28 days |
Furfural | 0.02 | 1.2 | Furan-based inhibitor | High | Fermentation broth | Untreated samples 7 days |
Furfural | 0.02 | 1.0 | Furan-based inhibitor | High | Fermentation broth | Untreated samples 14 days |
Furfural | 0.02 | 1.1 | Furan-based inhibitor | High | Fermentation broth | Untreated samples 21 days |
Furfural | 0.02 | 0.8 | Furan-based inhibitor | High | Fermentation broth | Untreated samples 28 days |
Furfural | 0.01 | 0.4 | Furan-based inhibitor | High | Fermentation broth | Pretreated 7 days |
Furfural | 0.01 | 0.4 | Furan-based inhibitor | High | Fermentation broth | Pretreated 14 days |
Furfural | 0.01 | 0.4 | Furan-based inhibitor | High | Fermentation broth | Pretreated 21 days |
Furfural | 0.01 | 0.4 | Furan-based inhibitor | High | Fermentation broth | Pretreated 28 days |
The % composition is relative to the total concentration of all six compounds in each treatment group. |
Appendix B. Hydrolysis Efficiency of Aspen Samples Pretreated with NED 3.0 at 200 °C
Appendix C. Results of the Statistical Analysis
Temperature (°C) | Hydrolysis Time (Hour) | Fermentation Time (Days) | Formic Acid | Lactic Acid | Acetic Acid | Furfural | Glycerin | HMF | Levulinic Acid | Ethanol | |
---|---|---|---|---|---|---|---|---|---|---|---|
Minimum | 0.000 | 0.000 | 0.000 | 0.000 | 0.3500 | 0.3300 | 0.01000 | 0.000 | 0.000 | 0.000 | 0.000 |
Maximum | 200.0 | 72.00 | 28.00 | 0.6000 | 1.700 | 2.180 | 0.2000 | 0.9300 | 0.1300 | 1.090 | 8.050 |
Range | 200.0 | 72.00 | 28.00 | 0.6000 | 1.350 | 1.850 | 0.1900 | 0.9300 | 0.1300 | 1.090 | 8.050 |
Mean | 112.5 | 18.00 | 8.750 | 0.03750 | 0.9013 | 0.8381 | 0.04063 | 0.3113 | 0.01188 | 0.06813 | 2.242 |
Std. Deviation | 102.5 | 27.01 | 10.69 | 0.1500 | 0.3792 | 0.5278 | 0.05882 | 0.2513 | 0.03229 | 0.2725 | 3.031 |
Std. Error of Mean | 25.62 | 6.753 | 2.673 | 0.03750 | 0.09481 | 0.1320 | 0.01470 | 0.06282 | 0.008074 | 0.06813 | 0.7578 |
Test for Normal Distribution | Temperature (°C) | Hydrolysis Time (Hours) | Fermentation Time (Days) | Formic Acid | Lactic Acid | Acetic Acid | Furfural | Glycerin | HMF | Levulinic Acid | Ethanol |
---|---|---|---|---|---|---|---|---|---|---|---|
W | |||||||||||
p-Value | 0.6383 | 0.6978 | 0.7864 | 0.2727 | 0.9525 | 0.8520 | 0.5084 | 0.9181 | 0.4166 | 0.2727 | 0.7389 |
Passed normality test (alpha = 0.05)? | No | No | No | No | Yes | No | No | Yes | No | No | No |
p-Value summary | p ≤ 0.0001 | p ≤ 0.001 | p ≤ 0.01 | p ≤ 0.0001 | p > 0.05 (non-significant) | p ≤ 0.05 | p ≤ 0.0001 | p > 0.05 (non-significant) | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.001 |
Mean Rank Difference | Significant? | Summary | |
---|---|---|---|
Temperature (°C) vs. Hydrolysis time (hour) | 31.50 | No | ns |
Temperature (°C) vs. Fermentation time (days) | 13.00 | No | ns |
Temperature (°C) vs. Formic acid | 67.50 | Yes | p ≤ 0.05 |
Temperature (°C) vs. Lactic acid | −18.50 | No | ns |
Temperature (°C) vs. Acetic acid | −9.500 | No | ns |
Temperature (°C) vs. Furfural | 22.50 | No | ns |
Temperature (°C) vs. Glycerin | 22.50 | No | ns |
Temperature (°C) vs. HMF | 61.00 | No | ns |
Temperature (°C) vs. Levulinic acid | 69.50 | Yes | p ≤ 0.05 |
Temperature (°C) vs. Ethanol | 21.00 | No | ns |
Hydrolysis time (hours) vs. Fermentation time (days) | −18.50 | No | ns |
Hydrolysis time (hour) vs. Formic acid | 36.00 | No | ns |
Hydrolysis time (hour) vs. Lactic acid | −50.00 | No | ns |
Hydrolysis time (hour) vs. Acetic acid | −41.00 | No | ns |
Hydrolysis time (hour) vs. Furfural | −9.000 | No | ns |
Hydrolysis time (hour) vs. Glycerin | −9.000 | No | ns |
Hydrolysis time (hour) vs. HMF | 29.50 | No | ns |
Hydrolysis time (hour) vs. Levulinic acid | 38.00 | No | ns |
Hydrolysis time (hours) vs. Ethanol | −10.50 | No | ns |
Fermentation time (days) vs. Formic acid | 54.50 | No | ns |
Fermentation time (days) vs. Lactic acid | −31.50 | No | ns |
Fermentation time (days) vs. Acetic acid | −22.50 | No | ns |
Fermentation time (days) vs. Furfural | 9.500 | No | ns |
Fermentation time (days) vs. Glycerin | 9.500 | No | ns |
Fermentation time (days) vs. HMF | 48.00 | No | ns |
Fermentation time (days) vs. Levulinic acid | 56.50 | No | ns |
Fermentation time (days) vs. Ethanol | 8.000 | No | ns |
Formic acid vs. Lactic acid | −86.00 | Yes | p ≤ 0.001 |
Formic acid vs. Acetic acid | −77.00 | Yes | p ≤ 0.01 |
Formic acid vs. Furfural | −45.00 | No | ns |
Formic acid vs. Glycerin | −45.00 | No | ns |
Formic acid vs. HMF | −6.500 | No | ns |
Formic acid vs. Levulinic acid | 2.000 | No | ns |
Formic acid vs. Ethanol | −46.50 | No | ns |
Lactic acid vs. Acetic acid | 9.000 | No | ns |
Lactic acid vs. Furfural | 41.00 | No | ns |
Lactic acid vs. Glycerin | 41.00 | No | ns |
Lactic acid vs. HMF | 79.50 | Yes | p ≤ 0.01 |
Lactic acid vs. Levulinic acid | 88.00 | Yes | p ≤ 0.001 |
Lactic acid vs. Ethanol | 39.50 | No | ns |
Acetic acid vs. Furfural | 32.00 | No | ns |
Acetic acid vs. Glycerin | 32.00 | No | ns |
Acetic acid vs. HMF | 70.50 | Yes | p ≤ 0.01 |
Acetic acid vs. Levulinic acid | 79.00 | Yes | p ≤ 0.01 |
Acetic acid vs. Ethanol | 30.50 | No | ns |
Furfural vs. Glycerin | 0.000 | No | ns |
Furfural vs. HMF | 38.50 | No | ns |
Furfural vs. Levulinic acid | 47.00 | No | ns |
Furfural vs. Ethanol | −1.500 | No | ns |
Glycerin vs. HMF | 38.50 | No | ns |
Glycerin vs. Levulinic acid | 47.00 | No | ns |
Glycerin vs. Ethanol | −1.500 | No | ns |
HMF vs. Levulinic acid | 8.500 | No | ns |
HMF vs. Ethanol | −40.00 | No | ns |
Levulinic acid vs. Ethanol | −48.50 | No | ns |
Temperature (°C) | Hydrolysis Time (Hours) | Fermentation Time (Days) | Formic Acid | Lactic Acid | Acetic Acid | Furfural | Glycerin | HMF | Levulinic Acid | Ethanol | |
---|---|---|---|---|---|---|---|---|---|---|---|
Hydrolysis time (hours) | 8.7412 × 10−5 | 0.8678 | 0.7062 | 1 | 0.6064 | 3.4965 × 10−4 | 0.7147 | 0.7354 | 0.0336 | 1 | 0.6818 |
Fermentation time (days) | 0.8678 | 1.3875 × 10−6 | 0.0065 | 1 | 0.0012 | 0.9647 | 0.1913 | 0.0027 | 0.3502 | 1 | 0.0064 |
Formic acid | 0.7062 | 0.0065 | 3.0833 × 10−8 | 0.75 | 0.0048 | 0.56752 | 0.0041 | 0.0313 | 0.0214 | 0.75 | 2.1315 × 10−4 |
Lactic acid | 1 | 1 | 0.75 | 0.0625 | 0.375 | 0.875 | 0.0625 | 0.5 | 0.3125 | 1 | 0.75 |
Acetic acid | 0.6064 | 0.0012 | 0.0048 | 0.375 | 9.5589 × 10−14 | 0.8497 | 0.1360 | 0.0013 | 0.2251 | 0.25 | 0.0225 |
Furfural | 3.4965 × 10−4 | 0.9647 | 0.5675 | 0.875 | 0.8497 | 1.9117 × 10−13 | 0.3561 | 0.8456 | 0.0027 | 0.125 | 0.8356 |
Glycerin | 0.7147 | 0.1913 | 0.0041 | 0.0625 | 0.1360 | 0.3561 | 3.4687 × 10−8 | 0.0165 | 1.1446 × 10−4 | 0.125 | 8.0128 × 10−5 |
HMF | 0.73548 | 0.0027 | 0.0313 | 0.5 | 0.0013 | 0.8456 | 0.0165 | 5.7353 × 10−5 | 0.1409 | 0.0625 | 0.0028 |
Levulinic acid | 0.0336 | 0.3502 | 0.0214 | 0.3125 | 0.2251 | 0.0027 | 1.1446 × 10−4 | 0.1409 | 7.6312 × 10−6 | 0.0625 | 0.0213 |
Ethanol | 1 | 1 | 0.75 | 1 | 0.25 | 0.125 | 0.125 | 0.0625 | 0.0625 | 0.0625 | 0.75 |
Temperature (°C) | 0.6818 | 0.0064 | 2.1315 × 10−4 | 0.75 | 0.0225 | 0.8356 | 8.0128 × 10−5 | 0.0028 | 0.0213 | 0.75 | 1.9270 |
Temperature (°C) | Hydrolysis Time (Hours) | Fermentation Time (Days) | Glucose | Arabinose | Xylose | Mannose | Galactose | Cellobiose | |
---|---|---|---|---|---|---|---|---|---|
Minimum | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.6600 | 0.000 | 0.000 |
Maximum | 200.0 | 72.00 | 28.00 | 26.51 | 1.300 | 11.94 | 7.200 | 0.9800 | 2.170 |
Range | 200.0 | 72.00 | 28.00 | 26.51 | 1.300 | 11.94 | 6.540 | 0.9800 | 2.170 |
Mean | 106.7 | 19.20 | 9.333 | 7.756 | 0.1447 | 4.676 | 2.653 | 0.2713 | 0.4013 |
Std. Deviation | 103.3 | 27.51 | 10.80 | 10.18 | 0.3229 | 3.983 | 2.303 | 0.3254 | 0.6190 |
Std. Error of Mean | 26.67 | 7.104 | 2.789 | 2.627 | 0.08337 | 1.028 | 0.5947 | 0.08402 | 0.1598 |
Hydrolysis Time (Hours) | Fermentation Time (Days) | Glucose | Arabinose | Xylose | Mannose | Galactose | Cellobiose | |
---|---|---|---|---|---|---|---|---|
W | 0.6434 | 0.7181 | 0.8065 | 0.7510 | 0.4115 | 0.8841 | 0.7699 | 0.7873 |
p-Value | <0.0001 | 0.0004 | 0.0045 | 0.0009 | <0.0001 | 0.0546 | 0.0015 | 0.0025 |
Passed normality test (alpha = 0.05)? | No | No | No | No | No | Yes | No | No |
p-Value summary | p ≤ 0.0001 | p ≤ 0.001 | p ≤ 0.01 | p ≤ 0.001 | p ≤ 0.0001 | p > 0.05 (not significant) | p ≤ 0.01 | p ≤ 0.01 |
Mean Rank Difference | Significant? | Summary | |
---|---|---|---|
Temperature (°C) vs. Hydrolysis time (hours) | 16.00 | No | ns |
Temperature (°C) vs. Fermentation time (days) | 26.00 | No | ns |
Temperature (°C) vs. Glucose | 4.000 | No | ns |
Temperature (°C) vs. Arabinose | −3.000 | No | ns |
Temperature (°C) vs. Xylose | −4.000 | No | ns |
Temperature (°C) vs. Mannose | 18.00 | No | ns |
Temperature (°C) vs. Galactose | 10.00 | No | ns |
Temperature (°C) vs. Cellobiose | 14.00 | No | ns |
Hydrolysis time (hours) vs. Fermentation time (days) | 10.00 | No | ns |
Hydrolysis time (hours) vs. Glucose | −12.00 | No | ns |
Hydrolysis time (hours) vs. Arabinose | −19.00 | No | ns |
Hydrolysis time (hours) vs. Xylose | −20.00 | No | ns |
Hydrolysis time (hours) vs. Mannose | 2.000 | No | ns |
Hydrolysis time (hours) vs. Galactose | −6.000 | No | ns |
Hydrolysis time (hours) vs. Cellobiose | −2.000 | No | ns |
Fermentation time (days) vs. Glucose | −22.00 | No | ns |
Fermentation time (days) vs. Arabinose | −29.00 | No | ns |
Fermentation time (days) vs. Xylose | −30.00 | No | ns |
Fermentation time (days) vs. Mannose | −8.000 | No | ns |
Fermentation time (days) vs. Galactose | −16.00 | No | ns |
Fermentation time (days) vs. Cellobiose | −12.00 | No | ns |
Glucose vs. Arabinose | −7.000 | No | ns |
Glucose vs. Xylose | −8.000 | No | ns |
Glucose vs. Mannose | 14.00 | No | ns |
Glucose vs. Galactose | 6.000 | No | ns |
Glucose vs. Cellobiose | 10.00 | No | ns |
Arabinose vs. Xylose | −1.000 | No | ns |
Arabinose vs. Mannose | 21.00 | No | ns |
Arabinose vs. Galactose | 13.00 | No | ns |
Arabinose vs. Cellobiose | 17.00 | No | ns |
Xylose vs. Mannose | 22.00 | No | ns |
Xylose vs. Galactose | 14.00 | No | ns |
Xylose vs. Cellobiose | 18.00 | No | ns |
Mannose vs. Galactose | −8.000 | No | ns |
Mannose vs. Cellobiose | −4.000 | No | ns |
Galactose vs. Cellobiose | 4.000 | No | ns |
Temperature (°C) | Temperature (°C) | Hydrolysis Time (Hours) | Fermentation Time (Days) | Glucose | Arabinose | Xylose | Mannose | Galactose | Cellobiose |
---|---|---|---|---|---|---|---|---|---|
Hydrolysis time (hour) | 1.5540 × 10−4 | 0.9216 | 0.9020 | 0.1504 | 4.6620 × 10−4 | 3.1080 × 10−4 | 1 | 0.3342 | 0.4048 |
Fermentation time (days) | 0.9216 | 2.2200 × 10−6 | 0.0024 | 1.2876 × 10−4 | 0.281 | 0.1705 | 0.0042 | 0.6404 | 0.0728 |
Glucose | 0.9020 | 0.0024 | 6.1666 × 10−8 | 0.0014 | 0.0971 | 0.1419 | 0.0012 | 0.8750 | 0.0084 |
Arabinose | 0.1504 | 1.2876 | 0.0014 | 4.5882 × 10−12 | 0.0083 | 0.0033 | 0.0065 | 0.9860 | 0.0432 |
Xylose | 4.6620 × 10−4 | 0.2811 | 0.0971 | 0.0083 | 2.2023 × 10−10 | 8.3703 × 10−5 | 0.1595 | 0.1611 | 0.0724 |
Mannose | 3.1080 × 10−5 | 0.1705 | 0.1419 | 0.0033 | 8.3703 × 10−5 | 1.5294 × 10−12 | 0.3852 | 0.7121 | 0.1122 |
Galactose | 1 | 0.0042 | 0.0012 | 0.0065 | 0.1595 | 0.3853 | 3.0588 × 10−12 | 0.2724 | 0.0016 |
Cellobiose | 0.3342 | 0.6404 | 0.8750 | 0.9860 | 0.1611 | 0.7121 | 0.2724 | 3.0833 × 10−8 | 0.4915 |
Temperature (°C) | 0.4048 | 0.0728 | 0.0084 | 0.0432 | 0.0724 | 0.1121 | 0.0016 | 0.4915 | 4.4047 × 10−10 |
References
- Baruah, J.; Nath, B.K.; Sharma, R.; Kumar, S.; Deka, R.C.; Baruah, D.C.; Kalita, E. Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front. Energy Res. 2018, 6, 141. [Google Scholar] [CrossRef]
- Rooni, V.; Sjulander, N.; Cristobal-Sarramian, A.; Raud, M.; Rocha-Meneses, L.; Kikas, T. The efficiency of nitrogen explosion pretreatment on common aspen—Populus tremula: N2—VS steam explosion. Energy 2021, 220, 119741. [Google Scholar] [CrossRef]
- Zoghlami, A.; Paës, G. Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis. Front. Chem. 2019, 7, 874. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, A.T.W.M.; Zeeman, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 2009, 100, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005, 96, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhang, L.; Liu, D. Biomass recalcitrance. Part I: The chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod. Biorefining 2012, 6, 465–482. [Google Scholar] [CrossRef]
- Sjulander, N.; Kikas, T. Two-Step Pretreatment of Lignocellulosic Biomass for High-Sugar Recovery from the Structural Plant Polymers Cellulose and Hemicellulose. Energies 2022, 15, 8898. [Google Scholar] [CrossRef]
- Arce, C.; Kratky, L. Mechanical pretreatment of lignocellulosic biomass toward enzymatic/fermentative valorization. iScience 2022, 25, 104610. [Google Scholar] [CrossRef]
- Shukla, A.; Kumar, D.; Girdhar, M.; Kumar, A.; Goyal, A.; Malik, T.; Mohan, A. Strategies of pretreatment of feedstocks for optimized bioethanol production: Distinct and integrated approaches. Biotechnol. Biofuels Bioprod. 2023, 16, 44. [Google Scholar] [CrossRef]
- Li, X.; Shi, Y.; Kong, W.; Wei, J.; Song, W.; Wang, S. Improving enzymatic hydrolysis of lignocellulosic biomass by bio-coordinated physicochemical pretreatment—A review. Energy Rep. 2022, 8, 696–709. [Google Scholar] [CrossRef]
- Wu, Z.; Peng, K.; Zhang, Y.; Wang, M.; Yong, C.; Chen, L.; Qu, P.; Huang, H.; Sun, E.; Pan, M. Lignocellulose dissociation with biological pretreatment towards the biochemical platform: A review. Mater. Today Bio 2022, 16, 100445. [Google Scholar] [CrossRef]
- Woźniak, A.; Kuligowski, K.; Świerczek, L.; Cenian, A. Review of Lignocellulosic Biomass Pretreatment Using Physical, Thermal and Chemical Methods for Higher Yields in Bioethanol Production. Sustainability 2025, 17, 010287. [Google Scholar] [CrossRef]
- Kumar, A.K.; Sharma, S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review. Bioresour. Bioprocess. 2017, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Kucharska, K.; Rybarczyk, P.; Hołowacz, I.; Łukajtis, R.; Glinka, M.; Kamiński, M. Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 2018, 23, 112937. [Google Scholar] [CrossRef] [PubMed]
- Maurya, D.P.; Singla, A.; Negi, S. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 2015, 5, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Foston, M.; Leisen, J.; DeMartini, J.; Wyman, C.E.; Ragauskas, A.J. Determination of porosity of lignocellulosic biomass before and after pretreatment by using Simons’ stain and NMR techniques. Bioresour. Technol. 2013, 144, 467–476. [Google Scholar] [CrossRef]
- Raud, M.; Olt, J.; Kikas, T. N2 explosive decompression pretreatment of biomass for lignocellulosic ethanol production. Biomass Bioenergy 2016, 90, 1–6. [Google Scholar] [CrossRef]
- Jönsson, L.J.; Martín, C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 2016, 199, 103–112. [Google Scholar] [CrossRef]
- Tutt, M.; Raud, M.; Kahr, H.; Pointner, M.; Olt, J.; Kikas, T. Nitrogen explosion pretreatment of lignocellulosic material for bioethanol production. Energy Sources Part A Recovery Util. Environ. Eff. 2016, 38, 1785–1789. [Google Scholar] [CrossRef]
- Raud, M.; Krennhuber, K.; Jäger, A.; Kikas, T. Nitrogen explosive decompression pre-treatment: An alternative to steam explosion. Energy 2019, 177, 175–182. [Google Scholar] [CrossRef]
- Meesters, K.; Elbersen, W.; Van Der Hoogt, P.; Hristov, H. Biomass Pre-Treatment for Bioenergy Case Study 5: Leaching as a Biomass Pre-Treatment Method for Herbaceous Biomass. Sugar Cane Trash and Palm Oil Mill Residues. Pressed, Dried and Milled EFB InterTask Project on Fuel Pretreatment of Biomass Residues in the Supply Chain for Thermal Conversion. 2018. Available online: https://www.ieabioenergy.com/wp-content/uploads/2018/11/CS5-Leaching-as-a-biomass-pre-treatment-method-for-herbaceous-biomass.pdf (accessed on 15 April 2024).
- Fitria; Liu, J.; Yang, B. Roles of mineral matter in biomass processing to biofuels. Biofuels Bioprod. Biorefining 2023, 17, 696–717. [Google Scholar] [CrossRef]
- Puri, L.; Hu, Y.; Naterer, G. Critical review of the role of ash content and composition in biomass pyrolysis. Front. Fuels 2024, 2, 1378361. [Google Scholar] [CrossRef]
- Deng, W.; Wang, Y.; Yan, N. Production of organic acids from biomass resources. Curr. Opin. Green Sustain. Chem. 2016, 2, 54–58. [Google Scholar] [CrossRef]
- IMARC Group. Lactic Acid Pricing Report: Price Trend, Demand & Forecast 2024–2029. 2024. Available online: https://www.imarcgroup.com/lactic-acid-pricing-report (accessed on 1 February 2025).
- Hua, S.; Wang, Y.; Wang, L.; Zhou, Q.; Li, Z.; Liu, P.; Wang, K.; Zhu, Y.; Han, D.; Yu, Y. Regulatory mechanisms of acetic acid, ethanol and high temperature tolerances of acetic acid bacteria during vinegar production. Microb. Cell Factories 2024, 23, 324. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.R.M.; Modig, T.; Petersson, A.; Hähn-Hägerdal, B.; Lidén, G.; Gorwa-Grauslund, M.F. Increased tolerance; conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 2007, 82, 340–349. [Google Scholar] [CrossRef]
- Ko, J.K.; Enkh-Amgalan, T.; Gong, G.; Um, Y.; Lee, S.M. Improved bioconversion of lignocellulosic biomass by Saccha-romyces cerevisiae engineered for tolerance to acetic acid. GCB Bioenergy 2020, 12, 90–100. [Google Scholar] [CrossRef]
- Wen, L.; Tan, X.; Zhang, D.; Jia, Y.; Sheng, Y.; Lai, C.; Yong, Q. Effect of pretreatment severity on the inhibitory behaviors of larch lignins in enzymatic hydrolysis. Ind. Crops Prod. 2023, 197, 116660. [Google Scholar] [CrossRef]
- Yue, P.; Hu, Y.; Tian, R.; Bian, J.; Peng, F. Hydrothermal pretreatment for the production of oligosaccharides: A review. Bioresour. Technol. 2022, 343, 126075. [Google Scholar] [CrossRef]
- Yoon, J.; Sim, S.; Myint, A.A.; Lee, Y.W. Kinetics of the hydrolysis of xylan based on ether bond cleavage in subcritical water. J. Supercrit. Fluids 2018, 135, 145–151. [Google Scholar] [CrossRef]
- Sluiter, J.B.; Ruiz, R.O.; Scarlata, C.J.; Sluiter, A.D.; Templeton, D.W. Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J. Agric. Food Chem. 2010, 58, 9043–9053. [Google Scholar] [CrossRef]
- Zhang, T.; Kumar, R.; Wyman, C.E. Sugar yields from dilute oxalic acid pretreatment of maple wood compared to those with other dilute acids and hot water. Carbohydr. Polym. 2013, 92, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Yang, Y.; Lei, T.; Li, Y.; Shen, Y.; Wang, G.; Yang, M.; Wang, Y.; Zheng, H. Regulation of biomass physicochemical properties for fuel quality improvement by pretreatment technology: A review. Energy 360 2025, 3, 100015. [Google Scholar] [CrossRef]
- Gao, D.-M.; Zhang, X.; Liu, H.; Fujino, H.; Lei, T.; Sun, F.; Zhu, J.; Huhe, T. Critical approaches in the catalytic transformation of sugar isomerization and epimerization after Fischer—History, challenges, and prospects. Green Energy Environ. 2024, 9, 435–453. [Google Scholar] [CrossRef]
- Palmqvist, E.; Hahn-Hägerdal, B. Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour. Technol. 2000, 74, 25–33. [Google Scholar] [CrossRef]
- Taherzadeh, M.J.; Karimi, K. Acid-Based Hydrolysis Processes for Ethanol from Lignocellulosic Materials: Bioethanol Review. BioResources 2007, 2, 707–738. [Google Scholar] [CrossRef]
- Chandel, A.K.; da Silva, S.S.; Singh, O.V. Detoxification of Lignocellulose Hydrolysates: Biochemical and Metabolic Engineering Toward White Biotechnology. Bioenergy Res. 2013, 6, 388–401. [Google Scholar] [CrossRef]
- Ziegler-Devin, I.; Chrusciel, L.; Brosse, N. Steam Explosion Pretreatment of Lignocellulosic Biomass: A Mini-Review of Theorical and Experimental Approaches. Front. Chem. 2021, 9, 705358. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, Z.F.; Zhang, C.C.; Nan, J.; Ren, N.Q.; Lee, D.J.; Chen, C. Advances in pretreatment of lignocellulosic biomass for bioenergy production: Challenges and perspectives. Bioresour. Technol. 2022, 343, 126123. [Google Scholar] [CrossRef]
- Amit, K.; Nakachew, M.; Yilkal, B.; Mukesh, Y. A review of factors affecting enzymatic hydrolysis of pretreated ligno-cellulosic biomass. Res. J. Chem. Environ. 2018, 22, 62–67. [Google Scholar]
- Kumari, D.; Singh, R. Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renew. Sustain. Energy Rev. 2018, 90, 877–891. [Google Scholar] [CrossRef]
- Tian, S.; Zhu, W.; Gleisner, R.; Pan, X.J.; Zhu, J.Y. Comparisons of SPORL and dilute acid pretreatments for sugar and ethanol productions from aspen. Biotechnol. Prog. 2011, 27, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Zhu, J. An update on Sulfite Pretreatment (SPORL) of lignocellulosic biomass for effective production of cellulose ethanol. In Proceedings of the 16th International Symposium on Wood, Fiber and Pulping Chemistry, Tianjin, China, 8–10 June 2011; Available online: https://www.researchgate.net/publication/267958328 (accessed on 3 July 2025).
- Ansell, R.; Granath, K.; Hohmann, S.; Thevelein, J.M.; Adler, L. The two isoenzymes for yeast NAD+− dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J. 1997, 16, 2179–2187. [Google Scholar] [CrossRef] [PubMed]
- Jönsson, L.J.; Alriksson, B.; Nilvebrant, N.-O. Bioconversion of lignocellulose: Inhibitors and detoxification. Biotechnol. Biofuels 2013, 6, 16. [Google Scholar] [CrossRef] [PubMed]
- Burton, R.A.; Gidley, M.J.; Fincher, G.B. Heterogeneity in the chemistry, structure and function of plant cell walls. Nat. Chem. Biol. 2010, 6, 724–732. [Google Scholar] [CrossRef]
- Rowell, R.M. Handbook of Wood Chemistry and Wood Composites; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Bellissimi, E.; Van Dijken, J.P.; Pronk, J.T.; Van Maris, A.J.A. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based saccharomyces cerevisiae strain. FEMS Yeast Res. 2009, 9, 358–364. [Google Scholar] [CrossRef]
- Huang, H.; Guo, X.; Li, D.; Liu, M.; Wu, J.; Ren, H. Identification of crucial yeast inhibitors in bio-ethanol and improvement of fermentation at high pH and high total solids. Bioresour. Technol. 2011, 102, 7486–7493. [Google Scholar] [CrossRef]
- Wyman, C.E. Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Wang, B.; Feng, H. Detoxification of lignocellulosic hydrolysates. In Biofuels from Agricultural Wastes and Byproducts; Blaschek, H.P., Ezeji, T.C., Scheffran, J., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2010; pp. 233–250. [Google Scholar]
- Lynd, L.R.; Liang, X.; Biddy, M.J.; Allee, A.; Cai, H.; Foust, T.; Himmel, M.E.; Laser, M.S.; Wang, M.; Wyman, C.E. Cellulosic ethanol: Status and innovation. Curr. Opin. Biotechnol. 2017, 45, 202–211. [Google Scholar] [CrossRef]
- Agrawal, R. Emerging Technologies for Improvement of Microbial Strains Using Omic Sciences and Measuring Methods for Maximum Product Formation. In Textbook of Industrial Microbiology; Springer: Berlin/Heidelberg, Germany, 2024; pp. 13–39. [Google Scholar]
- Aggarwal, N.; Pham, H.L.; Ranjan, B.; Saini, M.; Liang, Y.; Hossain, G.S.; Ling, H.; Foo, J.L.; Chang, M.W. Microbial engineering strategies to utilize waste feedstock for sustainable bioproduction. Nat. Rev. Bioeng. 2024, 2, 155–174. [Google Scholar] [CrossRef]
- Prasanthan, A.; Krishna Prasad, R.; Balu, M. Recent advancements and challenges in the lignocellulosic and algal biomass-based bioethanol production: A review. Biofuels 2025, 16, 499–518. [Google Scholar] [CrossRef]
- Cheah, W.Y.; Sankaran, R.; Show, P.L.; Ibrahim, T.N.B.T.; Chew, K.W.; Culaba, A.; Chang, J.S. Pretreatment methods for lignocellulosic biofuels production: Current advances, challenges and future prospects. Biofuel Res. J. 2020, 7, 1115–1127. [Google Scholar] [CrossRef]
- Khan, S.; Ul-Islam, M.; Fatima, A.; Manan, S.; Khattak, W.A.; Ullah, M.W.; Yang, G. Potential of Food and Agro-Industrial Wastes for Cost-Effective Bacterial Cellulose Production: An Updated Review of Literature. ES Food Agrofor. 2023, 13, 905. [Google Scholar] [CrossRef]
Parameter | NED 1.0 [17,19] | NED 2.0 [2,7,17,20] | NED 3.0 (This Study) |
---|---|---|---|
Pressure vessel type and material | 1.8 L pressure vessel; stainless steel AISI 316 | 1.8 L pressure vessel; stainless steel AISI 316 | 5.0 L pressure vessel; stainless steel AISI 316 |
Heating system | Oil bath | Ceramic heating jacket | Ceramic heating jacket |
Temperature tolerance (°C) | ≤350 | ≤350 | ≤300 |
Pressure tolerance (bar) | ≤131 | ≤131 | ≤100 |
Decompression | Decompression in the headspace Cooled down to ≤80 °C. Manual; uncontrolled decompression speed. | Decompression in the headspace Cooled down to ≤80 °C. Manual; uncontrolled decompression speed. | The decompression of the slurry; decompression at the incubation temperature; automatic decompression; speed controlled via nozzle geometry. |
Temperature control | One thermocouple, manual control | Two thermocouples, electronic control | Automatic sensor control with internal and external thermocouples |
Mixing | Not applicable | Not applicable | Controlled; ≤414 rpm |
Volatiles recovery | Not applicable | Not applicable | Volatiles recovered in the condenser and expansion vessel |
Untreated * | Pretreated Aspen Wood at 200 °C * | |
---|---|---|
Mass% | ||
Moisture | 4.6 ± 0.4 | 4.5 ± 0.8 |
Cellulose | 60.3 ± 1.9 | 65.3 ± 1.2 |
Hemicellulose | 20.9 ± 1.3 | 6.1 ± 0.3 |
Lignin | 11.7 ± 0.8 | 12.5 ± 0.3 |
Extractives | 7.1 ± 0.1 | 16.2 ± 1.3 |
Minerals | 1.46 ± 0.02 | 0.83 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okafor, D.; Rocha-Meneses, L.; Rooni, V.; Kikas, T. Proof of Concept for Enhanced Sugar Yields and Inhibitors Reduction from Aspen Biomass via Novel, Single-Step Nitrogen Explosive Decompression (NED 3.0) Pretreatment Method. Energies 2025, 18, 4026. https://doi.org/10.3390/en18154026
Okafor D, Rocha-Meneses L, Rooni V, Kikas T. Proof of Concept for Enhanced Sugar Yields and Inhibitors Reduction from Aspen Biomass via Novel, Single-Step Nitrogen Explosive Decompression (NED 3.0) Pretreatment Method. Energies. 2025; 18(15):4026. https://doi.org/10.3390/en18154026
Chicago/Turabian StyleOkafor, Damaris, Lisandra Rocha-Meneses, Vahur Rooni, and Timo Kikas. 2025. "Proof of Concept for Enhanced Sugar Yields and Inhibitors Reduction from Aspen Biomass via Novel, Single-Step Nitrogen Explosive Decompression (NED 3.0) Pretreatment Method" Energies 18, no. 15: 4026. https://doi.org/10.3390/en18154026
APA StyleOkafor, D., Rocha-Meneses, L., Rooni, V., & Kikas, T. (2025). Proof of Concept for Enhanced Sugar Yields and Inhibitors Reduction from Aspen Biomass via Novel, Single-Step Nitrogen Explosive Decompression (NED 3.0) Pretreatment Method. Energies, 18(15), 4026. https://doi.org/10.3390/en18154026