Assessment of Paulownia tomentosa Steud. Regeneration Capacity Through Root Cutting Diameters, Growth Hormone doses and Soil Types
Abstract
1. Introduction
2. Materials and Methods
2.1. Origin and Collection of Plant Materials
2.2. Experimental Design: Sprout Growth
2.3. Morphological Measures of Growth Parameters of P. tomentosa Sprouts Under the Three Interactive Parameters
2.3.1. Dynamics of First-Year Stem Height and Leaf Number
2.3.2. Measures of Stem Height and Leaf Number of P. tomentosa Which Were Taken out Every Year in October of Both 2023 and 2024
2.3.3. Phenology of Flower Buds and Flower Numbers of P. tomentosa Under Different Interactive Treatments Effects Every Year During 2022–2024 Period
2.4. Biochemical Parameters of P. tomentosa Sprouts Under the Three Interactive Parameters
2.4.1. Photosynthetic Pigments
2.4.2. Total Polyphenol Compounds
2.4.3. Determination of Total Polyphenol Compound Content
2.4.4. Total Flavonoid Content
2.4.5. Condensed Tannin Content
2.4.6. Proline Content
2.4.7. Total Antioxidant Activity
2.5. Data Analysis
3. Results and Discussion
3.1. Morphological Traits of P. tomentosa Sprouts Under the Three Interactive Parameters
3.1.1. Kinetics of First-Year Growth Parameters
3.1.2. Measures of Growth Parameters of P. tomentosa Every Year in October of Both 2023 and 2024
3.1.3. Generative Flowering Phenology of P. tomentosa
3.2. Biochemical Contents in P. tomentosa Sprouts Under the Three Interactive Parameters
3.3. IBA-Derived Auxin Drives Aspects of P. tomentosa Root Development
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Ting, H.; Brajesh, N.V.; Zachary, D.; Perry, P.P.; Nirmal, J. Paulownia as a medicinal Tree: Traditional uses and current advances. Eur. J. Med. Plants 2016, 14, 1–15. [Google Scholar]
- Fahmy, A.; Gendy, A. In vitro propagation of Paulownia hybrid (P. elongata x P. fortunei) tree. Zagazig J. Agric. Res. 2018, 45, 1633–1643. [Google Scholar] [CrossRef]
- Orwa, C.; Mutua, A.; Kindt, R.; Jamnadass, R.; Anthony, S. Paulownia imperialis. Agrofor. Syst. 2009, 179–185. Available online: https://apps.worldagroforestry.org/treedb/AFTPDFS/Paulownia_imperialis.PDF (accessed on 25 May 2025).
- Johnson, D.V. Use of Paulownia for Forest Plantations in the Leon Region of Nicaragua, Nicaragua Agriculture Reconstruction Assistance Program, Nicaragua; Chemnoics International, Inc.: Washington, DC, USA, 2000; 802; pp. 1–15. [Google Scholar]
- Info Flora. Paulownia tomentosa (Thunb.) Steud. 2019. Available online: https://www.infoflora.ch/en/flora/4747-paulownia-tomentosa.html (accessed on 25 May 2025).
- Danciu, A.; Vlădut, V.; Grigore, I.; Sorică, C.; Cristea, M.A.; Muscalu, A.; Pruteanu, A.; Marin, E.; Usenko, M. Considerations on the Importance of the Paulownia Trees Planting, Annals of Faculty Engineering Hunedoara. Int. J. Eng. 2016, 4, 73–80. [Google Scholar]
- Flynn, H.; Holder, C. A Guide to Useful Woods of the World; Flynn, J.H., Jr., Holder, C.D., Eds.; Forest Products Society: Madison, WI, USA, 2001. [Google Scholar]
- Caparros, S.; Diaz, M.J.; Ariza, J.; Lopez, F.; Jimenez, L. New perspectives for Paulownia valorization of the auto hydrolysis and pulping processes. Bioresour. Technol. 2008, 99, 741–749. [Google Scholar] [CrossRef]
- ELShowk, S.; Nabil, E.S. The Paulownia Tree. An alternative for sustainable forestry. Farm 2008. Available online: https://docslib.org/doc/11683191/the-paulownia-tree-an-alternative-for-sustainable-forestry (accessed on 25 May 2025).
- Jiang, T.F.; Du, X.; Shi, Y.P. Determination of flavonoids from Paulownia tomentosa (Thunb) Steud by micellar electro kinetic capillary electrophoresis. Chromatographia 2007, 59, 255–258. [Google Scholar] [CrossRef]
- Si, C.L.; Wu, L.; Zhu, Z.Y.; Kin, J.K.; Kwon, D.J.; Bae, Y.S. Apigenin derivatives from Paulownia tomentosa var. tomentosa stem barks. Holzforschung 2009, 63, 440–442. [Google Scholar] [CrossRef]
- Ibrahim, N.A.; EL Hawary, S.S.; Mohamed, M.M.D.; Faraid, M.A.; Nayera, A.M.A.; Refaat, E.S. Chemical composition: Antimicrobial activity of the essential oil of the flowers of Paulownia tomentosa growing in Egypt. J. Appl. Sci. Res. 2013, 9, 3228–3232. [Google Scholar]
- Bahri, B. In vitro propagation of a forest tree Paulownia tomentosa (Thunb.) Steud. A valuable medicinal tree species. Albanian J. Agric. Sci. 2013, 12, 37–42. [Google Scholar]
- Graves, D.H.; Stringer, J.W.; Lexington, K.Y. Paulownia: A Guide to Establishment and Cultivation. FOR-39. ISSUED: 9-89. Available online: http://www2.ca.uky.edu/agcomm/pubs/for/for39/for39.htm (accessed on 25 May 2025).
- Crișan, L.R.; Petruș-Vancea, A. Paulownia tomentosa L. in vitro propagation. Nat. Resour. Sustain. Dev. 2016, 6, 30–37. [Google Scholar]
- Bochnia, E.; Litwińczuk, W. Development of royal paulownia (Paulownia tomentosa Steud.) in vitro shoot cultures under the in-fluence of different saccharides. Acta Sci. Pol. Hortorum Cultus 2012, 11, 3–13. [Google Scholar]
- Barton, I.; Nicholas, I.; Ecroyd, C. Paulownia. For. Res. Bull. 2007, 231, 5–68. [Google Scholar]
- Takoutsing, B.; Tsobeng, A.; Tchoundjeu, Z.; Degrande, A.; Asaah, E. Vegetative Propagation of Garcinia lucida Vesque (Clusiaceae) using leafy stem cuttings and grafting. Afr. Focus 2014, 27, 57–71. [Google Scholar] [CrossRef]
- Zhao, Y. Auxin biosynthesis: A simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol. Plant. 2012, 5, 334–338. [Google Scholar] [CrossRef]
- Zhao, Y. Auxin biosynthesis and its role in plant development. Annu. Rev. Plant Biol. 2010, 61, 49–64. [Google Scholar] [CrossRef]
- Frick, E.M.; Strader, L.C. Roles for IBA derived auxin in plant development. J. Exp. Bot. 2018, 69, 169–177. [Google Scholar] [CrossRef]
- Małgorzata, W.; Małgorzata, W.; Magdalena, F. Can the Biological Activity of Abandoned Soils Be Changed by the Growth of Paulownia elongata × Paulownia fortunei? Preliminary Study on a Young Tree Plantation. Agriculture 2022, 12, 128. [Google Scholar] [CrossRef]
- Lichenthaler, H.K.; Llbrun, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef]
- Romani, P.; Pinelli, C.; Cantini: Cimato, A.; Heimler, D. Characterization of Violetto di Toscana, a typical Italian variety of artichoke (Cynara scolymus L.). J. Food Chem. 2006, 95, 221–225. [Google Scholar] [CrossRef]
- Li, J.W.; Ding, S.D.; Ding, X.L. Comparison of antioxidant capacities of extracts from five cultivars of Chinese jujube. Process Biochem. 2005, 40, 3607–3613. [Google Scholar] [CrossRef]
- Dehpour, A.A.; Ebrahimzadeh, M.A.; Fazel, N.S.; Mohammad, N.S. Antioxidant activity of the methanol extract of Ferula assafoetida and its essential oil composition. Grasas Y Aceites 2009, 60, 405–412. [Google Scholar] [CrossRef]
- Ba, K.; Tine, E.; Destain, J.; Cisse, N.; Thonart, P. Étude comparative des composés phénoliques, du pouvoir. IOP Conf. Ser. Earth Environ. Sci. 2021, 939, 012059. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Swelum, A.A.; Shafi, M.E.; Albaqami, N.M.; El-Saadony, M.T.; El-sify, A.; Abdo, M.; Mohamed, E. COVID-19 in human, animal, and environment: A review. Front. Vet. Sci. 2020, 7, 578. [Google Scholar] [CrossRef]
- Mohamad, M.E.; Awad, A.A.; Majrashi, A.; Abd Esadek, O.A.; El-Saadony, M.T.; Saad, A.M.; Gendy, A.S. In vitro study on the effect of cytokines and auxins addition to growth medium on the micropropagation and rooting of Paulownia species (Paulownia hybrid and Paulownia tomentosa). Saudi J. Biol. Sci. 2022, 29, 1598–1603. [Google Scholar] [CrossRef]
- Pożoga, M.; Ede Olewnicki, D.; Jabłońska, L. In Vitro Propagation Protocols and Variable Cost Comparison in Commercial Production for Paulownia tomentosa × Paulownia fortunei Hybrid as a Renewable Energy Source. Appl. Sci. 2019, 9, 2272. [Google Scholar] [CrossRef]
- Antwi, W.A.; Patience, M.; Gakpetor, R.T.G.; Benezer, O.; Daniel, A.O. Vegetative propagation technologies using stem and root cuttings of Paulownia tree species for mass production. J. Biodivers. Environ. Sci. 2021, 18, 67–76. [Google Scholar]
- Magar, L.B.; Shrestha, N.; Khadka, S.; Joshi, J.R.; Acharya, J.; Gyanwa-li, G.C.; Marasini, B.P.; Rajbahak, S.; Parajuli, N. Challenges and opportunity of in vitro propagation of Paulownia tomentosa steud for commercial production in nepal. Int. J. Appl. Sci. Biotechnol. 2016, 4, 155–160. [Google Scholar] [CrossRef]
- Hassan, H.; Moubarak, M. Micropropagation of yucca plant by using guar and locust bean seed powder as an alternative cheap gelling agent. Sci. J. Flowers Ornam. Plants 2020, 7, 239–246. [Google Scholar] [CrossRef]
- Bhojwani, S.S.; Dantu, P.K. Plant tissue culture. In Plant Tissue Culture: An Introductory Text; Springer: New Delhi, India, 2013. [Google Scholar] [CrossRef]
- Maqbool, M.N.; Aftab, F. An Efficient Propagation Approach to Forcing Softwood Shoots from Epicormic Buds and Subsequent Rooting of Paulownia elongate. Science 2024, 2024, 1515489. [Google Scholar] [CrossRef]
- Preece, J.E.; Ledbetter, D.I.; Zaczek, J.J. Rooting softwood cuttings collected from forced large stems of Oakleaf hydrangea and American chestnut. Comb. Proc. Int. Plant Prop. Soc. 2001, 51, 267–270. [Google Scholar]
- Ede, F.J.; Auger, M.; Green, T.G.A. Optimizing root cut-ting success in Paulownia spp. J. Hortic. Sci. 1997, 72, 179–185. [Google Scholar] [CrossRef]
- Antwi-Wiredu, A.; Amiteye, S.; Diawuoh, R.G.; Klu, G.Y.P. Ex Vitro propagation of rubber tree (Hevea brasiliensis) using stem cuttings. Int. J. Agric. Environ. Biotechnol. 2018, 3, 846–854. [Google Scholar] [CrossRef]
- Stenvall, T.; Haapala, P.; Pulkkinen, A. The role of a root cutting’s diameter and location on the regeneration ability of hybrid aspen. For. Ecol. Manag. 2006, 237, 150–155. [Google Scholar] [CrossRef]
- Gerson, R.; Muñoz, F.; Uribe, M.; Rubilar, R.A. Macropropagation of Paulownia elongata x fortunei from root cuttings in the Biobío Region, Chile. Gayana Bot. 2015, 72, 70–75. [Google Scholar] [CrossRef]
- Dubova, O.; Olena, V.; Olena, B. Paulownia Tomentosa—New species for the industrial land-scaping. Curr. Trends Nat. Sci. 2019, 8, 19–24. [Google Scholar]
- Shu, K.; Liu, X.D.; Xie, Q.; He, Z.H. Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination. Mol. Plant 2016, 9, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Fadon, E.; Fernandez, E.; Behn, H.; Luedeling, E. A conceptual framework for winter dormancy in deciduous trees. Agronomy 2020, 10, 241. [Google Scholar] [CrossRef]
- Andrés, F.; Coupland, G. The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 2012, 13, 627–639. [Google Scholar] [CrossRef]
- Gaudinier, A.; Blackman, B.K. Evolutionary processes from the perspective of flowering time diversity. New Phytol. 2020, 225, 1883–1981. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ding, J. Molecular mechanisms of flowering phenology in tree. For. Res. 2023, 3, 2. [Google Scholar] [CrossRef]
- Wang, J.W. Regulation of flowering time by the miR156-mediated age pathway. J. Exp. Bot. 2014, 65, 4723–4730. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Czech, B.; Weigel, D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 2009, 138, 738–749. [Google Scholar] [CrossRef]
- Vergun, O.; Dzhamal, R.; Svitlana, R.; Valentyna, F. Comparative study of biochemical composition of Paulownia tomentosa (Thunb.) Steud. Agrobiodivers. Improv. Nutr. Health Life Qual. 2022, 2, 180–190. [Google Scholar] [CrossRef]
- Vergun, O.; Rakhmetov, D.; Bondarchuk, O.; Rakhmetova, S.; Shymanska, O.; Fishchenko, V. Biochemical composition of Vigna spp. genotypes. Agrobiodivers. Improv. Nutr. Health Life Qual. 2022, 6, 41–48. [Google Scholar] [CrossRef]
- Schneiderova, K.; Šmejkal, K. Phytochemical profile of Paulownia tomentosa (Thunb). Steud. Phytochem. Rev. 2015, 14, 799–833. [Google Scholar] [CrossRef]
- Ross, J.A.; Kasum, C.M. Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 2002, 22, 19–34. [Google Scholar] [CrossRef]
- Marzocchella, L.; Fantini, M. Dietary flavonoids: Molecular mechanisms of action as anti-inflammatory agents. Recent Pat. Inflamm. Allergy Drug Discov. 2011, 5, 200–220. [Google Scholar] [CrossRef]
- Romano, B.; Pagano, E. Novel insights into the pharmacology of flavonoids. Phytother. Res. 2013, 27, 1588–1596. [Google Scholar] [CrossRef]
- Damodaran, S.; Strader, L.C. Indole 3-Butyric Acid Metabolism and Transport in Arabidopsis thaliana. Front. Plant Sci. 2019, 10, 851. [Google Scholar] [CrossRef] [PubMed]
- Sallam, A. In vitro propagation of F1 male hybrid lines in Asparagus officinalus. Egypt. J. Desert Res. 2019, 69, 67–86. [Google Scholar] [CrossRef]
- Sallam, S. In vitro propagation and secondary metabolites production in the wild rare Asparagus apphylus L. plant. Egypt. J. Desert Res. 2021, 2, 149–161. [Google Scholar] [CrossRef]
- Ahmed, M.; Abo El-Fadl, R.; Suliman, M.; Abd Elaziem, T. Effect of micropropagation conditions on adventitious buds formation and the circadian expression of the ACO013229.1 gene in Ananas cosmosus. Egypt. J. Desert Res. 2021, 71, 191–208. [Google Scholar] [CrossRef]
- Ghareb, H. In vitro preservation of the Egyptian endemic Silene schimperiana Boiss. Plant via encapsulation. Egypt. J. Desert Res. 2021, 69, 19–35. [Google Scholar] [CrossRef]
- Brumos, J.; Robles, L.M.; Yun, J.; Vu, T.C.; Jackson, S.; Alonso, J.M. Local auxin biosynthesis is a key regulator of plant development. Dev. Cell 2018, 47, 306–318. [Google Scholar] [CrossRef]
- Uzunova, V.V.; Quareshy, M.; Del Genio, C.I.; Napier, R.M. Tomographic docking suggests the mechanism of auxin receptor TIR1 selectivity. Open Biol. 2016, 6, 160139. [Google Scholar] [CrossRef]
- Sevik, H.; Guney, K. Effects of IAA, IBA, NAA, and GA3 on rooting and morphological features of Melissa officinalis L. stem cuttings. Sci. World J. 2013, 2013, 909507. [Google Scholar] [CrossRef]
- Korasick, D.A.; Enders, T.A.; Strader, L.C. Auxin biosynthesis and storage forms. J. Exp. Bot. 2013, 64, 2541–2555. [Google Scholar] [CrossRef]
- Brown, D.E.; Rashotte, A.M.; Murphy, A.S.; Normanly, J.; Tague, B.W.; Peer, W.A.; Taiz, L.; Muday, G.K. Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol. 2001, 126, 524–535. [Google Scholar] [CrossRef]
- Teale, W.D.; Paponov, I.A.; Palme, K. Auxin in action: Signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 2006, 7, 847–859. [Google Scholar] [CrossRef] [PubMed]
- Teale, W.D.; Ditengou, F.A.; Dovzhenko, A.D.; Li, X.; Molendijk, A.M.; Ruperti, B.; Paponov, I.; Palme, K. Auxin as a model for the integration of hormonal signal processing and transduction. Mol. Plant 2008, 1, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Ugur, T. Application of indole-3-butyric acid (IBA) enhances agronomic, physiological and antioxidant traits of Salvia fruticosa under saline conditions: A practical approach. PeerJ 2025, 13, e18846. [Google Scholar] [CrossRef]
Treatments | Total Chlorophyll Content | Proline Content | Total Polyphenol Compound Content | Total Flavonoid Content | Condensed Tannin Content | Antioxidant Activity | ||
---|---|---|---|---|---|---|---|---|
Diameter of Root Cutting | Hormone Concentration | Soil Type | ||||||
L1 | C | S1 | 1.32 ± 0.12 | 0.87 ± 0.01 | 0.65 ± 0.12 | 0.25 ± 0.01 | 3.75 ± 0.21 | 0.94 ± 0.03 |
S2 | 0.09 ± 0.00 | 0.87 ± 0.01 | 0.57 ± 0.03 | 0.24 ± 0.02 | 3.64 ± 0.19 | 0.90 ± 0.03 | ||
T1 | S1 | 1.24 ± 0.13 | 0.84 ± 0.05 | 0.91 ± 0.02 | 0.26 ± 0.04 | 4.05 ± 0.08 | 0.84 ± 0.13 | |
S2 | 0.09 ± 0.01 | 0.83 ± 0.04 | 0.73 ± 0.04 | 0.26 ± 0.02 | 3.60 ± 0.24 | 0.87 ± 0.09 | ||
T2 | S1 | 1.25 ± 0.03 | 0.91 ± 0.01 | 0.74 ± 0.21 | 0.28 ± 0.03 | 4.14 ± 0.27 | 0.98 ± 0.01 | |
S2 | 0.39 ± 0.49 | 0.80 ± 0.06 | 0.77 ± 0.13 | 0.23 ± 0.02 | 3.50 ± 0.40 | 0.92 ± 0.01 | ||
L2 | C | S1 | 0.94 ± 0.03 | 0.91 ± 0.01 | 0.81 ± 0.05 | 0.22 ± 0.02 | 5.25 ± 0.10 | 1.12 ± 0.10 |
S2 | 0.94 ± 0.03 | 0.90 ± 0.06 | 0.79 ± 0.02 | 0.24 ± 0.02 | 4.47 ± 0.57 | 0.98 ± 0.02 | ||
T1 | S1 | 0.95 ± 0.03 | 0.91 ± 0.01 | 0.90 ± 0.02 | 0.31 ± 0.00 | 6.08 ± 0.14 | 1.30 ± 0.06 | |
S2 | 0.95 ± 0.03 | 0.92 ± 0.01 | 0.86 ± 0.09 | 0.28 ± 0.07 | 5.94 ± 0.81 | 1.37 ± 0.08 | ||
T2 | S1 | 0.91 ± 0.05 | 0.91 ± 0.01 | 0.88 ± 0.04 | 0.32 ± 0.02 | 5.54 ± 0.11 | 1.37 ± 0.02 | |
S2 | 0.91 ± 0.05 | 0.91 ± 0.02 | 0.86 ± 0.07 | 0.34 ± 0.01 | 6.26 ± 0.41 | 1.41 ± 0.07 | ||
L3 | C | S1 | 0.09 ± 0.00 | 1.27 ± 0.07 | 1.26 ± 0.20 | 0.50 ± 0.02 | 8.60 ± 0.12 | 1.60 ± 0.04 |
S2 | 1.04 ± 0.05 | 1.09 ± 0.11 | 1.26 ± 0.16 | 0.52 ± 0.01 | 8.59 ± 0.26 | 1.67 ± 0.03 | ||
T1 | S1 | 0.09 ± 0.01 | 1.36 ± 0.01 | 1.18 ± 0.14 | 0.56 ± 0.02 | 8.72 ± 0.25 | 1.76 ± 0.03 | |
S2 | 1.08 ± 0.06 | 1.34 ± 0.02 | 1.24 ± 0.10 | 0.56 ± 0.02 | 8.78 ± 0.17 | 1.87 ± 0.03 | ||
T2 | S1 | 0.39 ± 0.49 | 1.40 ± 0.01 | 1.42 ± 0.05 | 0.63 ± 0.02 | 8.59 ± 0.20 | 1.87 ± 0.02 | |
S2 | 1.10 ± 0.07 | 1.41 ± 0.04 | 1.44 ± 0.06 | 0.65 ± 0.03 | 8.78 ± 0.11 | 1.92 ± 0.02 | ||
L4 | C | S1 | 1.04 ± 0.05 | 1.51 ± 0.01 | 1.57 ± 0.06 | 0.64 ± 0.02 | 8.93 ± 0.24 | 1.96 ± 0.02 |
S2 | 1.32 ± 0.12 | 1.51 ± 0.03 | 1.52 ± 0.04 | 0.66 ± 0.01 | 9.09 ± 0.06 | 1.92 ± 0.07 | ||
T1 | S1 | 1.08 ± 0.06 | 1.54 ± 0.00 | 1.63 ± 0.04 | 0.62 ± 0.00 | 9.18 ± 0.45 | 2.27 ± 0.33 | |
S2 | 1.24 ± 0.13 | 1.60 ± 0.01 | 1.63 ± 0.03 | 0.63 ± 0.01 | 9.81 ± 0.28 | 2.38 ± 0.28 | ||
T2 | S1 | 1.10 ± 0.07 | 1.56 ± 0.03 | 1.83 ± 0.04 | 0.62 ± 0.00 | 9.68 ± 0.14 | 2.33 ± 0.06 | |
S2 | 1.25 ± 0.03 | 1.63 ± 0.01 | 1.82 ± 0.06 | 0.68 ± 0.01 | 9.75 ± 0.12 | 2.65 ± 0.05 |
Source of Variation/Variables | Total Chlorophyll Content | Proline Content | Total Polyphenol Compounds Content | Total Flavonoids Content | Condensed Tannins Content | Antioxidant Activity |
---|---|---|---|---|---|---|
Corrected model | 22.321 *** | 198.42 *** | 53.77 *** | 172.83 *** | 185.17 *** | 82.35 *** |
Intercept | 2235.753 *** | 69,405.89 *** | 10,736.15 *** | 24,824.89 *** | 37,422.47 *** | 15,910.49 *** |
Diameter of root cuttings | 42.488 *** | 1456.07 *** | 387.87 *** | 1264.04 *** | 1383.43 *** | 575.43 *** |
Hormone concentrations | 1.696 ns | 26.79 *** | 19.00 *** | 41.19 *** | 20.81 *** | 49.38 *** |
Soil types | 0.000 ns | 1.49 ns | 1.17 ns | 1.84 ns | 0.11 ns | 3.09 ns |
Diameter * Hormone concentrations | 0.861 ns | 14.23 *** | 4.42 *** | 12.52 *** | 5.03 *** | 7.69 *** |
Diameter * Soil type | 123.139 *** | 6.86 *** | 0.95 ns | 4.02 ** | 4.09 ** | 2.07 ns |
Hormone concentrations * Soil type | 0.000 ns | 3.91 * | 0.47 ns | 1.04 ns | 1.29 ns | 2.76 ns |
Diameter * Hormone concentrations * Soil type | 1.325 ns | 4.45 *** | 0.60 ns | 1.57 ns | 3.63 ** | 1.35 ns |
Levene statistic (based on mean) | 10.12 *** | 4.81 *** | 2.95 *** | 2.63 ** | 3.11 *** | 5.64 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasraoui, A.H.; Heikal, Y.M.; Ali, M.; Abidi, C.; Ammari, Y. Assessment of Paulownia tomentosa Steud. Regeneration Capacity Through Root Cutting Diameters, Growth Hormone doses and Soil Types. Int. J. Plant Biol. 2025, 16, 73. https://doi.org/10.3390/ijpb16030073
Nasraoui AH, Heikal YM, Ali M, Abidi C, Ammari Y. Assessment of Paulownia tomentosa Steud. Regeneration Capacity Through Root Cutting Diameters, Growth Hormone doses and Soil Types. International Journal of Plant Biology. 2025; 16(3):73. https://doi.org/10.3390/ijpb16030073
Chicago/Turabian StyleNasraoui, Afef H., Yasmin M. Heikal, Mohammed Ali, Chedly Abidi, and Youssef Ammari. 2025. "Assessment of Paulownia tomentosa Steud. Regeneration Capacity Through Root Cutting Diameters, Growth Hormone doses and Soil Types" International Journal of Plant Biology 16, no. 3: 73. https://doi.org/10.3390/ijpb16030073
APA StyleNasraoui, A. H., Heikal, Y. M., Ali, M., Abidi, C., & Ammari, Y. (2025). Assessment of Paulownia tomentosa Steud. Regeneration Capacity Through Root Cutting Diameters, Growth Hormone doses and Soil Types. International Journal of Plant Biology, 16(3), 73. https://doi.org/10.3390/ijpb16030073