Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (626)

Search Parameters:
Keywords = wire speed

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3620 KiB  
Article
Proposal of a Thermal Network Model for Fast Solution of Temperature Rise Characteristics of Aircraft Wire Harnesses
by Tao Cao, Wei Li, Tianxu Zhao and Shumei Cui
Energies 2025, 18(15), 4046; https://doi.org/10.3390/en18154046 - 30 Jul 2025
Viewed by 159
Abstract
The design of aircraft electrical wiring interconnection systems (EWISs) is central to ensuring the safe and reliable operation of aircraft. The calculation of the temperature rise characteristics of aircraft wire harnesses is one of the key technologies in EWIS design, directly affecting the [...] Read more.
The design of aircraft electrical wiring interconnection systems (EWISs) is central to ensuring the safe and reliable operation of aircraft. The calculation of the temperature rise characteristics of aircraft wire harnesses is one of the key technologies in EWIS design, directly affecting the safety margin of the system. However, existing calculation methods generally face a bottleneck in the balance between speed and accuracy, failing to meet the requirements of actual engineering applications. In this paper, we conduct an in-depth study on this issue. Firstly, a finite element harness model is established to accurately obtain the convective heat transfer coefficients of wires and harnesses. Based on the analysis of the influencing factors of the thermal network model for a single wire, an improved thermal resistance hierarchical wire thermal network model is proposed. A structure consisting of series thermal resistance within layers and iterative parallel algorithms between layers is proposed to equivalently integrate and iteratively calculate the mutual thermal influence relationship between each layer of the harness, thereby constructing a hierarchical harness thermal network model. This model successfully achieves a significant improvement in calculation speed while effectively ensuring useable temperature rise results, providing an effective method for EWIS design. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

25 pages, 7034 KiB  
Article
Transient Simulation of Aerodynamic Load Variations on Carrier-Based Aircraft During Recovery in Carrier Airwake
by Xiaoxi Yang, Baokuan Li, Yang Nie, Zhibo Ren and Fangchao Tian
Aerospace 2025, 12(8), 656; https://doi.org/10.3390/aerospace12080656 - 23 Jul 2025
Viewed by 185
Abstract
Carrier-based aircraft recovery is a critical and challenging phase in maritime operations due to the turbulent airwake generated by aircraft carriers, which significantly increases the workload of flight control systems and pilots. This study investigates the airwake effects of an aircraft carrier under [...] Read more.
Carrier-based aircraft recovery is a critical and challenging phase in maritime operations due to the turbulent airwake generated by aircraft carriers, which significantly increases the workload of flight control systems and pilots. This study investigates the airwake effects of an aircraft carrier under varying wind direction conditions. A high-fidelity mathematical model combining delayed detached-eddy simulation (DDES) with the overset grid method was developed to analyze key flow characteristics, including upwash, downwash, and lateral recirculation. The model ensures precise control of aircraft speed and trajectory during landing while maintaining numerical stability through rigorous mesh optimization. The results indicate that the minimum lift occurs in the downwash region aft of the deck, marking it as the most hazardous zone during landing. Aircraft above the deck are primarily influenced by ground effects, causing a sudden increase in lift that complicates arresting wire engagement. Additionally, the side force on the aircraft undergoes an abrupt reversal during the approach phase. The dual overset mesh technique effectively captures the coupled motion of the hull and aircraft, revealing higher turbulence intensity along the glideslope and a wider range of lift fluctuations compared to stationary hull conditions. These findings provide valuable insights for optimizing carrier-based aircraft recovery procedures, offering more realistic data for simulation training and enhancing pilot preparedness for airwake-induced disturbances. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

20 pages, 5404 KiB  
Article
Flying Steel Detection in Wire Rod Production Based on Improved You Only Look Once v8
by Yifan Lu, Fei Zhang, Xiaozhan Li, Jian Zhang, Xiong Xiao, Lijun Wang and Xiaofei Xiang
Processes 2025, 13(7), 2297; https://doi.org/10.3390/pr13072297 - 18 Jul 2025
Viewed by 258
Abstract
In the process of high-speed wire rod production, flying steel accidents may occur due to various reasons. Current detection methods relying on sensors like hardware make debugging complex as well as limit real-time and accuracy. These methods are complicated to debug, and the [...] Read more.
In the process of high-speed wire rod production, flying steel accidents may occur due to various reasons. Current detection methods relying on sensors like hardware make debugging complex as well as limit real-time and accuracy. These methods are complicated to debug, and the real-time and accuracy of detection are poor. Therefore, this paper proposes a flying steel detection method based on improved You Only Look Once v8 (YOLOv8), which can realize high-precision flying steel detection based on machine vision through the monitoring video of the production site. Firstly, the Omni-dimensional Dynamic Convolution (ODConv) is added to the backbone network to improve the feature extraction ability of the input image. Then, a lightweight C2f-PCCA_RVB module is proposed to be integrated into the neck network, so as to carry out the lightweight design of the neck network. Finally, the Efficient Multi-Scale Attention (EMA) module is added to the neck network to fuse the context information of different scales and improve the feature extraction ability. The experimental results show that the average accuracy (mAP@0.5) of the flying steel detection method based on the improved YOLOv8 is 99.1%, and the latency is reduced to 2.5 ms, which can realize the real-time accurate detection of the flying steel. Full article
Show Figures

Figure 1

20 pages, 6173 KiB  
Article
Research on an Energy-Harvesting System Based on the Energy Field of the Environment Surrounding a Photovoltaic Power Plant
by Bin Zhang, Binbin Wang, Hongxi Zhang, Abdelkader Outzourhit, Fouad Belhora, Zoubir El Felsoufi, Jia-Wei Zhang and Jun Gao
Energies 2025, 18(14), 3786; https://doi.org/10.3390/en18143786 - 17 Jul 2025
Viewed by 281
Abstract
With the large-scale global deployment of photovoltaics (PV), traditional monitoring technologies face challenges such as wiring difficulties, high energy consumption, and high maintenance costs in remote or complex terrains, which limit long-term environmental sensing. Therefore, energy-harvesting systems are crucial for the intelligent operation [...] Read more.
With the large-scale global deployment of photovoltaics (PV), traditional monitoring technologies face challenges such as wiring difficulties, high energy consumption, and high maintenance costs in remote or complex terrains, which limit long-term environmental sensing. Therefore, energy-harvesting systems are crucial for the intelligent operation of photovoltaic systems; however, their deployment depends on the accurate mapping of wind energy fields and solar irradiance fields. This study proposes a multi-scale simulation method based on computational fluid dynamics (CFD) to optimize the placement of energy-harvesting systems in photovoltaic power plants. By integrating wind and irradiance distribution analysis, the spatial characteristics of airflow and solar radiation are mapped to identify high-efficiency zones for energy harvesting. The results indicate that the top of the photovoltaic panel exhibits a higher wind speed and reflected irradiance, providing the optimal location for an energy-harvesting system. The proposed layout strategy improves overall energy capture efficiency, enhances sensor deployment effectiveness, and supports intelligent, maintenance-free monitoring systems. This research not only provides theoretical guidance for the design of energy-harvesting systems in PV stations but also offers a scalable method applicable to various geographic scenarios, contributing to the advancement of smart and self-powered energy systems. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

46 pages, 6649 KiB  
Review
Matrix WaveTM System for Mandibulo-Maxillary Fixation—Just Another Variation on the MMF Theme?—Part II: In Context to Self-Made Hybrid Erich Arch Bars and Commercial Hybrid MMF Systems—Literature Review and Analysis of Design Features
by Carl-Peter Cornelius, Paris Georgios Liokatis, Timothy Doerr, Damir Matic, Stefano Fusetti, Michael Rasse, Nils Claudius Gellrich, Max Heiland, Warren Schubert and Daniel Buchbinder
Craniomaxillofac. Trauma Reconstr. 2025, 18(3), 33; https://doi.org/10.3390/cmtr18030033 - 15 Jul 2025
Viewed by 428
Abstract
Study design: Trends in the utilization of Mandibulo-Maxillary Fixation (MMF) are shifting nowadays from tooth-borne devices over specialized screws to hybrid MMF devices. Hybrid MMF devices come in self-made Erich arch bar modifications and commercial hybrid MMF systems (CHMMFSs). Objective: We survey the [...] Read more.
Study design: Trends in the utilization of Mandibulo-Maxillary Fixation (MMF) are shifting nowadays from tooth-borne devices over specialized screws to hybrid MMF devices. Hybrid MMF devices come in self-made Erich arch bar modifications and commercial hybrid MMF systems (CHMMFSs). Objective: We survey the available technical/clinical data. Hypothetically, the risk of tooth root damage by transalveolar screws is diminished by a targeting function of the screw holes/slots. Methods: We utilize a literature review and graphic displays to disclose parallels and dissimilarities in design and functionality with an in-depth look at the targeting properties. Results: Self-made hybrid arch bars have limitations to meet low-risk interradicular screw insertion sites. Technical/clinical information on CHMMFSs is unevenly distributed in favor of the SMARTLock System: positive outcome variables are increased speed of application/removal, the possibility to eliminate wiring and stick injuries and screw fixation with standoff of the embodiment along the attached gingiva. Inferred from the SMARTLock System, all four CHMMFs possess potential to effectively prevent tooth root injuries but are subject to their design features and targeting with the screw-receiving holes. The height profile and geometry shape of a CHMMFS may restrict three-dimensional spatial orientation and reach during placement. To bridge between interradicular spaces and tooth equators, where hooks or tie-up-cleats for intermaxillary cerclages should be ideally positioned under biomechanical aspects, can be problematic. The movability of their screw-receiving holes according to all six degrees of freedom differs. Conclusion: CHMMFSs allow simple immobilization of facial fractures involving dental occlusion. The performance in avoiding tooth root damage is a matter of design subtleties. Full article
Show Figures

Figure 1

18 pages, 2473 KiB  
Article
Experimental Investigations on Microstructure and Mechanical Properties of L-Shaped Structure Fabricated by WAAM Process of NiTi SMA
by Vatsal Vaghasia, Rakesh Chaudhari, Sakshum Khanna, Jash Modi and Jay Vora
J. Manuf. Mater. Process. 2025, 9(7), 239; https://doi.org/10.3390/jmmp9070239 - 11 Jul 2025
Viewed by 413
Abstract
In the present study, an L-shaped multi-walled structure of NiTi shape memory alloy (SMA) was fabricated by using the wire arc additive manufacturing (WAAM) method on a titanium substrate. The present study aims to investigate the fabricated structure for microstructure, macrostructure, and mechanical [...] Read more.
In the present study, an L-shaped multi-walled structure of NiTi shape memory alloy (SMA) was fabricated by using the wire arc additive manufacturing (WAAM) method on a titanium substrate. The present study aims to investigate the fabricated structure for microstructure, macrostructure, and mechanical properties. The 40 layers of L-shaped structure were successfully fabricated at optimized parameters of wire feed speed at 6 m/min, travel speed at 12 mm/s, and voltage at 20 V. The macrographs demonstrated the continuous bonding among the layers with complete fusion. The microstructure in the area between the two middle layers has exhibited a mixture of columnar grains (both coarse and fine), interspersed with dendritic colonies. The microstructure in the topmost layers has exhibited finer colonial structures in relatively greater numbers. The microhardness (MH) test has shown the average values of 283.2 ± 3.67 HV and 371.1 ± 5.81 HV at the bottom and topmost layers, respectively. A tensile test was conducted for specimens extracted from deposition and build directions, which showed consistent mechanical behavior. For the deposition direction, the average ultimate tensile strength (UTS) and elongation (EL) were obtained as 831 ± 22.91 MPa and 14.32 ± 0.55%, respectively, while the build direction has shown average UTS and EL values of 774 ± 6.56 MPa and 14.16 ± 0.21%, respectively. The elongation exceeding 10% in all samples suggests that the fabricated structure demonstrates properties comparable to those of wrought metal. Fractography of all tensile specimens has shown good ductility and toughness. Lastly, a differential scanning calorimetry test was carried out to assess the retention of shape memory effect for the fabricated structure. The authors believe that the findings of this work will be valuable for various industrial applications. Full article
Show Figures

Figure 1

18 pages, 1184 KiB  
Article
A Confidential Transmission Method for High-Speed Power Line Carrier Communications Based on Generalized Two-Dimensional Polynomial Chaotic Mapping
by Zihan Nie, Zhitao Guo and Jinli Yuan
Appl. Sci. 2025, 15(14), 7813; https://doi.org/10.3390/app15147813 - 11 Jul 2025
Viewed by 286
Abstract
The deep integration of smart grid and Internet of Things technologies has made high-speed power line carrier communication a key communication technology in energy management, industrial monitoring, and smart home applications, owing to its advantages of requiring no additional wiring and offering wide [...] Read more.
The deep integration of smart grid and Internet of Things technologies has made high-speed power line carrier communication a key communication technology in energy management, industrial monitoring, and smart home applications, owing to its advantages of requiring no additional wiring and offering wide coverage. However, the inherent characteristics of power line channels, such as strong noise, multipath fading, and time-varying properties, pose challenges to traditional encryption algorithms, including low key distribution efficiency and weak anti-interference capabilities. These issues become particularly pronounced in high-speed transmission scenarios, where the conflict between data security and communication reliability is more acute. To address this problem, a secure transmission method for high-speed power line carrier communication based on generalized two-dimensional polynomial chaotic mapping is proposed. A high-speed power line carrier communication network is established using a power line carrier routing algorithm based on the minimal connected dominating set. The autoregressive moving average model is employed to determine the degree of transmission fluctuation deviation in the high-speed power line carrier communication network. Leveraging the complex dynamic behavior and anti-decoding capability of generalized two-dimensional polynomial chaotic mapping, combined with the deviation, the communication key is generated. This process yields encrypted high-speed power line carrier communication ciphertext that can resist power line noise interference and signal attenuation, thereby enhancing communication confidentiality and stability. By applying reference modulation differential chaotic shift keying and integrating the ciphertext of high-speed power line carrier communication, a secure transmission scheme is designed to achieve secure transmission in high-speed power line carrier communication. The experimental results demonstrate that this method can effectively establish a high-speed power line carrier communication network and encrypt information. The maximum error rate obtained by this method is 0.051, and the minimum error rate is 0.010, confirming its ability to ensure secure transmission in high-speed power line carrier communication while improving communication confidentiality. Full article
Show Figures

Figure 1

14 pages, 1459 KiB  
Article
Research on the Dynamic Response of the Catenary of the Co-Located Railway for Conventional/High Speed Trains in High-Wind Area
by Guanghui Li, Yongzhi Gou, Binqian Guo, Hongmei Li, Enfan Cao and Junjie Ma
Infrastructures 2025, 10(7), 182; https://doi.org/10.3390/infrastructures10070182 - 11 Jul 2025
Viewed by 227
Abstract
To establish a theoretical foundation for assessing the dynamic performance of high-speed train catenary systems in wind-prone regions, this study develops a coupled pantograph–catenary model using ANSYS(2022R1) APDL. The dynamic responses of conventional high-speed pantographs traversing both mainline and transition sections are analyzed [...] Read more.
To establish a theoretical foundation for assessing the dynamic performance of high-speed train catenary systems in wind-prone regions, this study develops a coupled pantograph–catenary model using ANSYS(2022R1) APDL. The dynamic responses of conventional high-speed pantographs traversing both mainline and transition sections are analyzed under varying operational conditions. The key findings reveal that an elevated rated tension in the contact wire and messenger wire reduces the pantograph lift in wind areas with no crosswind compared to non-wind areas, with an average lift reduction of 8.52% and diminished standard deviation, indicating enhanced system stability. Under a 20 m/s crosswind, both tested pantograph designs maintain contact force and dynamic lift within permissible thresholds, while significant catenary undulations predominantly occur at mid-span locations. Active control strategies preserve the static lift force but induce pantograph flattening under compression, reducing aerodynamic drag and resulting in smaller contact force fluctuations relative to normal-speed sections. In contrast, passive control increases static lift, thereby causing greater fluctuations in contact force compared to baseline conditions. The superior performance of active control is attributed to its avoidance of static lift amplification, which dominates the dynamic response in passive systems. Full article
(This article belongs to the Special Issue The Resilience of Railway Networks: Enhancing Safety and Robustness)
Show Figures

Figure 1

15 pages, 3898 KiB  
Article
Wireless Temperature Monitoring of a Shaft Based on Piezoelectric Energy Harvesting
by Piotr Micek and Dariusz Grzybek
Energies 2025, 18(14), 3620; https://doi.org/10.3390/en18143620 - 9 Jul 2025
Viewed by 235
Abstract
Wireless structural health monitoring is needed for machine elements of which the working motions prevent wired monitoring. Rotating machine shafts are such elements. Wired monitoring of the rotating shaft requires making significant changes to the shaft structure, primarily drilling a hole in the [...] Read more.
Wireless structural health monitoring is needed for machine elements of which the working motions prevent wired monitoring. Rotating machine shafts are such elements. Wired monitoring of the rotating shaft requires making significant changes to the shaft structure, primarily drilling a hole in the longitudinal axis of the shaft and installing a slip ring assembly at the end of the shaft. Such changes to the shaft structure are not always possible. This paper proposes the use of piezoelectric energy harvesting from a rotating shaft to power wireless temperature monitoring of the shaft surface. The main components of presented wireless temperature monitoring are three piezoelectric composite patches, three thermal fuses, a system for storing and distributing the harvested energy, and a radio transmitter. This article contains the results of experimental research of such wireless monitoring on a dedicated laboratory stand. This research included four connections of piezoelectric composite patches: delta, star, parallel, and series for different capacities of a storage capacitor. Based on experimental results, three parameters that influence the frequency of sending data packets by the presented wireless temperature monitoring are identified: amplitude of stress in the rotating shaft, rotation speed of the shaft, and the capacity of a storage capacitor. Full article
(This article belongs to the Special Issue Innovations and Applications in Piezoelectric Energy Harvesting)
Show Figures

Figure 1

15 pages, 2939 KiB  
Article
Optimization of Process Parameters for WEDM Processing SiCp/Al Based on Graphene Working Fluid
by Zhou Sun, Weining Lei, Linglei Kong and Yafeng He
Processes 2025, 13(7), 2156; https://doi.org/10.3390/pr13072156 - 7 Jul 2025
Viewed by 311
Abstract
In the process of machining an aluminum matrix silicon carbide (SiCp/Al) composite material using wire electric discharge machining (WEDM), the thermal conductivity and dielectric properties of working fluid, such as discharge medium and cool carrier, directly determine the material removal rate (MRR) and [...] Read more.
In the process of machining an aluminum matrix silicon carbide (SiCp/Al) composite material using wire electric discharge machining (WEDM), the thermal conductivity and dielectric properties of working fluid, such as discharge medium and cool carrier, directly determine the material removal rate (MRR) and surface roughness (Ra). In this paper, graphene-working fluid is innovatively used as working medium to optimize the discharge process due to its high thermal conductivity and field emission characteristics. The single-factor experiments show that graphene can increase the MRR by 11.16% and decrease the Ra by 29.96% compared with traditional working fluids. In order to analyze the multi-parameter coupling effect, an L16 (44) orthogonal test is further designed, and the effects of the pulse width (Ton), duty cycle (DC), power tube number (PT), and wire speed (WS) on the MRR and Ra are determined using a signal-to-noise analysis. Based on a gray relational grade analysis, a multi-objective optimization model was established, and the priority of the MRR and Ra was determined using an AHP, and finally the optimal parameter combination (Ton = 22 μs, DC = 1:4, PT = 3, WS = 2) was obtained. Full article
(This article belongs to the Special Issue Processes in 2025)
Show Figures

Figure 1

16 pages, 3538 KiB  
Article
Performance Measurement of an Electromagnetic Guided-Wave Liquid Level Sensor
by Parisa Esmaili, Federico Cavedo and Michele Norgia
Metrology 2025, 5(3), 38; https://doi.org/10.3390/metrology5030038 - 1 Jul 2025
Viewed by 206
Abstract
Slight changes in the local properties of a transmission line, dipped in a liquid, can be used to estimate its level through two different determination techniques, involving the capacitance and electromagnetic wave speed, measured by the time of flight. Indeed, the overall capacitance [...] Read more.
Slight changes in the local properties of a transmission line, dipped in a liquid, can be used to estimate its level through two different determination techniques, involving the capacitance and electromagnetic wave speed, measured by the time of flight. Indeed, the overall capacitance of a transmission line varies linearly with the liquid level, as well as the time of flight of the electromagnetic wave. Both quantities can be estimated via the measurement of a phase shift at radio frequencies, and the simultaneous measurements can be realized using a compact and low-cost design working at a few megahertz. This paper presents a further improvement in sensitivity to challenge the performance of this kind of level sensor, dealing with liquids with low dielectric constants. To better describe this effect, a study on the overall capacitance of different transmission path segments was conducted in COMSOL Multiphysics. The level measurement was performed experimentally on the realized prototype while considering the measured phase shift as a function of the liquid level, for both an unshielded twisted-pair and magnet wires. As the results showed, with the magnet wires the sensitivity was improved by a factor of about 4, consistently aligning with the simulation results and providing a predictable phase shift response with increasing liquid levels. Consequently, magnet wire is a good choice for precise level measurements through RF phase shifts, especially in the case of low relative permittivity liquids. Full article
Show Figures

Figure 1

19 pages, 4360 KiB  
Article
A Feasibility Study on UV Nanosecond Laser Ablation for Removing Polyamide Insulation from Platinum Micro-Wires
by Danial Rahnama, Graziano Chila and Sivakumar Narayanswamy
J. Manuf. Mater. Process. 2025, 9(7), 208; https://doi.org/10.3390/jmmp9070208 - 21 Jun 2025
Cited by 1 | Viewed by 560
Abstract
This study presents the optimization of a laser ablation process designed to achieve the precise removal of polyamide coatings from ultra-thin platinum wires. Removing polymer coatings is a critical challenge in high-reliability manufacturing processes such as aerospace thermocouple fabrication. The ablation process must [...] Read more.
This study presents the optimization of a laser ablation process designed to achieve the precise removal of polyamide coatings from ultra-thin platinum wires. Removing polymer coatings is a critical challenge in high-reliability manufacturing processes such as aerospace thermocouple fabrication. The ablation process must not only ensure the complete removal of the polyamide insulation but also maintain the tensile strength of the wire to withstand mechanical handling in subsequent manufacturing stages. Additionally, the exposed platinum surface must exhibit low surface roughness to enable effective soldering and be free of thermal damage or residual debris to pass strict visual inspections. The wires have a total diameter of 65 µm, consisting of a 50 µm platinum core encased in a 15 µm polyamide coating. By utilizing a UV laser with a wavelength of 355 nm, average power of 3 W, a repetition rate range of 20 to 200 kHz, and a high-speed marking system, the process parameters were systematically refined. Initial attempts to perform the ablation in an air medium were unsuccessful due to inadequate thermal control and incomplete removal of the polyamide coating. Hence, a water-assisted ablation technique was explored to address these limitations. Experimental results demonstrated that a scanning speed of 1200 mm/s, coupled with a line spacing of 1 µm and a single ablation pass, resulted in complete coating removal while ensuring the integrity of the platinum substrate. The incorporation of a water layer above the ablation region was considered crucial for effective heat dissipation, preventing substrate overheating and ensuring uniform ablation. The laser’s spot diameter of 20 µm in air and a focal length of 130 mm introduced challenges related to overlap control between successive passes, requiring precise calibration to maintain consistency in coating removal. This research demonstrates the feasibility and reliability of water-assisted laser ablation as a method for a high-precision, non-contact coating material. Full article
(This article belongs to the Special Issue Advances in Laser-Assisted Manufacturing Techniques)
Show Figures

Figure 1

15 pages, 5614 KiB  
Article
Influence of Post-Heat Treatment on the Tensile Strength and Microstructure of Metal Inert Gas Dissimilar Welded Joints
by Van-Thuc Nguyen, Thanh Tan Nguyen, Van Huong Hoang, Tran Ngoc Thien, Duong Thi Kim Yen, Tri Ho Minh, Le Minh Tuan, Anh Tu Nguyen, Hoang Trong Nghia, Pham Quan Anh, Phan Quoc Bao and Van Thanh Tien Nguyen
Crystals 2025, 15(7), 586; https://doi.org/10.3390/cryst15070586 - 20 Jun 2025
Viewed by 332
Abstract
Taguchi and post-heat treatment methods have been used in this study to optimize the metal inert gas (MIG) welding joints between SUS304 austenite stainless steel and plain carbon SS400 steel using AWS ER 308L filler wire. The dissimilar welding joints’ microstructure and tensile [...] Read more.
Taguchi and post-heat treatment methods have been used in this study to optimize the metal inert gas (MIG) welding joints between SUS304 austenite stainless steel and plain carbon SS400 steel using AWS ER 308L filler wire. The dissimilar welding joints’ microstructure and tensile strength have been examined. The findings show that the fast cooling of the weld joint and the ferrite-forming element of the filler wire cause the dendrites’ δ-ferrite phase to emerge on both the weld bead and the heat-affected zone (HAZ) of the SUS304 side. The stickout parameter has the largest impact on the ultimate tensile strength (UTS), next to the welding speed, welding voltage, and welding current, due to the strong impact of the heat distribution. The optimal welding parameters are a welding current of 105 A, a welding voltage of 14.5 V, a stickout of 12 mm, and a welding speed of 420 mm/min, producing the UTS value of 445.3 MPa, which is close to the predicted value of 469.2 ± 53.6 MPa. Post-heat treatment with an annealing temperature that is lower than 700 °C could improve the optimized weld joints’ strength by up to 5%. The findings may provide a more realistic understanding of the dissimilar welding technology. Full article
Show Figures

Figure 1

19 pages, 2303 KiB  
Article
ANOVA Based Optimization of UV Nanosecond Laser for Polyamide Insulation Removal from Platinum Wires Under Water Confinement
by Danial Rahnama, Graziano Chila and Sivakumar Narayanswamy
J. Manuf. Mater. Process. 2025, 9(6), 201; https://doi.org/10.3390/jmmp9060201 - 18 Jun 2025
Viewed by 368
Abstract
Platinum wires, known for their excellent electrical conductivity and durability, are widely used in high-precision industries, such as aerospace and automotive. These wires are typically coated with polyamide for protection; however, specific manufacturing processes require the coating to be selectively removed. Although traditional [...] Read more.
Platinum wires, known for their excellent electrical conductivity and durability, are widely used in high-precision industries, such as aerospace and automotive. These wires are typically coated with polyamide for protection; however, specific manufacturing processes require the coating to be selectively removed. Although traditional chemical stripping methods are effective, they are associated with high costs, safety concerns, and long processing times. As a result, laser ablation has emerged as a more efficient, precise, and cleaner alternative, especially at the microscale. In this study, ultraviolet nanosecond laser ablation was applied to remove polyamide coatings from ultra-thin platinum wires in a water-assisted environment. The presence of water enhances the process by promoting thermal management and minimizing debris. Key processing parameters, including the scanning speed, overlap percentage, and line distance, were evaluated. The optimal result was achieved at a scanning speed of 1200 mm/s, line distance of 1 µm, and single loop in water-ambient, where coating removal was complete, surface roughness remained low, and wire tensile strength was preserved. This performance is attributed to the effective energy distribution across the wire surface and reduced thermal damage due to the heat dissipation role of water, along with controlled overlap that ensured full coverage without overexposure. A thin, well-maintained water layer confined above the apex of the wire played a crucial role in regulating the thermal flow during ablation. This setup helped shield the delicate platinum substrate from overheating, thereby maintaining its mechanical integrity and preventing substrate damage throughout the process. This study primarily focused on analyzing the main effects and two-factor interactions of these parameters using Analysis of Variance (ANOVA). Interactions such as Speed × Overlap and Speed × Line Distance were statistically examined to identify the influence of combined factors on tensile strength and surface roughness. In the second phase of experimentation, the parameter space was further expanded by increasing the line distance and number of loops to reduce the overlap in the X-direction. This allowed for a more comprehensive process evaluation. Again, conditions around 1200 mm/s and 1500 mm/s with 2 µm line distance and two loops offered favorable outcomes, although 1200 mm/s was selected as the optimal speed due to better consistency. These findings contribute to the development of a robust, high-precision laser processing method for ultra-thin wire applications. The statistical insights gained through ANOVA offer a data-driven framework for optimizing future laser ablation processes. Full article
Show Figures

Figure 1

17 pages, 2772 KiB  
Article
A Study on the Pantograph Slide Wear Model Based on Energy Dissipation
by Yiming Dong, Binghong Li, Zhonghua Chen, Hebin Wang and Huayang Zhang
Appl. Sci. 2025, 15(12), 6748; https://doi.org/10.3390/app15126748 - 16 Jun 2025
Viewed by 300
Abstract
During train operations, the contact surface between the pantograph slide and the catenary wire is subjected to mechanical friction and an electrical current, leading to an increase in the wear of the pantograph slide and a reduction in the service life of the [...] Read more.
During train operations, the contact surface between the pantograph slide and the catenary wire is subjected to mechanical friction and an electrical current, leading to an increase in the wear of the pantograph slide and a reduction in the service life of the pantograph–catenary friction pair. Therefore, the study of pantograph slide wear modeling and prediction is of great significance. This paper proposes a method to quantitatively characterize the wear of the pantograph slide by analyzing the energy dissipated through current-carrying friction in the pantograph–catenary system, from the perspective of the work done by the system. This study finds a significant linear relationship between the wear of the pantograph slide and the energy dissipated by current-carrying friction and establishes a mathematical model for pantograph slide wear based on energy dissipation, validating the effectiveness of the model. Furthermore, the relationship between the dissipated energy, contact current, contact pressure, and sliding speed is explored using experimental data, providing a quantitative explanation of the interaction between electrical and mechanical wear from an energy perspective. The wear morphology of the pantograph slide surface is further examined using metallographic microscopy, and the wear mechanism is analyzed. The applicability of the wear model is discussed, and it can be used for further studies on the current-carrying wear mechanisms in pantograph–catenary systems. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

Back to TopTop