Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (740)

Search Parameters:
Keywords = wine variety

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 9213 KiB  
Article
Resveratrol Impairs Insulin Signaling in Hepatic Cells via Activation of PKC and PTP1B Pathways
by Karla D. Hernández-González, Monica A. Vinchira-Lamprea, Judith Hernandez-Aranda and J. Alberto Olivares-Reyes
Int. J. Mol. Sci. 2025, 26(15), 7434; https://doi.org/10.3390/ijms26157434 - 1 Aug 2025
Viewed by 450
Abstract
Resveratrol (RSV), a polyphenol found in a variety of berries and wines, is known for its anti-inflammatory, anticancer, and antioxidant properties. It has been suggested that RSV may play a role in the regulation of metabolic disorders, including diabetes and insulin resistance. However, [...] Read more.
Resveratrol (RSV), a polyphenol found in a variety of berries and wines, is known for its anti-inflammatory, anticancer, and antioxidant properties. It has been suggested that RSV may play a role in the regulation of metabolic disorders, including diabetes and insulin resistance. However, in recent years, it has been reported to completely inhibit Akt kinase function in liver cells. Akt is a central protein involved in the metabolic function of insulin and is regulated by the phosphatidylinositol-3-kinase (PI3K) pathway. In this study, we examined the effect of RSV on insulin-induced insulin receptor (IR) phosphorylation and proteins involved in the PI3K/Akt pathway in a hepatic cell model, clone 9 (C9), and in hepatoma cells, Hepa 1-6 (H1-6). In both cell lines, RSV inhibited tyrosine phosphorylation of IR and insulin-induced activation of Akt. We also evaluated the effect of RSV on the activation of protein tyrosine phosphatase 1B (PTP1B), which is associated with IR dephosphorylation, and found that RSV increased PTP1B-Tyr152 phosphorylation in a time- and concentration-dependent manner. Furthermore, we found that the protein kinase C (PKC) inhibitors BIM and Gö6976 prevented the inhibition of Akt phosphorylation by RSV and increased the phosphorylation of Ser/Thr residues in IR, suggesting that PKC is involved in the inhibition of the insulin pathway by RSV. Thus, classical PKC isoforms impair the PI3K/Akt pathway at the IR and GSK3 and GS downstream levels; however, IRS-Tyr632 phosphorylation remains unaffected. These results suggest that RSV can lead to insulin resistance by activating PTP1B and PKC, consequently affecting glucose homeostasis in hepatic cells. Full article
(This article belongs to the Special Issue The Molecular and Cellular Aspects of Insulin Resistance)
Show Figures

Figure 1

18 pages, 2563 KiB  
Article
Ripening Kinetics and Grape Chemistry of Virginia Petit Manseng
by Joy H. Ting, Alicia A. Surratt, Lauren E. Moccio, Ann M. Sandbrook, Elizabeth A. Chang and Dennis P. Cladis
Beverages 2025, 11(4), 108; https://doi.org/10.3390/beverages11040108 - 30 Jul 2025
Viewed by 348
Abstract
Petit Manseng is a variety of Vitis vinifera gaining popularity in Virginia, USA because it consistently produces high quality grapes under variable growing conditions. However, its high sugar and acid levels complicate dry wine production. The goal of this study was to characterize [...] Read more.
Petit Manseng is a variety of Vitis vinifera gaining popularity in Virginia, USA because it consistently produces high quality grapes under variable growing conditions. However, its high sugar and acid levels complicate dry wine production. The goal of this study was to characterize Petit Manseng ripening kinetics from veraison to harvest to identify optimal harvest timing for producing dry white wines, using Chardonnay as a comparator because of its popularity in Virginia, well-known ripening kinetics, and ability to produce high quality dry white wines. A total of 74 samples of Petit Manseng and Chardonnay grapes were collected from five commercial sites over 2 years and evaluated for berry weight, pH, titratable acidity (TA), malic acid, total soluble solids (TSS), glucose, and fructose, with ripening kinetics modeled using segmented regressions. Results indicated that harvest timing and grape variety were the primary factors influencing ripening kinetics. In contrast, growing location and vintage had limited impact. In Chardonnay grapes, TA declined from 21 to 7.1 g/L and TSS increased from 6.1 to 19.5 g/L. In Petit Manseng, TA declined from 25 to 10.8 g/L and TSS increased from 8.0 to 23.6 g/L. Acid depletion plateaued ~2 weeks after sugar accumulation plateaued in Petit Manseng grapes, though the plateaus were similar in Chardonnay grapes. Linear discriminant analysis (LDA) completely separated grapes based on pH or TA vs. sugars, but not malic acid vs. sugars, suggesting that tartaric acid is driving acidity differences between cultivars. These data indicate that regardless of when grapes are harvested, winemakers may need to employ targeted acid management strategies with Petit Manseng because of its ripening kinetics. Full article
Show Figures

Figure 1

18 pages, 1650 KiB  
Article
Unlocking the Fatty Acid and Antioxidant Profile of Grape Pomace: A Systematic Assessment Across Varieties and Vintages for Its Sustainable Valorization
by Teresa Abreu, Rui Ferreira, Paula C. Castilho, José S. Câmara, Juan Teixeira and Rosa Perestrelo
Molecules 2025, 30(15), 3150; https://doi.org/10.3390/molecules30153150 - 28 Jul 2025
Viewed by 289
Abstract
Grape pomace (GP), the main by-product of the wine industry, represents a valuable source of bioactive metabolites with significant potential for valorization in the context of sustainable bioresource management. This study systematically characterizes the fatty acid methyl ester (FAME) profile, total phenolic content [...] Read more.
Grape pomace (GP), the main by-product of the wine industry, represents a valuable source of bioactive metabolites with significant potential for valorization in the context of sustainable bioresource management. This study systematically characterizes the fatty acid methyl ester (FAME) profile, total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activities (DPPH, ABTS, ORAC) of GP derived from seven grape varieties across three consecutive vintages (2022–2024). White GP, particularly Verdelho and Sercial, exhibited a superior lipid quality with high concentrations of methyl linoleate (up to 1997 mg/100 g DW) and methyl oleate (up to 1294 mg/100 g DW), low atherogenic (AI < 0.05) and thrombogenic indices (TI ≤ 0.13), and elevated PUFA/SFA ratios (≥8.2). In contrast, red GP, especially from Complexa and Tinta Negra, demonstrated the highest antioxidant potential, with TPC values up to 6687 mgGAE/100 g DW, TFC up to 4624 mgQE/100 g DW, and antioxidant activities reaching 5399 mgTE/100 g (DPPH) and 7219 mgTE/100 g (ABTS). Multivariate statistical analyses (PCA, PLS-DA, HCA) revealed distinct varietal and vintage-dependent clustering and identified key discriminant fatty acids, including linolenic acid (C18:3), lauric acid (C12:0), and arachidic acid (C20:0). These findings underscore the compositional diversity and functional potential of GP, reinforcing its suitability for applications in functional foods, nutraceuticals, and cosmetics, in alignment with circular economy principles. Full article
Show Figures

Figure 1

18 pages, 589 KiB  
Article
Circular Model for the Valorization of Black Grape Pomace for Producing Pasteurized Red Must Enriched in Health-Promoting Phenolic Compounds
by Victoria Artem, Arina Oana Antoce, Elisabeta Irina Geana, Ancuta Nechita, Georgeta Tudor, Petronela Anca Onache and Aurora Ranca
Sustainability 2025, 17(14), 6633; https://doi.org/10.3390/su17146633 - 21 Jul 2025
Viewed by 421
Abstract
As compared to red wine technology, where pomace is macerated, the grape juices and musts are obtained by pressing the grapes and removing the pomace, thus removing an important source of antioxidant molecules. The objective of this study was to exploit the bioactive [...] Read more.
As compared to red wine technology, where pomace is macerated, the grape juices and musts are obtained by pressing the grapes and removing the pomace, thus removing an important source of antioxidant molecules. The objective of this study was to exploit the bioactive compounds from the black grape pomace and obtain a new food product, namely pasteurized red must with improved health-promoting properties. The study was conducted on four grape varieties for red wines—Fetească Neagră, Cabernet Sauvignon, Blauer Zweigelt, and Arcaș—each coming from a certain recognized Romanian vineyard, as follows: Murfatlar, Dealu Mare, Ștefănești-Argeș, and Iași, respectively. Both the must and the pomace extract used for each product were from the same variety and region. The recovery of polyphenols was achieved by macerating the pomace at ambient temperature, using solutions of ethanol in concentrations of 25%, 50%, and 75%. The results showed that the most efficient method of polyphenol recovery was obtained by using the ethanolic solution of 50%, which was selected for the subsequent stages of the study. The selected hydroalcoholic extract was concentrated by eliminating the solvent by roto evaporation and used as a source of supplementary bioactive compounds for the pasteurized must. The phenolic profiles of the musts enriched with phenolic extracts were determined by liquid chromatography, UHPLS-HRMS, revealing significant increases in the content of individual phenolic acids and other polyphenols. The phenolic extract recovered from the pomace significantly optimized the phenolic quality of the pasteurized must, thus contributing to the improvement of its nutritional value. The new product has a phenolic profile close to that of a red wine, but does not contain alcohol. Also, this technology is a sustainable method to convert grape waste into a safe, antioxidant-rich grape juice with potential health benefits. Full article
(This article belongs to the Special Issue Sustainable Research on Food Science and Food Technology)
Show Figures

Figure 1

33 pages, 392 KiB  
Review
Sustainable Foliar Applications to Improve Grapevine Responses to Drought, High Temperatures, and Salinity: Impacts on Physiology, Yields, and Berry Quality
by Despoina G. Petoumenou and Vasiliki Liava
Plants 2025, 14(14), 2157; https://doi.org/10.3390/plants14142157 - 13 Jul 2025
Cited by 1 | Viewed by 585
Abstract
Environmental challenges such as drought, high temperatures, and salinity compromise grapevine physiology, reduce productivity, and negatively affect grape and wine quality. In recent years, foliar applications of biostimulants, antitranspirants, and phytohormones have emerged as promising strategies to enhance stress tolerance in grapevines. This [...] Read more.
Environmental challenges such as drought, high temperatures, and salinity compromise grapevine physiology, reduce productivity, and negatively affect grape and wine quality. In recent years, foliar applications of biostimulants, antitranspirants, and phytohormones have emerged as promising strategies to enhance stress tolerance in grapevines. This review focuses on the main effects of salinity, drought, and high temperatures and the combined impact of drought and high temperatures on grapevines and examines how foliar applications influence grapevine responses under these specific stress conditions. Synthesizing the recent findings from the last ten years (160 articles), it provides direct insights into the potential of these compounds to alleviate each type of stress, highlighting their effects on grapevine physiology, yield components, and secondary metabolites in berries. While their mechanism of action is not entirely clear and their efficacy can vary depending on the type of compound used and the grapevine variety, most studies report a beneficial effect or no effect on grapevines under abiotic stresses (either single or combined). Future research is necessary to optimize the concentrations of these compounds and determine the appropriate number and timing of applications, particularly under open-field experiments. Additionally, studies should assess the effect of foliar applications under multiple abiotic stress conditions. In conclusion, integrating foliar applications into vineyard management represents a sustainable technique to mitigate abiotic stresses associated with climate change, such as salinity, water deficit, and heat stress, while preserving or enhancing the quality of grapes and wines. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
25 pages, 3228 KiB  
Article
Bio-Agronomic Assessment and Quality Evaluation of Sugarcane with Optimized Juice Fermentation in View of Producing Sicilian “Rum Agricole”
by Antonino Pirrone, Nicolò Iacuzzi, Antonio Alfonzo, Morgana Monte, Vincenzo Naselli, Federica Alaimo, Noemi Tortorici, Gabriele Busetta, Giuliana Garofalo, Raimondo Gaglio, Claudio De Pasquale, Nicola Francesca, Luca Settanni, Teresa Tuttolomondo and Giancarlo Moschetti
Appl. Sci. 2025, 15(14), 7696; https://doi.org/10.3390/app15147696 - 9 Jul 2025
Viewed by 373
Abstract
Sugarcane (Saccharum spp. L.), traditionally cultivated in tropical and subtropical regions, is being explored for its agronomic viability in Mediterranean climates. This study assessed the bio-agronomic performance of seven sugarcane varieties and two accessions grown in Sicily, to enhance the fermentation process [...] Read more.
Sugarcane (Saccharum spp. L.), traditionally cultivated in tropical and subtropical regions, is being explored for its agronomic viability in Mediterranean climates. This study assessed the bio-agronomic performance of seven sugarcane varieties and two accessions grown in Sicily, to enhance the fermentation process to produce rum agricole, a spirit derived from fresh cane juice. Agronomic evaluations revealed significant varietal differences, with juice yields of 5850−14,312 L ha−1 and sugar yields of 1.84–5.33 t ha−1. Microbial control was achieved through the addition of lactic acid, which effectively suppressed undesirable bacterial growth and improved fermentation quality. Furthermore, the application of two selected Saccharomyces cerevisiae strains (MN113 and SPF21), isolated from high-sugar matrices such as manna and honey byproducts, affected the production of volatile compounds, particularly esters and higher alcohols. Sensory analysis confirmed a more complex aromatic profile in cane wines fermented with these selected yeasts, with overall acceptance scores reaching 7.5. Up to 29 aroma-active compounds were identified, including ethyl esters and higher alcohols. This research represents the first integrated approach combining lactic acid treatment and novel yeast strains for the fermentation of sugarcane juice in a Mediterranean context. The findings highlight the potential for high-quality rum agricole production in Sicily. Full article
(This article belongs to the Special Issue Food Chemistry, Analysis and Innovative Production Technologies)
Show Figures

Figure 1

15 pages, 1546 KiB  
Article
Nutritional and Antioxidant Valorization of Grape Pomace from Argentinian Vino De La Costa and Italian Cabernet Wines
by Luciano M. Guardianelli, María V. Salinas, María C. Puppo, Alyssa Hidalgo and Gabriella Pasini
Foods 2025, 14(13), 2386; https://doi.org/10.3390/foods14132386 - 5 Jul 2025
Viewed by 466
Abstract
Wine production generates by-products that require proper management and reuse to minimize their environmental impact. Grape pomace, a by-product of winemaking, holds significant nutritional and bioactive potential. This study evaluated the nutritional and antioxidant profiles of pomace from Isabella grapes (La Plata, Argentina) [...] Read more.
Wine production generates by-products that require proper management and reuse to minimize their environmental impact. Grape pomace, a by-product of winemaking, holds significant nutritional and bioactive potential. This study evaluated the nutritional and antioxidant profiles of pomace from Isabella grapes (La Plata, Argentina) and Cabernet grapes (Veneto, Italy). Both varieties contain high levels of dietary fiber, especially Cabernet. However, Cabernet showed lower protein and lipid levels than Isabella. Calcium, potassium, and phosphorus were the major minerals in both by-products. Isabella exhibited a higher content of essential polyunsaturated fatty acids, particularly α-linoleic acid, while Cabernet shows a greater proportion of saturated and monounsaturated fatty acids. Additionally, Isabella exhibited significantly higher levels of caffeic acid derivatives (506.4 vs. 38.2 mg/kg dry weight), catechin (1613.2 vs. 294.8 mg/kg dry weight), epicatechin (1229.2 vs. 230.3 mg/kg dry weight), and total anthocyanins (2649 vs. 607.5 mg kuromanin/kg dry weight), as well as a greater total polyphenol content and antioxidant activity compared to Cabernet. These results highlight grape pomace’s potential as a valuable functional ingredient. Full article
Show Figures

Figure 1

16 pages, 1242 KiB  
Article
Simultaneous Profiling of Terpenes and Cannabinoids in Hemp Essential Oils Using Static Headspace Gas Chromatography–Mass Spectrometry for Quality Control and Chemotype Differentiation
by Nathareen Chaiwangrach, Sirikan Mukda, Prapapan Temkitthawon, Nitra Nuengchamnong, Sarita Pinmanee, Thapakorn Somboon, Panatpong Boonnoun and Kornkanok Ingkaninan
Sci. Pharm. 2025, 93(2), 27; https://doi.org/10.3390/scipharm93020027 - 16 Jun 2025
Viewed by 846
Abstract
Hemp essential oils are rich in bioactive compounds, including terpenes and cannabinoids, yet standardized analytical methods for their simultaneous quality control are limited. This study aimed to (i) validate a static headspace gas chromatography–mass spectrometry (SHS-GC-MS) method for simultaneous quantification of 20 terpenes [...] Read more.
Hemp essential oils are rich in bioactive compounds, including terpenes and cannabinoids, yet standardized analytical methods for their simultaneous quality control are limited. This study aimed to (i) validate a static headspace gas chromatography–mass spectrometry (SHS-GC-MS) method for simultaneous quantification of 20 terpenes and 2 cannabinoids and (ii) apply it to fingerprint essential oils from four hemp strains, including local (HRDI2, HRDI5) and internationally cultivated (Charlotte’s Angel, Cherry Wine) varieties. The method met AOAC validation criteria, with detection limits of 0.025–0.5 µg/mL for terpenes and 1 µg/mL for cannabinoids. Quantitation limits ranged from 0.1–1 µg/mL for terpenes and 5 µg/mL for cannabinoids. Intraday precision (%RSD) ranged from 0.27–11.00%, while interday precision ranged from 3.14–13.89%. The method recoveries ranged from 85.12–115.47%. Precision and recovery confirmed the method’s reliability. Multivariate statistical analysis identified 82 metabolites, revealing distinct chemical fingerprints among strains, and emerged as newly identified chemotype markers, supporting chemotype classification. This work demonstrates, for the first time, a solvent-free, automatable SHS-GC-MS approach for simultaneous terpene and cannabinoid profiling in hemp essential oils, enabling both qualitative and quantitative characterization and supporting regulatory compliance for the development of standardized phytopharmaceutical products. Full article
Show Figures

Figure 1

14 pages, 1642 KiB  
Article
Composition Divergence and Synergistic Mechanisms in Microbial Communities During Multi-Varietal Wine Co-Fermentation
by Yuhan Zhang, Jiao Yang and Yuxi Yan
Fermentation 2025, 11(6), 349; https://doi.org/10.3390/fermentation11060349 - 16 Jun 2025
Viewed by 566
Abstract
The bacterial microbial community composition during wine fermentation is a key contributor to wine quality and flavor. However, studies on the regulatory effects of different grape varieties and co-fermentation processes on the microbial community structure and their synergistic mechanisms remain limited. In this [...] Read more.
The bacterial microbial community composition during wine fermentation is a key contributor to wine quality and flavor. However, studies on the regulatory effects of different grape varieties and co-fermentation processes on the microbial community structure and their synergistic mechanisms remain limited. In this study, Cabernet Sauvignon (CS) was subjected to single-variety fermentation and used as the base wine for co-fermentation with three other grape varieties—Marselan (CSMN), Merlot (CSMT), and Cabernet Gernischt (CSCG)—to systematically compare the differences in the microbial community composition and their effects on the production of metabolic compounds. The results showed that, compared with single-variety fermentation, co-fermentation significantly increased the α-diversity of microbial communities (the Shannon index increased) and exhibited significant differences in β-diversity (PERMANOVA analysis, R2 = 0.421, p < 0.001). A neutral model analysis indicated that co-fermentation had a significant impact on microbial community assembly mechanisms, with the contribution of neutral processes to community assembly increasing from 45.5% (in the CSCG process) to 62.3% (in the CSMT process). A microbial co-occurrence network analysis revealed that co-fermentation enhanced the network complexity of microbial communities and strengthened the synergistic interactions between microbial taxa. A metabolic compound analysis revealed that co-fermentation significantly enhanced the production of key aroma compounds, resulting in increased concentrations of isoamyl acetate, ethyl hexanoate, linalool, and geraniol. These findings highlight the differences in microbial communities and their synergistic mechanisms among co-fermented grape varieties, providing theoretical guidance and practical insights for optimizing co-fermentation processes and improving wine quality. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Figure 1

14 pages, 4310 KiB  
Article
Effect of Different Gelling Agents on the Properties of Wine Jellies Prepared from Aromatic Grape Varieties
by Radek Sotolář, Petr Bača, Vladimír Mašán, Petr Vanýsek, Patrik Burg, Tomáš Binar and Oldřiška Sotolářová
Processes 2025, 13(6), 1893; https://doi.org/10.3390/pr13061893 - 15 Jun 2025
Viewed by 458
Abstract
Wine jelly is regarded as a delicacy in many countries and is commonly utilized in grande cuisine. Recently, its popularity has increased among consumers due to its dietary properties and the presence of health-promoting compounds such as antioxidants. Its natural origin and the [...] Read more.
Wine jelly is regarded as a delicacy in many countries and is commonly utilized in grande cuisine. Recently, its popularity has increased among consumers due to its dietary properties and the presence of health-promoting compounds such as antioxidants. Its natural origin and the ability to reflect local traditions and consumer preferences further enhance its appeal. This study aimed to compare the compositional and sensory characteristics of wine jellies prepared using three different gelling agents and four aromatic grape varieties, with the goal of preserving varietal aroma in the final products. White wines from Pálava and Moravian Muscat and red wines from Agni and Rosa were used. The selected gelling agents were agar, vegan gelatin, and traditional gelatin. Basic analytical parameters were assessed in both the wines and the resulting jellies. Sensory evaluation was conducted by trained panelists, assessing consistency, appearance (clarity), taste, and bouquet. Confectionery-grade jelly from red wines demonstrated the best consistency, while gelatin jellies from white wines showed superior clarity. Due to a preference for sweeter flavors, jellies from red wines were favored across all variants. The strongest varietal bouquet was observed in Moravian Muscat samples, irrespective of the gelling agent used. The optimal choice of gelling agent depends on the target quality attributes. Gelatin is preferred for firmness and clarity, while vegan gelatin is ideal for preserving aroma and achieving a balanced sensory profile. Full article
Show Figures

Figure 1

18 pages, 1287 KiB  
Article
Oenological Performances of New White Grape Varieties
by Aécio Luís de Sousa Dias, Charlie Guittin-Leignadier, Amélie Roy, Somaya Sachot, Faïza Maçna, Damien Flores, Emmanuelle Meudec, Jean-Claude Boulet, Nicolas Sommerer, Aurélie Roland, Marie-Agnès Ducasse and Jean-Roch Mouret
Beverages 2025, 11(3), 90; https://doi.org/10.3390/beverages11030090 - 11 Jun 2025
Viewed by 758
Abstract
The wine industry aims to reduce pesticide use by utilizing disease-resistant grape varieties, although their oenological potential remains underexplored. This study aimed to evaluate their oenological potential compared to traditional ones. Musts from resistant (Souvignier Gris, Sauvignac, Voltis, and Floreal) and traditional (Chardonnay, [...] Read more.
The wine industry aims to reduce pesticide use by utilizing disease-resistant grape varieties, although their oenological potential remains underexplored. This study aimed to evaluate their oenological potential compared to traditional ones. Musts from resistant (Souvignier Gris, Sauvignac, Voltis, and Floreal) and traditional (Chardonnay, Sauvignon Blanc, and Viognier) varieties were fermented at laboratory scale with online CO2 monitoring, and two yeasts were used to study varietal responses to yeast impact. Wines were analyzed for metabolites from central carbon metabolism, aromas (varietal thiols, ethyl esters, acetate esters, and higher alcohols), and phenolic compounds (hydroxybenzoic acids, hydroxycinnamic acids, flavan-3-ols, and flavonols) using (U)HPLC methods. Principal component analysis (PCA) of all variables revealed Souvignier Gris grouped with a Sauvignon Blanc sample, partially due to varietal thiols. PCA of aromas (PC1: 37.7%, PC2: 17.8%) showed that Souvignier Gris and Sauvignac exhibited similar behavior to Sauvignon Blanc. The heat map of 19 phenolics showed Sauvignac and Sauvignon Blanc clustered, with lower phenolic abundance. This preliminary work contributes to a detailed characterization of the oenological potential of these new varieties and constitutes an essential step in identifying which traditional and well-known varieties they resemble. This will then enable the recommendation of cellar itineraries adapted to their profile. Full article
(This article belongs to the Section Wine, Spirits and Oenological Products)
Show Figures

Graphical abstract

19 pages, 1816 KiB  
Article
Aromatic Profiles and Vineyard Location: Uncovering Malvasija Dubrovačka Wines
by Domagoj Ivan Žeravica, Ivana Tomaz, Darko Preiner, Iva Šikuten, Domagoj Stupić, Ana Jeromel and Edi Maletić
Beverages 2025, 11(3), 87; https://doi.org/10.3390/beverages11030087 - 9 Jun 2025
Viewed by 676
Abstract
The quality and sensory characteristics of wines are influenced by several factors, including grape variety, local climate, soil conditions, viticultural practices, and vintage. This study investigates the volatile organic compounds (VOCs) in Malvasija Dubrovačka wines, which include various chemical groups such as terpenes, [...] Read more.
The quality and sensory characteristics of wines are influenced by several factors, including grape variety, local climate, soil conditions, viticultural practices, and vintage. This study investigates the volatile organic compounds (VOCs) in Malvasija Dubrovačka wines, which include various chemical groups such as terpenes, esters, alcohols, acids, and C13-norisoprenoids. The aim was to investigate how vineyard location and vintage influence the VOC profiles of these wines in two consecutive vintages. Using gas chromatography–mass spectrometry, 54 individual VOCs were identified and quantified. The results showed remarkable differences in the composition of VOCs, especially C13-norisoprenoids, terpenes, and acids, between the two vintages and the studied locations. Principal component analysis showed a significant influence of vineyard location on the composition of Malvasija Dubrovačka wines, a result that was reinforced by conventional descriptive analysis (CDA) of sensory testing. Full article
Show Figures

Figure 1

12 pages, 2374 KiB  
Article
Unveiling the Regional Identity of Madeira Wine: Insights from Saccharomyces cerevisiae Strains Using Interdelta Analysis
by Mariangie M. Castillo, Nikol Parra, José S. Câmara and Mahnaz Khadem
Beverages 2025, 11(3), 84; https://doi.org/10.3390/beverages11030084 - 6 Jun 2025
Cited by 1 | Viewed by 689
Abstract
The Demarcated Region of Madeira (DRM) is one of the oldest wine regions in Portugal, where the famous Madeira Wine (MW) is produced by spontaneous fermentation using endogenous yeasts. Several studies reported the role of endogenous Saccharomyces cerevisiae strains in the regional identity [...] Read more.
The Demarcated Region of Madeira (DRM) is one of the oldest wine regions in Portugal, where the famous Madeira Wine (MW) is produced by spontaneous fermentation using endogenous yeasts. Several studies reported the role of endogenous Saccharomyces cerevisiae strains in the regional identity of wines, but only a few studies have been published in the DRM. The PCR-Interdelta (Polymerase Chain Reaction-Interdelta) analysis is a reliable method for S. cerevisiae strain identification. Here, we report the S. cerevisiae strains isolated from six Vitis vinifera grape varieties, namely, Tinta Negra, Boal, Sercial, Verdelho, Malvasia de São Jorge, and Complexa, which are widely used in MW production. During the 2020 campaign, eleven samples were collected from licensed vineyards and a winery, and submitted to spontaneous microfermentations and yeast isolation. Of the 1452 isolates counted, 1367 (94.2%) presented morphological characteristics of S. cerevisiae. We randomly selected 330 isolates from the positive colonies for strain identification. First, the PCR-Interdelta was optimized in ten commercial strains, using δ2–δ12 and δ12–δ21 pairs of primers, and δ2–δ12 primers were selected to screen the 330 isolates. We detected three fermentative profiles and a total of 25 PCR-Interdelta patterns were obtained, representing 7.6% of intraspecific variability, starting with the first non-official collection. The findings underscore the pivotal role of S. cerevisiae strain diversity in shaping the regional identity and quality of wines, with molecular tools like PCR-Interdelta analysis proving essential for monitoring intraspecific variability. Full article
Show Figures

Figure 1

19 pages, 1842 KiB  
Article
A.A.A. Good Wines WANTED: Blockchain, Non-Destructive Ultrasonic Techniques and Soil Health Assessment for Wine Traceability
by Diego Romano Perinelli, Martina Coletta, Beatrice Sabbatini, Aldo D’Alessandro, Fabio Fabiani, Andrea Passacantando, Giulia Bonacucina and Antonietta La Terza
Sensors 2025, 25(11), 3567; https://doi.org/10.3390/s25113567 - 5 Jun 2025
Viewed by 509
Abstract
The wine industry faces increasing challenges related to authenticity, safety, and sustainability due to recurrent fraud, shifting consumer preferences, and environmental concerns. In this study, as part of the B.I.O.C.E.R.T.O project, we integrated blockchain technology with ultrasonic spectroscopy and soil quality data by [...] Read more.
The wine industry faces increasing challenges related to authenticity, safety, and sustainability due to recurrent fraud, shifting consumer preferences, and environmental concerns. In this study, as part of the B.I.O.C.E.R.T.O project, we integrated blockchain technology with ultrasonic spectroscopy and soil quality data by using the arthropod-based Soil Biological Quality Index (QBS-ar) to enhance traceability, ensure wine quality, and certify sustainable vineyard practices. Four representative wines from the Marche region (Sangiovese, Maceratino, and two Verdicchio PDO varieties) were analyzed across two vintages (2021 and 2022). Ultrasound spectroscopy demonstrated high sensitivity in distinguishing wines based on ethanol and sugar content, comparably to conventional viscosity-based methods. The QBS-ar index was applied to investigate the soil biodiversity status according to the agricultural management practices applied in each vineyard, reinforcing consumer confidence in environmentally responsible viticulture. By recording these data on a public blockchain, we developed a secure, transparent, and immutable certification system to verify the geographical origin of wines along with their unique characteristics. This is the first study to integrate advanced analytical techniques with blockchain technology for wine traceability, simultaneously addressing counterfeiting, consumer demand for transparency, and biodiversity preservation. Our findings support the applicability of this model to other agri-food sectors, with potential for expansion through additional analytical techniques, such as isotopic analysis and further agroecosystem sustainability indicators. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Graphical abstract

12 pages, 235 KiB  
Article
Varietal Authentication of Brunello di Montalcino Wine Using a Minimal Panel of DNA Markers
by Maxwell K. Kibor, Monica Scali and Rita Vignani
Beverages 2025, 11(3), 81; https://doi.org/10.3390/beverages11030081 - 3 Jun 2025
Viewed by 2692
Abstract
Wine DNA fingerprinting (WDF), retrieved from the amplification of a wider panel of Simple Sequence Repeat (SSR) marker mappings in the Vitis vinifera L. genome, was used to assess the monovarietal nature of Brunello di Montalcino wine. The reliability of the varietal assessment [...] Read more.
Wine DNA fingerprinting (WDF), retrieved from the amplification of a wider panel of Simple Sequence Repeat (SSR) marker mappings in the Vitis vinifera L. genome, was used to assess the monovarietal nature of Brunello di Montalcino wine. The reliability of the varietal assessment was carried out by estimating the PI values associated with resolutive unrooted dendrograms depicting the correct varietal nature of different wines. As few as five SSR DNA markers associated with a PI value of one over a million or less, PI ≤ 10−6, can identify the purity of Sangiovese against Merlot, Pinot Noir, Cabernet Sauvignon, Primitivo (Zinfandel), and genetic variants of the Sangiovese as plant references. WDF was used on other monovarietal wines obtained from Cabernet Sauvignon, Merlot, Chardonnay, and Pinot Noir to test the feasibility of the method. In blended wines, the test was able to trace the main varietal component in a three-variety blend, keeping the varietal fingerprint detectable when the main variety was at least 75% (v/v). The data confirm how local genetic variants of Sangiovese can be tracked in commercial wines, becoming, at wine makers’ demand, part of an evidence synthesis of geographical origin. Full article
(This article belongs to the Topic Advances in Analysis of Food and Beverages)
Show Figures

Graphical abstract

Back to TopTop