Varietal Authentication of Brunello di Montalcino Wine Using a Minimal Panel of DNA Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wine and Grapevine References
2.2. DNA Extraction from Grapevine Leaves
2.3. DNA Purification from Wines
2.4. SSR-Genotyping and Allele Sizing
2.5. DNA Amplification
2.6. Capillary Electrophoresis
2.7. Genotyping
2.8. Consistency of WDF After Data Merging
3. Results
3.1. Estimating Informativeness of WDF Testing: Setting a Minimal Panel of Markers
3.2. Varietal Assessment in the Control Monovarietal and Blended Wines
3.3. Allele Sizing Reflects Vineyard Diversity
4. Discussion
5. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salgueiro, L.; Martins, A.P.; Correia, H. Raw materials: The importance of quality and safety. A review. Flavour Fragr. J. 2010, 25, 253–271. [Google Scholar] [CrossRef]
- Nützenadel, A.; Trentmann, F. Food and Globalization: Consumption, Markets and Politics in the Modern World; Berg: New York, NY, USA, 2008. [Google Scholar]
- Danezis, G.P.; Tsagkaris, A.S.; Camin, F.; Brusic, V.; Georgiou, C.A. Food authentication: Techniques, trends & emerging approaches. Trends Anal. Chem. 2016, 85, 123–132. [Google Scholar] [CrossRef]
- Ulberth, F. Tools to combat food fraud—A gap analysis. Food Chem. 2020, 330, 127044. [Google Scholar] [CrossRef] [PubMed]
- Ali, K.; Maltese, F.; Choi, Y.H.; Verpoorte, R. Metabolic constituents of grapevine and grape-derived products. Phytochem. Rev. 2010, 9, 357–378. [Google Scholar] [CrossRef] [PubMed]
- Pickering, G.J.; Hayes, J.E. Influence of biological, experiential and psychological factors in wine preference segmentation. Aust. J. Grape Wine Res. 2017, 23, 154–161. [Google Scholar] [CrossRef]
- Granato, D.; Magalhães Carrapeiro, M.D.; Fogliano, V.; van Ruth, S.M. Effects of geographical origin, varietal and farming system on the chemical composition and functional properties of purple grape juices: A review. Trends Food Sci. Technol. 2016, 52, 31–48. [Google Scholar] [CrossRef]
- Michaelsen, F.; Hill, J.; Buckingham, S.; Rzepecka, J.; Chever, T.; Kane, F.; Lepeule, L.; Romieu, V.; Zappalaglio, A. Study on Control and Enforcement Rules for Geographical Indication (GI) Protection for Non-Agricultural Products in the EU; Publication Office of the European Union: Luxembourg, 2021. [Google Scholar]
- Guirao Pérez, G.; Cano Fernández, V.J. Reseña de libro wine in the old world: New risks and opportunities. Econ. Agrar. Recur. Nat. 2016, 4, 166–170. [Google Scholar] [CrossRef]
- Holmberg, L. Wine fraud. Int. J. Wine Res. 2010, 2, 105–113. [Google Scholar] [CrossRef]
- Voullamoz, J.F.; Monaco, A.; Costantini, L.; Stefanini, M.; Scienza, A.; Grando, M.S. The parentage of ‘Sangiovese’, the most important italian wine grape. Vitis 2007, 46, 19–22. [Google Scholar]
- Baker, C. The Wines of Italy. In From Ground to Glass; Austin Macauley Publishers: London, UK, 2023. [Google Scholar]
- Popîrdă, A.; Luchian, C.E.; Cotea, V.V.; Colibaba, L.C.; Scutarașu, E.C.; Toader, A.M. A review of representative methods used in wine authentication. Agriculture 2021, 11, 225. [Google Scholar] [CrossRef]
- Mac, H.X.; Pham, T.T.; Ha, N.T.T.; Nguyen, L.L.P.; Baranyai, L.; Friedrich, L. Current techniques for fruit juice and wine adulterant detection and authentication. Beverages 2023, 9, 84. [Google Scholar] [CrossRef]
- Villano, C.; Lisanti, M.T.; Gambuti, A.; Vecchio, R.; Moio, L.; Frusciante, L.; Aversano, R.; Carputo, D. Wine varietal authentication based on phenolics, volatiles and DNA markers: State of the art, perspectives and drawbacks. Food Control 2017, 80, 1–10. [Google Scholar] [CrossRef]
- Schnitzler-Lenoble, A.; Arnold, C.; Guibal, F.; Walter, J. Histoire de la vigne sauvage, vitis vinifera ssp. sylvestris, en camargue/wild grapevine Vitis vinifera ssp. sylvestris in Camargue, southern France. Ecol. Mediterr. 2018, 44, 53–66. [Google Scholar] [CrossRef]
- Vignani, R.; Liò, P.; Scali, M. How to integrate wet lab and bioinformatics procedures for wine DNA admixture analysis and compositional profiling: Case studies and perspectives. PLoS ONE 2019, 14, e0211962. [Google Scholar] [CrossRef]
- Siret, R.; Boursiquot, J.; Merle, M.; Cabanis, J.; This, P. Toward the authentication of varietal wines by the analysis of grape (Vitis vinifera L.) residual DNA in must and wine using microsatellite markers. J. Agric. Food Chem. 2000, 48, 5035–5040. [Google Scholar] [CrossRef] [PubMed]
- İşçi, B.; Yildirim, H.K.; Altindişli, A. A review of the authentication of wine origin by molecular markers. J. Inst. Brew. 2009, 115, 259–264. [Google Scholar] [CrossRef]
- Ranaweera, R.K.; Gilmore, A.M.; Capone, D.L.; Bastian, S.E.; Jeffery, D.W. Spectrofluorometric analysis combined with machine learning for geographical and varietal authentication, and prediction of phenolic compound concentrations in red wine. Food Chem. 2021, 361, 130149. [Google Scholar] [CrossRef]
- Barrias, S.; Fernandes, J.R.; Martins-Lopes, P. Newly developed QCM-DNA biosensor for SNP detection in small DNA fragments: A wine authenticity case study. Food Control 2025, 169, 111036. [Google Scholar] [CrossRef]
- Barrias, S.; Ibáñez, J.; Martins-Lopes, P. High resolution melting analysis of microsatellite markers applied to grapevine varietal fingerprinting throughout the wine production chain. Food Control 2024, 160, 110368. [Google Scholar] [CrossRef]
- Vignani, R.; Scali, M.; Liò, P. Molecular Markers and Genomics for Food and Beverages Characterization. In Handbook of DNA Profiling; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–21. [Google Scholar]
- Palade, M.; Popa, M.-E. Wine traceability and authenticity—A literature review. Sci. Bulletin. Ser. F Biotechnol. 2014, XVIII, 226–233. [Google Scholar]
- Testolin, R.; Messina, R.; Cipriani, G.; De Mori, G. SSR-based DNA fingerprinting of fruit crops. Crop Sci. 2023, 63, 390–459. [Google Scholar] [CrossRef]
- Ikten, H.; Sari, D.; Sabir, A.; Hasan Meydan, H.; Mutlu, N. Estimating genetic diversity among selected wild grapevine genotypes from Southern Turkey by simple sequence repeat (SSR) and inter-Primer Binding Site(iPBS). Markers. Genet. Resour. Crop Evol. 2025, 72, 2361–2377. [Google Scholar] [CrossRef]
- Phumichai, C.; Phumichai, T.; Wongkaew, A. Novel chloroplast microsatellite (cpSSR) markers for genetic diversity assessment of cultivated and wild hevea rubber. Plant Mol. Biol. Rep. 2015, 33, 1486–1498. [Google Scholar] [CrossRef]
- Vignani, R.; Scali, M. Il Wine DNA fingerprinting (WDF): Un’analisi molecolare per accertare la composizione varietale di un vino. In Il Wine DNA Fingerprinting (WDF): Un’analisi Molecolare per Accertare la Composizione Varietale di un Vino; CoNaVi: North York, ON, Canada, 2016. [Google Scholar]
- Catalano, V.; Moreno-Sanz, P.; Lorenzi, S.; Grando, M.S. Experimental review of DNA-based methods for wine traceability and development of a single-nucleotide polymorphism (SNP) genotyping assay for quantitative varietal authentication. J. Agric. Food Chem. 2016, 64, 6969–6984. [Google Scholar] [CrossRef]
- Bigliazzi, J.; Scali, M.; Paolucci, E.; Cresti, M.; Vignani, R. DNA extracted with optimized protocols can be genotyped to reconstruct the varietal composition of monovarietal wines. Am. J. Enol. Vitic. 2012, 63, 568–573. [Google Scholar] [CrossRef]
- Scali, M.; Spinsanti, G.; Vignani, R. Validation of a simplified small-scale DNA extraction protocol from wine by quantitative real-time PCR. 3 Biotech 2024, 14, 145. [Google Scholar] [CrossRef]
- Thomas, M.R.; Scott, N.S. Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theor. Appl. Genet. 1993, 86, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Bowers, J.E.; Dangl, G.S.; Vignani, R.; Meredith, C.P. Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome 1996, 39, 628–633. [Google Scholar] [CrossRef]
- Wagner, H.; Sefc, K. IDENTITY, Version 1.0 [Computer Program]; Centre for Applied Genetics, University of Agricultural Sciences: Vienna, Austria, 1999.
- Perumal, J.; Wang, Y.; Attia, A.B.E.; Dinish, U.S.; Olivo, M. Towards a point-of-care SERS sensor for biomedical and agri-food analysis applications: A review of recent advancements. Nanoscale 2021, 13, 553–580. [Google Scholar] [CrossRef]
- Pereira, L.; Gomes, S.; Barrias, S.; Gomes, E.P.; Baleiras-Couto, M.; Fernandes, J.R.; Martins-Lopes, P. From the field to the bottle—An integrated strategy for wine authenticity. Beverages 2018, 4, 71. [Google Scholar] [CrossRef]
- Fritz, J.; Döring, J.; Athmann, M.; Meissner, G.; Kauer, R.; Schultz, H.R. Wine quality under integrated, organic and biodynamic management using image-forming methods and sensory analysis. Chem. Biol. Technol. Agric. 2021, 8, 62. [Google Scholar] [CrossRef]
- Crook, A.A.; Zamora-Olivares, D.; Bhinderwala, F.; Woods, J.; Winkler, M.; Rivera, S.; Shannon, C.E.; Wagner, H.R.; Zhuang, D.L.; Lynch, J.E.; et al. Combination of two analytical techniques improves wine classification by Vineyard, Region, and vintage. Food Chem. 2021, 30, 354–12953. [Google Scholar] [CrossRef] [PubMed]
- Siret, R.; Gigaud, O.; Rosec, J.P.; This, P. Analysis of grape Vitis vinifera L. DNA in must mixtures and experimental mixed wines using microsatellite markers. J. Agric. Food Chem. 2002, 50, 3822–3827. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhang, F.; Gutiérrez-Gamboa, G.; Ge, Q.; Xu, P.; Zhang, Q.; Fang, Y.; Ma, T. Real wine or not? Protecting wine with traceability and authenticity for consumers: Chemical and technical basis, technique applications, challenge, and perspectives. Crit. Rev. Food Sci. Nutr. 2022, 62, 6783–6808. [Google Scholar] [CrossRef]
- Thomas, A.; Pickering, G. The importance of wine label information. Int. J. Wine Mark. 2003, 15, 58–74. [Google Scholar] [CrossRef]
Wine Name | Vintage | Year of Analysis | Origin | Type (E = Experimental) (C = Commercial) |
---|---|---|---|---|
1. IN7 | 2014 | 2019 | University of Florence | E |
2. CB17 | 2014 | 2019 | University of Florence | E |
3. 95% Sangiovese + 5% Pinot Noir | 2014 | 2019 | Siena, Italy | E |
4. Brunello di Montalcino | 2014 | 2019 | Montalcino, Siena, Italy | C |
5. Rosso di Montalcino | 2014 | 2019 | Montalcino, Siena, Italy | C |
6. 100% Sauvignon Blanc | 2018 | 2019 | Siena, Italy | E |
7. 100% Merlot | 2018 | 2019 | Siena, Italy | E |
8. 100% Cabernet Sauvignon | 2018 | 2019 | Siena, Italy | E |
9. 100% Chardonnay | 2018 | 2019 | Siena, Italy | E |
10. 75% Cabernet Sauvignon + Tempranillo | 2016 | 2019 | USA | C |
11. 76% Merlot + Rubired + Rubi Cabernet | 2016 | 2019 | USA | C |
12. 76% Chardonnay + Viognier, Symphony | 2016 | 2019 | USA | C |
13. 76% Sauvignon Blanc + French Colombard + Chardonnay | 2016 | 2019 | USA | C |
VVS2 | VVMD25 | VVMD27 | VrZag21 | VrZag83 | |
---|---|---|---|---|---|
Grapevine type | |||||
Sangiovese | 135–135 | 241–241 | 179–185 | 202–204 | 191–195 |
Wines | |||||
IN7 | – | 238–241 | 179–185 | 204–204 | 191–201 |
CB17 | 135–146 | 241–255 | 185–189 | – | 191–201 |
SG-C | 135–145 | 241–254 | – | 204–206 | 191–195 |
Rosso di Montalcino | 241–241 | 179–185 | 202–204 | 191–195 | |
Brunello di Montalcino | 135–135 | 241–241 | 179–185 | 191–195 |
100% Sangiovese | 100% Pinot Noir | 95% Sangiovese + 5%Pinot Noir | |
---|---|---|---|
VVMD25 | 241–241 | 241–249 | 241–249 |
VrZag21 | 202–204 | 201–207 | 201–204–207 |
VrZag83 | 191–195 | 190/202 or 189–201 | 191–201 |
VVS2 | 135–135 | 140–154 | 135–140–154 |
VVMD27 | 179–185 | 185–189 |
Wine 10 | Wine 11 | Wine 12 | Wine 13 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CS + Tempranillo | Control wine 100% CS | CS Plant | M + Rubired, Ruby Cabernet, etc. | Control wine 100% M | M Plant | C + Viognier, Symphony, etc. | Control wine 100% C | C Plant | SB + French Colombard + Chardonnay, etc. | Control wine 100% SB | SB Plant | |
SSR markers | ||||||||||||
VVMD27 | 194 | 185 189 | 175 | 175–189 | 175–189 | |||||||
VVMD25 | 240–249 | 240 | 240–249 | 240 | 240–249 | 240–249 | 240–255 | 240–255 | 240–255 | 240–248 | 240–248 | 240–248 |
VVMD21 | 249–258 | 243–249 | 243–249 | 249 | 249 | 249 | 249 | 243–249 | 243–249 | |||
VVMD24 | 208–216 | 208–216 | 208–216 | 208–212–214 | 208–212 | 208–216 | 208–216 | 208–216 | 216–208 | 216 | 216 | |
VVMD32 | 240 | 240 | 240 | 240 | 240–271 | 240–256 | 240–256 | |||||
VVMD31 | 206–210 | 212 | 212 | 212–216 | 214–216 | 216 | 210–216 | 210–216 | ||||
VVMD36 | 252–262 | 252 | 252–274 | 262 | 262 | |||||||
VVMD34 | 239–247 | 239 | 239 | 239 | 238–247 | 238–247 | ||||||
VVMD7 | 238 | 238 | 238–256 | |||||||||
VVS2 | 141 | 141–153 | 139 | 139 | 139–153 | 139 | 139 | 139–145 | 136 | 136 | 136–153 | |
ZAG47 | 152–166 | 152–166 | 166 | 166 | 166 | 158–166 | 158–166 | 153–166 | 153–166 | 153–166 | ||
ZAG79 | 245 | 245 | 243 | 245 | ||||||||
ZAG21 | 201 | 201–207 | 201–220 | 201 | 201–207 | 205–207 | 205–207 | 205–207 | ||||
ZAG83 | 201 | 201 | 195 | 195–201 | 189 | 189–201 | 187–201 | 187–191–201 | ||||
ZAG64 | 139–160 | 139–160 | 240–255 | 160–164 | ||||||||
4 loci+2(1/2) | 5 loci+3(1/2) | 3 loci+3(1/2) | 4 loci+4(1/2) |
VVS2 | VVMD27 | VVMD25 | VVMD21 | VVMD24 | VVMD36 | Vrzag21 | Vrzag83 | |
---|---|---|---|---|---|---|---|---|
Sangiovese | 135 | 179–185 | 241 | 243–249 | 206–212 | 201–203 | 202–204 | 191–195 |
Sangiovese_CB17 | 135–146 | 185–189 | 241–255 | 249 | 206–212 | 203–205 | 202–205 | 191–201 |
Sangiovese_IN7 | n.d. | 179–185 | 238–241 | 231–243 | 212–216 | 252–262 | 204 | 191–201 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kibor, M.K.; Scali, M.; Vignani, R. Varietal Authentication of Brunello di Montalcino Wine Using a Minimal Panel of DNA Markers. Beverages 2025, 11, 81. https://doi.org/10.3390/beverages11030081
Kibor MK, Scali M, Vignani R. Varietal Authentication of Brunello di Montalcino Wine Using a Minimal Panel of DNA Markers. Beverages. 2025; 11(3):81. https://doi.org/10.3390/beverages11030081
Chicago/Turabian StyleKibor, Maxwell K., Monica Scali, and Rita Vignani. 2025. "Varietal Authentication of Brunello di Montalcino Wine Using a Minimal Panel of DNA Markers" Beverages 11, no. 3: 81. https://doi.org/10.3390/beverages11030081
APA StyleKibor, M. K., Scali, M., & Vignani, R. (2025). Varietal Authentication of Brunello di Montalcino Wine Using a Minimal Panel of DNA Markers. Beverages, 11(3), 81. https://doi.org/10.3390/beverages11030081