Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,212)

Search Parameters:
Keywords = wind disturbances

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4425 KB  
Article
Morris-Based Optimization of Battery Energy Storage System Control Parameters Under High Wind Energy Penetration
by Meng-Hui Wang, Yi-Cheng Chen, Chun-Chun Hung and Hong-Wei Sian
Energies 2026, 19(3), 827; https://doi.org/10.3390/en19030827 - 4 Feb 2026
Abstract
As wind penetration rises, the share of synchronous generation declines, reducing system inertia and increasing uncertainty in frequency stability; wind-output disturbances, power-electronic control characteristics, and stochastic load variations can further amplify frequency deviations caused by power imbalance. To improve frequency security under high [...] Read more.
As wind penetration rises, the share of synchronous generation declines, reducing system inertia and increasing uncertainty in frequency stability; wind-output disturbances, power-electronic control characteristics, and stochastic load variations can further amplify frequency deviations caused by power imbalance. To improve frequency security under high wind penetration, this study optimizes BESS control parameters and evaluates their impact on system dynamic stability using a PSS®E V34 dynamic model of the IEEE New England 39-bus system that includes three wind turbines and two BESS units under four disturbance scenarios: (i) derating one turbine to 50%, (ii) tripping one turbine, (iii) derating all three turbines to 50%, and (iv) an N-1 contingency corresponding to the tripping of the largest conventional generator in the system. Morris sensitivity analysis is first applied to identify key parameters affecting frequency response and reduce the optimization dimension, and the selected parameters are then tuned using an improved genetic algorithm (IGA) and grey wolf optimization (GWO). Simulation results show the minimum frequency improves from 59.957 Hz (baseline) to 59.961 Hz with IGA and to 59.966 Hz with GWO, while the maximum equivalent power-angle difference in the BESS unit relative to the center of inertia decreases from 266.3° to 250.1° (IGA) and 251.2° (GWO), indicating that the proposed approach strengthens BESS frequency support and enhances dynamic stability under various wind-power and N-1 contingency disturbance conditions. Full article
Show Figures

Figure 1

24 pages, 17469 KB  
Article
Atmospheric Impact of Typhoon Hagibis: A Multi-Layer Investigation of Stratospheric and Ionospheric Responses
by Kousik Nanda, Debrupa Mondal, Sudipta Sasmal, Yasuhide Hobara, Ajeet K. Maurya, Masashi Hayakawa, Stelios M. Potirakis and Abhirup Datta
Atmosphere 2026, 17(2), 167; https://doi.org/10.3390/atmos17020167 - 4 Feb 2026
Abstract
We investigate the multi-layer atmospheric impacts of Typhoon Hagibis (2019), which formed on 6 October, tracked across 12–35 N and 135–155 E, and made landfall on 12 October over the Izu Peninsula, central Honshu, Japan. We present a multi-layer study that [...] Read more.
We investigate the multi-layer atmospheric impacts of Typhoon Hagibis (2019), which formed on 6 October, tracked across 12–35 N and 135–155 E, and made landfall on 12 October over the Izu Peninsula, central Honshu, Japan. We present a multi-layer study that involves the troposphere, stratosphere and upper ionosphere to examine the thermodynamic and electromagnetic coupling between these layers due to such extreme weather conditions. Using ERA5 reanalysis, we identify pronounced stratospheric temperature perturbations, elevated atmospheric gravity wave (AGW) potential energy, substantial spatiotemporal variability in the zonal (U) and meridional (V) wind components, relative humidity, and specific rainwater content throughout the cyclone’s evolution. Quantitatively, AGW potential energy increased from background levels of <5 J kg1 to >40 J kg1 near the cyclone core, while tropospheric wind anomalies reached ±30–40 m s1, accompanied by relative humidity values exceeding 90% and specific rainwater content up to 1.5×103 kg kg1, indicative of vigorous moist convection and strong vertical energy transport. The ionospheric response, derived from GPS-based Total Electron Content (TEC) at 10 Japanese IGS stations, reveals vertical TEC (VTEC) perturbations whose amplitudes and temporal evolution vary systematically with GPS-station-to-typhoon-eye distance, including clear enhancements and reductions around the closest-approach day. These signatures indicate a measurable ionospheric response to cyclone-driven atmospheric forcing under geomagnetically quiet conditions, confirming that Hagibis produced vertically coupled disturbances linking stratospheric AGW activity with ionospheric electron density variability. Full article
(This article belongs to the Section Upper Atmosphere)
19 pages, 7081 KB  
Article
Impact of Leading-Edge Micro-Cylinders on the Aerodynamic Performance of Erosion-Affected S809 Airfoil
by Jinjing Sun, Xinyu Chen and Shuhan Zhang
Symmetry 2026, 18(2), 246; https://doi.org/10.3390/sym18020246 - 30 Jan 2026
Viewed by 129
Abstract
Wind turbines operate in harsh environments where leading-edge blade erosion from particulates like sand, rain, and insects is prevalent, significantly degrading aerodynamic performance and reducing power output. To counteract this, this study proposes a novel flow-control method using detached micro-cylinders placed upstream of [...] Read more.
Wind turbines operate in harsh environments where leading-edge blade erosion from particulates like sand, rain, and insects is prevalent, significantly degrading aerodynamic performance and reducing power output. To counteract this, this study proposes a novel flow-control method using detached micro-cylinders placed upstream of the leading edge of eroded S809 (a wind turbine blade profile) airfoils. The approach is inspired by the concept of symmetry recovery in disturbed flows, where strategically introduced perturbations can restore balance to an asymmetric separation pattern. The aerodynamic performance of the S809 airfoil was numerically investigated under three leading-edge erosion depths (0.2%, 0.5%, and 1% of chord length, *c*) with a fixed micro-cylinder diameter of 1% *c* positioned at fifteen different locations. Findings reveal that the strategic placement of micro-cylinders ahead of the leading edge or on the pressure side markedly enhances the aerodynamic efficiency of airfoils with 0.2% and 0.5% erosion, achieving a maximum improvement of 148.7% in the lift-to-drag ratio (L/D) difference function for the 0.5% eroded airfoil. This performance recovery is interpreted as a partial restoration of flow symmetry, disrupted by erosion-induced separation. The interaction between the cylinder wake and the spill-over stall vortex originating from the erosion groove was identified as the primary mechanism, injecting high-energy fluid into the boundary layer to suppress flow separation. This study systematically parametrizes the effect of erosion depth and cylinder placement, offering new insights for mitigating erosion-induced performance loss through controlled asymmetry introduction. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

16 pages, 2082 KB  
Article
Bark Beetle-Attacked and Wind-Damaged Norway Spruce (Picea abies (L.) Karst.) Trees as a Potential Raw Material for Extractives Recovery
by Vanja Štolcer, Ida Poljanšek, Viljem Vek and Primož Oven
Forests 2026, 17(2), 183; https://doi.org/10.3390/f17020183 - 29 Jan 2026
Viewed by 114
Abstract
Bark beetle infestations and other natural disturbances have increasingly affected Norway spruce (Picea abies (L.) Karst.) forests across Europe resulting in devaluation and decreased applicability of woody biomass of such trees. The aim of this research was to investigate the extractive content [...] Read more.
Bark beetle infestations and other natural disturbances have increasingly affected Norway spruce (Picea abies (L.) Karst.) forests across Europe resulting in devaluation and decreased applicability of woody biomass of such trees. The aim of this research was to investigate the extractive content of bark beetle-attacked and dead wind-damaged Norway spruce trees relative to healthy trees, in order to assess their potential for extractives recovery. After harvesting, three discs were dissected along the stem height of each tree, and samples of sapwood, heartwood, knots, and bark were collected. Sequential extraction of the samples was performed using cyclohexane and acetone–water mixture in an accelerated solvent extractor. Lipophilic and hydrophilic extractives were determined gravimetrically, while total phenols and proanthocyanidins were measured by UV–Vis spectrophotometry. Results showed that knotwood contained the highest amounts of hydrophilic extractives and total phenols among investigated tissues. Knots of healthy trees contained the highest amount of hydrophilic extractives (52.4% w w−1), while knots of dead wind-damaged trees contained significantly higher content of total phenols (8.8% w w−1). The total phenols in bark beetle-attacked and healthy trees were 7.1% w w−1 and 7.2% w w−1, respectively. The sapwood and heartwood of dead wind-damaged trees had higher content of hydrophilic extractives (3.4% and 2.3% w w−1) than healthy and bark beetle-attacked trees. Bark from healthy trees contained more total phenols (2.7% w w−1) than bark of bark beetle-attacked trees, while proanthocyanidin contents in bark were comparable among three groups of trees. Our findings revealed that woody biomass from bark beetle-attacked and dead wind-damaged Norway spruce trees contains significant levels of phenolics, indicating high potential for extracting valuable compounds in biorefineries. Full article
(This article belongs to the Special Issue Integrated Forest Products Biorefinery Perspectives)
15 pages, 20413 KB  
Article
Optimization of Reserve Capacity for New Energy Participating in Primary Frequency Regulation of the Power System
by Yichao Jia, Ning Chen, Lei Zhang, Minhui Qian, Bingjie Tang, Yanzhang Liu, Chang Zhou and Peipei Peng
Energies 2026, 19(3), 718; https://doi.org/10.3390/en19030718 - 29 Jan 2026
Viewed by 135
Abstract
The frequency regulation problem of the power system under the scenario of a high proportion of new energy access has attracted attention. It has become an important technical means for new energy to reserve a certain amount to participate in system frequency regulation. [...] Read more.
The frequency regulation problem of the power system under the scenario of a high proportion of new energy access has attracted attention. It has become an important technical means for new energy to reserve a certain amount to participate in system frequency regulation. Reserve capacity, response speed, and regulation rate jointly determine the post-disturbance frequency trajectory of the system. This paper briefly compares the primary frequency regulation control performances of wind power generation, photovoltaic power generation and thermal power generation, analyzes the influence of factors such as frequency distribution, regulation rate, frequency regulation capacity and frequency deviation on primary frequency regulation, and, considering the need for rapid frequency response in power systems with a high share of new energy, taking into account the system frequency response performance and new energy consumption demand, a method for optimizing the reserve configuration of new energy power generation for primary frequency regulation is proposed. Simulation analysis is carried out using a simplified actual power system, and the results show that an appropriate reserve provided by new energy helps the system frequency recover quickly. Full article
Show Figures

Figure 1

36 pages, 2846 KB  
Review
Protection in Inverter-Dominated Grids: Fault Behavior of Grid-Following vs. Grid-Forming Inverters and Mixed Architectures—A Review
by Md Nurunnabi and Shuhui Li
Energies 2026, 19(3), 684; https://doi.org/10.3390/en19030684 - 28 Jan 2026
Viewed by 156
Abstract
The rapid rise of inverter-based resources (IBRs) such as solar, wind, and battery energy storage is transforming power grids and creating new challenges for protection. Unlike synchronous generators, many IBRs are interfaced through grid-following (GFL) inverters that operate as controlled current sources and [...] Read more.
The rapid rise of inverter-based resources (IBRs) such as solar, wind, and battery energy storage is transforming power grids and creating new challenges for protection. Unlike synchronous generators, many IBRs are interfaced through grid-following (GFL) inverters that operate as controlled current sources and rely on an external voltage reference, resulting in fault responses that are current-limited and controller-shaped. These characteristics reduce fault current magnitude and can undermine conventional protection schemes. In contrast, emerging grid-forming (GFM) inverters behave as voltage sources that establish local voltage and frequency, offering improved disturbance support but still transitioning to current-limited operation under severe faults. This review summarizes GFL versus GFM operating principles and deployments, compares their behavior under balanced and unbalanced faults, and evaluates protection impacts using a protection-relevant taxonomy supported by illustrative electromagnetic transient (EMT) case studies. Key challenges, including underreach/overreach of impedance-based elements, reduced overcurrent sensitivity, and directional misoperation, are identified. Mitigation options are discussed, spanning adaptive/supervised relaying, communication-assisted and differential protection, and inverter-side fault current shaping and GFM integration. The implications of IEEE 1547-2018 and IEEE 2800-2022 are reviewed to clarify ride-through and support requirements that constrain protection design in high-IBR systems. Full article
(This article belongs to the Special Issue Advanced Control Strategies for Power Converters and Microgrids)
36 pages, 4379 KB  
Article
A Coordinated Wind-Storage Primary Frequency Regulation Strategy Accounting for Wind-Turbine Rotor Kinetic Energy Recovery
by Xuenan Zhao, Hao Hu, Guozheng Shang, Pengyu Zhao, Wenjing Dong, Zongnan Liu, Hongzhi Zhang and Yu Song
Energies 2026, 19(3), 658; https://doi.org/10.3390/en19030658 - 27 Jan 2026
Viewed by 114
Abstract
To improve the dynamic response and steady-state frequency quality of a wind–storage coordinated system during primary frequency regulation, and to address the secondary frequency dip caused by rotor kinetic energy recovery when a doubly fed induction generator (DFIG)-based wind turbine (DFIG-WT) participates in [...] Read more.
To improve the dynamic response and steady-state frequency quality of a wind–storage coordinated system during primary frequency regulation, and to address the secondary frequency dip caused by rotor kinetic energy recovery when a doubly fed induction generator (DFIG)-based wind turbine (DFIG-WT) participates in frequency support, this paper proposes a coordinated wind–storage primary frequency regulation strategy. This strategy synergistically controls the wind turbine’s rotor kinetic energy recovery and exploits the advantages of hybrid energy storage system (HESS). During the DFIG-WT control stage, an adaptive weighted model is developed for the inertial and droop power contributions of the DFIG-WT based on the available rotor kinetic energy, enabling a rational distribution of primary frequency regulation power. In the control segment of HESS, an adaptive complementary filtering frequency division strategy is proposed. This approach integrates an adaptive adjustment method based on state of charge (SOC) to control both the battery energy storage system (BESS) and supercapacitor (SC). Additionally, the BESS assists in completing the rotor kinetic energy recovery process. Through simulation experiments, the results demonstrate that under operating conditions of 9 m/s wind speed and a 30 MW step disturbance, the proposed adaptive weight integrated inertia control elevates the frequency nadir to 49.84 Hz and reduces the secondary frequency dip to 0.0035 Hz. Under the control strategy where wind and storage coordinated participate in frequency regulation and BESS assist in rotor kinetic energy recovery, secondary frequency dips were eliminated, with steady-state frequency rising to 49.941 Hz. The applicability of this strategy was further validated under higher wind speeds and larger disturbance conditions. Full article
Show Figures

Figure 1

23 pages, 5965 KB  
Article
Intelligent Control and Automation of Small-Scale Wind Turbines Using ANFIS for Rural Electrification in Uzbekistan
by Botir Usmonov, Ulugbek Muinov, Nigina Muinova and Mira Chitt
Energies 2026, 19(3), 601; https://doi.org/10.3390/en19030601 - 23 Jan 2026
Viewed by 214
Abstract
This paper examines the application of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for voltage regulation in a small-scale wind turbine (SWT) system intended for off-grid rural electrification in Uzbekistan. The proposed architecture consists of a wind turbine, a permanent-magnet DC generator, and a [...] Read more.
This paper examines the application of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for voltage regulation in a small-scale wind turbine (SWT) system intended for off-grid rural electrification in Uzbekistan. The proposed architecture consists of a wind turbine, a permanent-magnet DC generator, and a buck converter supplying a regulated 48 V DC load. While ANFIS-based control has been reported previously for wind energy systems, the novelty of this work lies in its focused application to a DC-generator-based SWT topology using real wind data from the Bukhara region, together with a rigorous quantitative comparison against a conventional PI controller under both constant- and reconstructed variable-wind conditions. Dynamic performance was evaluated through MATLAB/Simulink simulations incorporating IEC-compliant wind turbulence modeling. Quantitative results show that the ANFIS controller achieves faster settling, reduced voltage ripple, and improved disturbance rejection compared to PI control. The findings demonstrate the technical feasibility of ANFIS-based voltage regulation for decentralized DC wind energy systems, while recognizing that economic viability and environmental benefits require further system-level and experimental assessment. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

39 pages, 6563 KB  
Article
Model Predictive Control for Dynamic Positioning of a Fireboat Considering Non-Linear Environmental Disturbances and Water Cannon Reaction Forces Based on Numerical Modeling
by Dabin Lee and Sewon Kim
Mathematics 2026, 14(3), 401; https://doi.org/10.3390/math14030401 - 23 Jan 2026
Viewed by 178
Abstract
Dynamic positioning (DP) systems play a critical role in maintaining vessel position and heading under environmental disturbances such as wind, waves, and currents. This study presents a model predictive control (MPC)-based DP system for a fireboat equipped with a rudder–propeller configuration, explicitly accounting [...] Read more.
Dynamic positioning (DP) systems play a critical role in maintaining vessel position and heading under environmental disturbances such as wind, waves, and currents. This study presents a model predictive control (MPC)-based DP system for a fireboat equipped with a rudder–propeller configuration, explicitly accounting for both environmental loads and the reaction force generated during water cannon operation. Unlike conventional DP architectures in which DP control and thrust allocation are treated as separate modules, the proposed framework integrates both functions within a unified MPC formulation, enabling real-time optimization under actuator constraints. Environmental loads are modeled by incorporating nonlinear second-order wave drift effects, while nonlinear rudder–propeller interaction forces are derived through computational fluid dynamics (CFD) analysis and embedded in a control-oriented dynamic model. This modeling approach allows operational constraints, including rudder angle limits and propeller thrust saturation, to be explicitly considered in the control formulation. Simulation results demonstrate that the proposed MPC-based DP system achieves improved station-keeping accuracy, enhanced stability, and increased robustness against combined environmental disturbances and water cannon reaction forces, compared to a conventional PID controller. Full article
(This article belongs to the Special Issue High-Order Numerical Methods and Computational Fluid Dynamics)
Show Figures

Figure 1

21 pages, 2091 KB  
Article
Robust Optimal Consensus Control for Multi-Agent Systems with Disturbances
by Jun Liu, Kuan Luo, Ping Li, Ming Pu and Changyou Wang
Drones 2026, 10(2), 78; https://doi.org/10.3390/drones10020078 - 23 Jan 2026
Viewed by 196
Abstract
The purpose of this article is to develop optimal control strategies for discrete-time multi-agent systems (DT-MASs) with unknown disturbances, with the goal of enhancing their consensus performance and disturbance rejection capabilities. Complex flight conditions, such as the scenario of multi-unmanned aerial vehicle (multi-UAV) [...] Read more.
The purpose of this article is to develop optimal control strategies for discrete-time multi-agent systems (DT-MASs) with unknown disturbances, with the goal of enhancing their consensus performance and disturbance rejection capabilities. Complex flight conditions, such as the scenario of multi-unmanned aerial vehicle (multi-UAV) maintaining consensus under strong wind gusts, pose significant challenges for MAS control. To address these challenges, this article develops an optimal controller for UAV-based MASs with unknown disturbances to reach consensus. First, a novel improved nonlinear extended state observer (INESO) is designed to estimate disturbances in real time, accompanied by a corresponding disturbance compensation scheme. Subsequently, the consensus error systems and cost functions are established based on the disturbance-free DT-MASs. Building on this, a policy iterative algorithm based on a momentum-accelerated Actor–Critic network is proposed for the disturbance-free DT-MASs to synthesize an optimal consensus controller, whose integration with the disturbance compensation scheme yields an optimal disturbance rejection controller for the disturbance-affected DT-MASs to achieve consensus control. Comparative quantitative analysis demonstrates significant performance improvements over a standard gradient Actor–Critic network: the proposed approach reduces convergence time by 12.8%, improves steady-state position accuracy by 22.7%, enhances orientation accuracy by 42.1%, and reduces overshoot by 22.7%. Finally, numerical simulations confirm the efficacy and superiority of the method. Full article
Show Figures

Figure 1

15 pages, 3507 KB  
Article
Online Monitoring of Aerodynamic Characteristics of Fruit Tree Leaves Based on Strain-Gage Sensors
by Yanlei Liu, Zhichong Wang, Xu Dong, Chenchen Gu, Fan Feng, Yue Zhong, Jian Song and Changyuan Zhai
Agronomy 2026, 16(3), 279; https://doi.org/10.3390/agronomy16030279 - 23 Jan 2026
Viewed by 174
Abstract
Orchard wind-assisted spraying technology relies on auxiliary airflow to disturb the canopy and improve droplet deposition uniformity. However, there are few effective means of quantitatively assessing the dynamic response of fruit tree leaves to airflow or the changes in airflow patterns within the [...] Read more.
Orchard wind-assisted spraying technology relies on auxiliary airflow to disturb the canopy and improve droplet deposition uniformity. However, there are few effective means of quantitatively assessing the dynamic response of fruit tree leaves to airflow or the changes in airflow patterns within the canopy in real time. To address this, this study proposed an online monitoring method for the aerodynamic characteristics of fruit tree leaves using strain gauge sensors. The flexible strain gauge was affixed to the midribs of leaves from peach, pear and apple trees. Leaf deformations were captured with high-speed video recording (100 fps) alongside electrical signals in controlled wind fields. Bartlett low-pass filtering and Fourier transform were used to extract frequency-domain features spanning between 0 and 50 Hz. The AdaBoost decision tree model was used to evaluate classification performance across frequency bands. The results demonstrated high accuracy in identifying wind exposure (98%) for pear leaf and classifying the three leaf types (κ = 0.98) within the 4–6 Hz band. A comparison with the frame analysis of high-speed video recordings revealed a time error of 2 s in model predictions. This study confirms that strain gauge sensors combined with machine learning could efficiently monitor fruit tree leaf responses to external airflow in real time. It provides novel insights for optimizing wind-assisted spray parameters, reconstructing internal canopy wind field distributions and achieving precise pesticide application. Full article
(This article belongs to the Special Issue Advances in Precision Pesticide Spraying Technology and Equipment)
Show Figures

Figure 1

30 pages, 6495 KB  
Article
Wind and Snow Protection Design and Optimization for Tunnel Portals in Central Asian Alpine Mountains
by Bin Zhi, Changwei Li, Xiaojing Xu, Zhanping Song and Ang Jiao
Buildings 2026, 16(2), 454; https://doi.org/10.3390/buildings16020454 - 21 Jan 2026
Viewed by 134
Abstract
Aiming at the wind-blown snow disasters plaguing tunnel portals along the China-Tajikistan Highway Phase II Project, this study optimizes the protective parameters of wind deflectors through numerical simulation to improve the disaster prevention efficiency of tunnel portals in alpine mountainous areas. Three core [...] Read more.
Aiming at the wind-blown snow disasters plaguing tunnel portals along the China-Tajikistan Highway Phase II Project, this study optimizes the protective parameters of wind deflectors through numerical simulation to improve the disaster prevention efficiency of tunnel portals in alpine mountainous areas. Three core control parameters of wind deflectors, namely horizontal distance from the tunnel portal (L), plate inclination angle (β), and top installation height (h), were selected as the research objects. Single-factor numerical simulation scenarios were designed for each parameter, and an L9(33) orthogonal test was further adopted to formulate 9 groups of multi-parameter combination scenarios, with the snow phase volume fraction at 35 m on the leeward side of the tunnel portal set as the core evaluation index. A computational fluid dynamics (CFD) model was established to systematically investigate the influence laws of each parameter on the wind field structure and snow drift deposition characteristics at tunnel portals and clarify the flow field response rules under different parameter configurations. Single-factor simulation results show that the wind deflector exerts distinct regulatory effects on the wind-snow flow field with different parameter settings: when L = 6 m, the disturbance zone of the wind deflector precisely covers the main wind flow development area in front of the tunnel portal, which effectively lifts the main incoming flow path, compresses the recirculation zone (length reduced from 45.8 m to 22.3 m), and reduces the settlement of snow particles, achieving the optimal comprehensive prevention effect; when β = 60°, the leeward wind speed at the tunnel portal is significantly increased to 10–12 m/s (from below 10 m/s), which effectively promotes the transport of snow particles and mitigates the accumulation risk, being the optimal inclination angle; when h = 2 m, the wind speed on both the windward and leeward sides of the tunnel portal is significantly improved, and the snow accumulation risk at the portal reaches the minimum. Orthogonal test results further quantify the influence degree of each parameter on the snow prevention effect, revealing that the horizontal distance from the tunnel portal is the most significant influencing factor. The optimal parameter combination of the wind deflector is determined as L = 6 m, β = 60°, and h = 2 m. Under this optimal combination, the snow phase volume fraction at 35 m on the leeward side of the tunnel portal is 0.0505, a 12.3% reduction compared with the non-deflector condition; the high-concentration snow accumulation zone is shifted 25 m leeward, and the high-value snow phase volume fraction area (>0.06) disappears completely, which can effectively alleviate the adverse impact of wind-blown snow disasters on the normal operation of tunnel portals. The research results reveal the regulation mechanism of wind deflector parameters on the wind-snow flow field at alpine tunnel portals and determine the optimal protective parameter combination, which can provide important theoretical reference and technical support for the prevention and control of wind-blown snow disasters at tunnel portals in similar alpine mountainous areas. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

18 pages, 3612 KB  
Article
Comparison of Fixed and Adaptive Speed Control for a Flettner-Rotor-Assisted Coastal Ship Using Coupled Maneuvering-Energy Simulation
by Seohee Jang, Hyeongyo Chae and Chan Roh
J. Mar. Sci. Eng. 2026, 14(2), 210; https://doi.org/10.3390/jmse14020210 - 20 Jan 2026
Viewed by 136
Abstract
Wind-assisted propulsion using Flettner rotors has gained attention as the shipping sector faces stricter decarbonization regulations. This study compares conventional Fixed Speed Control with Adaptive Speed Control for a 100 m coastal vessel. The proposed Adaptive Speed Control selectively activates the rotor based [...] Read more.
Wind-assisted propulsion using Flettner rotors has gained attention as the shipping sector faces stricter decarbonization regulations. This study compares conventional Fixed Speed Control with Adaptive Speed Control for a 100 m coastal vessel. The proposed Adaptive Speed Control selectively activates the rotor based on relative wind conditions and adjusts rotor speed according to the surge-direction projection of Magnus force. A simulation framework based on the MMG maneuvering model evaluates path-following performance, fuel consumption, and annual performance indicators. Results show that Adaptive Speed Control achieves 18.84% reduction in fuel consumption, corresponding to annual savings of 212.02 tons of fuel, USD 190,823 in OPEX, and 679.76 tons of CO2 emissions. Selective rotor operation reduces the Fatigue Damage Index by approximately 89%, resulting in 84.48% reduction in annual maintenance costs. Unwanted lateral forces and yaw disturbances are mitigated, improving path-following and maneuvering stability. These findings demonstrate that situationally aware Adaptive Speed Control improves energy efficiency and operational characteristics of Flettner-rotor-assisted propulsion systems while maintaining maneuvering performance, providing practical guidance for wind-assisted ship operation under realistic coastal conditions. Full article
(This article belongs to the Special Issue Green Energy with Advanced Propulsion Systems for Net-Zero Shipping)
Show Figures

Figure 1

21 pages, 6167 KB  
Article
Fire in Tunnels: The Influence of the Heat Release Rate on the Lower Layer Contamination
by Miguel Mateus, Ulisses Fernandes, João C. Viegas and Pedro J. Coelho
Fire 2026, 9(1), 41; https://doi.org/10.3390/fire9010041 - 17 Jan 2026
Viewed by 448
Abstract
Fire accidents in road tunnels can cause a significant number of fatalities and severe damage to tunnel structures. The tunnel European directive applies to the trans-European road network and requires the use of active smoke control systems in most tunnels longer than 1000 [...] Read more.
Fire accidents in road tunnels can cause a significant number of fatalities and severe damage to tunnel structures. The tunnel European directive applies to the trans-European road network and requires the use of active smoke control systems in most tunnels longer than 1000 m. Research has investigated whether shorter tunnels without active smoke control systems are safe. If smoke contaminates the lower layer where people evacuate, it can impair visibility. This disturbs egress and may cause intoxication and, eventually, death. The FireFoam computer code was applied to the Memorial Tunnel fire ventilation tests for validation. This work investigates the effect of varying the heat release rate (HRR), ranging from 6 to 100 MW, under a wind velocity of 0.77 m/s and in the absence of wind. Results show that high HRR moves the start of lower layer smoke contamination closer to the fire source, reducing the distance from 390 m at 14 MW to as close as 210 m at 100 MW. An analytical model was developed to predict the distance from the fire source where smoke can contaminate the lower layer and was subsequently improved to account for HRR variation. Full article
(This article belongs to the Special Issue Fire Risk Assessment and Emergency Evacuation)
Show Figures

Figure 1

15 pages, 2797 KB  
Article
Coordinated Control of Standalone Brushless Doubly-Fed Induction Generator for Load Disturbance Suppression in Microgrid
by Wei Luo, Yan Le, Minglei Xie, Yi Liu and Dayi Li
Energies 2026, 19(2), 464; https://doi.org/10.3390/en19020464 - 17 Jan 2026
Viewed by 115
Abstract
The anti-load-disturbance capability is one of the most important capabilities in a microgrid. In comparison with the grid-connected brushless doubly-fed induction generator (BDFIG), the output voltage of the standalone BDFIG in a microgrid is more susceptible to load disturbances. In order to address [...] Read more.
The anti-load-disturbance capability is one of the most important capabilities in a microgrid. In comparison with the grid-connected brushless doubly-fed induction generator (BDFIG), the output voltage of the standalone BDFIG in a microgrid is more susceptible to load disturbances. In order to address this issue, this paper presents a coordinated control method based on both the machine side converter (MSC) and line side converter (LSC) to reduce the amplitude of power winding (PW) voltage fluctuation and shorten transient response time, so as to significantly reduce the influence of the load disturbance on the output voltage under the limited power converter capacity. The proposed control strategy is validated through experiments conducted on a 3 kW wound-rotor BDFIG. Full article
Show Figures

Figure 1

Back to TopTop