Abstract
This paper examines the application of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for voltage regulation in a small-scale wind turbine (SWT) system intended for off-grid rural electrification in Uzbekistan. The proposed architecture consists of a wind turbine, a permanent-magnet DC generator, and a buck converter supplying a regulated 48 V DC load. While ANFIS-based control has been reported previously for wind energy systems, the novelty of this work lies in its focused application to a DC-generator-based SWT topology using real wind data from the Bukhara region, together with a rigorous quantitative comparison against a conventional PI controller under both constant- and reconstructed variable-wind conditions. Dynamic performance was evaluated through MATLAB/Simulink simulations incorporating IEC-compliant wind turbulence modeling. Quantitative results show that the ANFIS controller achieves faster settling, reduced voltage ripple, and improved disturbance rejection compared to PI control. The findings demonstrate the technical feasibility of ANFIS-based voltage regulation for decentralized DC wind energy systems, while recognizing that economic viability and environmental benefits require further system-level and experimental assessment.