Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (377)

Search Parameters:
Keywords = wild cat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6731 KiB  
Article
Combined Impacts of Acute Heat Stress on the Histology, Antioxidant Activity, Immunity, and Intestinal Microbiota of Wild Female Burbot (Lota Lota) in Winter: New Insights into Heat Sensitivity in Extremely Hardy Fish
by Cunhua Zhai, Yutao Li, Ruoyu Wang, Haoxiang Han, Ying Zhang and Bo Ma
Antioxidants 2025, 14(8), 947; https://doi.org/10.3390/antiox14080947 (registering DOI) - 31 Jul 2025
Viewed by 265
Abstract
Temperature fluctuations caused by climate change and global warming pose a threat to fish. The burbot (lota lota) population is particularly sensitive to increased water temperature, but the systematic impacts of high-temperature exposure on their liver and intestinal health remain unclear. [...] Read more.
Temperature fluctuations caused by climate change and global warming pose a threat to fish. The burbot (lota lota) population is particularly sensitive to increased water temperature, but the systematic impacts of high-temperature exposure on their liver and intestinal health remain unclear. In January of 2025, we collected wild adult burbot individuals from the Ussuri River (water temperature: about 2 °C), China. The burbot were exposed to 2 °C, 7 °C, 12 °C, 17 °C, and 22 °C environments for 96 h; then, the liver and intestinal contents were subsequently collected for histopathology observation, immunohistochemistry, biochemical index assessment, and transcriptome/16S rDNA sequencing analysis. There was obvious liver damage including hepatocyte necrosis, fat vacuoles, and cellular peripheral nuclei. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities were elevated and subsequently decreased. Additionally, the malondialdehyde (MDA) level significantly increased with increasing temperature. These results indicate that 7 °C (heat stress temperature), 12 °C (tipping point for normal physiological metabolism status), 17 °C (tipping point for individual deaths), and 22 °C (thermal limit) are critical temperatures in terms of the physiological response of burbot during their breeding period. In the hepatic transcriptome profiling, 6538 differentially expressed genes (DEGs) were identified, while KEGG enrichment analysis showed that high-temperature stress could affect normal liver function by regulating energy metabolism, immune, and apoptosis-related pathways. Microbiomics also revealed that acute heat stress could change the intestinal microbe community structure. Additionally, correlation analysis suggested potential regulatory relationships between intestinal microbe taxa and immune/apoptosis-related DEGs in the liver. This study revealed the potential impact of environmental water temperature changes in cold habitats in winter on the physiological adaptability of burbot during the breeding period and provides new insights for the ecological protection of burbot in the context of global climate change and habitat warming. Full article
(This article belongs to the Special Issue Antioxidant Response in Aquatic Animals)
Show Figures

Figure 1

18 pages, 2018 KiB  
Article
Screening and Identification of Cadmium-Tolerant, Plant Growth-Promoting Rhizobacteria Strain KM25, and Its Effects on the Growth of Soybean and Endophytic Bacterial Community in Roots
by Jing Zhang, Enjing Yi, Yuping Jiang, Xuemei Li, Lanlan Wang, Yuzhu Dong, Fangxu Xu, Cuimei Yu and Lianju Ma
Plants 2025, 14(15), 2343; https://doi.org/10.3390/plants14152343 - 29 Jul 2025
Viewed by 297
Abstract
Cadmium (Cd) is a highly toxic heavy metal that can greatly affect crops and pose a threat to food security. Plant growth-promoting rhizobacteria (PGPR) are capable of alleviating the harm of Cd to crops. In this research, a Cd-tolerant PGPR strain was isolated [...] Read more.
Cadmium (Cd) is a highly toxic heavy metal that can greatly affect crops and pose a threat to food security. Plant growth-promoting rhizobacteria (PGPR) are capable of alleviating the harm of Cd to crops. In this research, a Cd-tolerant PGPR strain was isolated and screened from the root nodules of semi-wild soybeans. The strain was identified as Pseudomonas sp. strain KM25 by 16S rRNA. Strain KM25 has strong Cd tolerance and can produce indole-3-acetic acid (IAA) and siderophores, dissolve organic and inorganic phosphorus, and has 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. Under Cd stress, all growth indicators of soybean seedlings were significantly inhibited. After inoculation with strain KM25, the heavy metal stress of soybeans was effectively alleviated. Compared with the non-inoculated group, its shoot height, shoot and root dry weight, fresh weight, and chlorophyll content were significantly increased. Strain KM25 increased the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities of soybean seedlings, reduced the malondialdehyde (MDA) content, increased the Cd content in the roots of soybeans, and decreased the Cd content in the shoot parts. In addition, inoculation treatment can affect the community structure of endophytic bacteria in the roots of soybeans under Cd stress, increasing the relative abundance of Proteobacteria, Bacteroidetes, Sphingomonas, Rhizobium, and Pseudomonas. This study demonstrates that strain KM25 is capable of significantly reducing the adverse effects of Cd on soybean plants while enhancing their growth. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

18 pages, 4945 KiB  
Article
Overexpression of a White Clover WRKY Transcription Factor Improves Cold Tolerance in Arabidopsis
by Shuaixian Li, Meiyan Guo, Wei Hong, Manman Li, Xiaoyue Zhu, Changhong Guo and Yongjun Shu
Agronomy 2025, 15(7), 1700; https://doi.org/10.3390/agronomy15071700 - 14 Jul 2025
Viewed by 349
Abstract
Plants are frequently exposed to various abiotic stresses, among which low-temperature stress markedly impairs growth and physiological functions. WRKY transcription factors are key regulators in plant responses to abiotic stress. In this study, a novel WRKY transcription factor gene, TrWRKY79, was cloned [...] Read more.
Plants are frequently exposed to various abiotic stresses, among which low-temperature stress markedly impairs growth and physiological functions. WRKY transcription factors are key regulators in plant responses to abiotic stress. In this study, a novel WRKY transcription factor gene, TrWRKY79, was cloned from white clover. Functional characterization revealed that the full-length TrWRKY79 protein possesses typical features of transcription factors, including transcriptional activation activity located at its C-terminal domain. Heterologous expression of TrWRKY79 in Arabidopsis thaliana significantly enhanced cold tolerance under low-temperature stress. Physiological assays showed that the transgenic lines exhibited higher chlorophyll content and elevated activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) compared to wild-type plants. Furthermore, Protenix was employed to predict the potential target genes of TrWRKY transcription factors, and their expression profiles were analyzed to help elucidate the regulatory network underlying cold tolerance. qRT-PCR analysis confirmed that several cold-responsive genes, such as COR47 and ABI5, were significantly upregulated in the transgenic lines. Collectively, these findings indicate that TrWRKY79 plays a positive regulatory role in enhancing cold tolerance, providing valuable insights into the molecular mechanisms of cold resistance in white clover and offering promising candidate genes for improving stress resilience in forage crops. Full article
Show Figures

Figure 1

17 pages, 2474 KiB  
Article
Localization of a Cardiolipin Synthase in Helicobacter pylori and Its Impact on the Flagellar Sheath Proteome
by Doreen Nguyen, Nathan East, Vincent J. Starai and Timothy R. Hoover
Microbiol. Res. 2025, 16(7), 155; https://doi.org/10.3390/microbiolres16070155 - 7 Jul 2025
Viewed by 542
Abstract
Helicobacter pylori, which colonizes the human gastric mucosa, uses a cluster of polar, sheathed flagella to swim across the mucous layer of the stomach. The function and biogenesis of the H. pylori flagellar sheath are poorly understood. Cardiolipin is a phospholipid that [...] Read more.
Helicobacter pylori, which colonizes the human gastric mucosa, uses a cluster of polar, sheathed flagella to swim across the mucous layer of the stomach. The function and biogenesis of the H. pylori flagellar sheath are poorly understood. Cardiolipin is a phospholipid that accumulates in regions of the membrane that have negative curvature, such as the cell pole, cell septum, and flagellar sheath. The final step in cardiolipin biosynthesis is catalyzed by cardiolipin synthase. H. pylori has at least two cardiolipin synthases, one of which is cardiolipin synthase C (ClsC). Bioinformatic analysis revealed that homologs of H. pylori ClsC are restricted to Helicobacter species that have sheathed flagella and the ClsC homologs are predicted lipoproteins. Fluorescence microscopy revealed that a ClsC super-folder green fluorescent protein localized to the cell pole and cell septum in H. pylori G27. Comparing the proteomes of isolated sheathed flagella from the H. pylori B128 wild type and a clsC::cat mutant, we identified five proteins that were absent in the mutant flagellum preparations. One of the proteins was FaaA, an autotransporter that localizes to the flagellar sheath. These findings suggest that the localization of FaaA and possibly other proteins to the flagellar sheath is dependent on ClsC. Full article
Show Figures

Figure 1

19 pages, 8307 KiB  
Article
‘Miyagawa’ New Bud Mutant Type: Enhances Resistance to Low-Temperature Stress
by Shuangyou Wang, Yingzi Zhang, Ben Zhang, Weiqi Luo, Xiang Liu, Suming Dai, Dazhi Li and Na Li
Agronomy 2025, 15(7), 1570; https://doi.org/10.3390/agronomy15071570 - 27 Jun 2025
Viewed by 360
Abstract
Global climate change is leading to more frequent extreme cold events, underscoring the need to study citrus cold tolerance to support breeding and enable potential northward expansion of citrus cultivation. In this study, the ‘Miyagawa’ wild type and its cold-tolerant mutant were selected [...] Read more.
Global climate change is leading to more frequent extreme cold events, underscoring the need to study citrus cold tolerance to support breeding and enable potential northward expansion of citrus cultivation. In this study, the ‘Miyagawa’ wild type and its cold-tolerant mutant were selected for systematic comparison across cold-resistant phenotypes, leaf tissue structure, physiological and biochemical characteristics, and Cor8 gene expression. The mutant exhibited 50% lower relative conductivity and malondialdehyde (MDA) content under −6 °C stress compared to the wild type, indicating reduced membrane damage. Antioxidant enzyme activities were significantly higher in the mutant: superoxide dismutase (SOD) activity increased by 10–30%, peroxidase (POD) by 28%, and catalase (CAT) by up to 2-fold. Proline content was 57% higher in the mutant at peak levels, supporting stronger osmotic regulation. Moreover, Cor8 gene expression in the mutant was up to 2.98 times higher than in the wild type during natural overwintering. These findings confirm that the ‘Miyagawa’ mutant possesses distinct physiological, anatomical, and molecular advantages for low-temperature adaptation and provides valuable germplasm for breeding cold-tolerant citrus varieties. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

14 pages, 1948 KiB  
Article
MdGRF22, a 14-3-3 Family Gene in Apple, Negatively Regulates Drought Tolerance via Modulation of Antioxidant Activity and Interaction with MdSK
by Jiaxuan Ren, Hong Wang, Mingxin Zhao, Guoping Liang, Shixiong Lu and Juan Mao
Plants 2025, 14(13), 1968; https://doi.org/10.3390/plants14131968 - 27 Jun 2025
Viewed by 421
Abstract
The 14-3-3 proteins play crucial roles in regulating plant growth, development, signal transduction and abiotic stress responses. However, there exists a scarcity of research on the role of 14-3-3 proteins in responding to abiotic stress in apples. In this study, we isolated the [...] Read more.
The 14-3-3 proteins play crucial roles in regulating plant growth, development, signal transduction and abiotic stress responses. However, there exists a scarcity of research on the role of 14-3-3 proteins in responding to abiotic stress in apples. In this study, we isolated the MdGRF22 gene from the apple 14-3-3 family. Through the screening of interacting proteins and genetic transformation of Arabidopsis thaliana and apple callus tissues, the function of the MdGRF22 gene under drought stress was verified. The coding sequence (CDS) of MdGRF22 consists of 786 bp and encodes for 261 amino acids. Through sequence alignment, the conserved 14-3-3 domain was identified in MdGRF22 and its homologous genes, which also share similar gene structures and conserved motifs. Subcellular localization revealed that the MdGRF22 protein was predominantly located in the cytoplasm and cell membrane. The yeast two-hybrid (Y2H) analysis demonstrated a possible interaction between MdGRF22 and MdSK. In addition, MdGRF22 transgenic plants generally exhibited lower superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities, higher malondialdehyde (MDA) levels and relative electrolyte leakage under drought conditions compared with wild-type (WT) plants. Our study suggests that MdGRF22 may reduce the drought resistance of transgenic A. thaliana and callus tissues by interacting with MdSK. This study provides a theoretical basis for further exploring the function of 14-3-3 family genes. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

15 pages, 2686 KiB  
Article
Overexpression of AgDREBA6b Gene Significantly Increases Heat Tolerance in Arabidopsis thaliana
by Fangjie Xie, Shengyan Yang, Zexi Peng, Yonglu Li, Zhenchao Yang and Ruiheng Lv
Agronomy 2025, 15(7), 1565; https://doi.org/10.3390/agronomy15071565 - 27 Jun 2025
Viewed by 332
Abstract
The APETALA2/ethylene response factor (AP2/ERF) is a class of plant-specific transcription factors, among which the dehydration-responsive element-binding protein (DREB) subfamily has been widely reported to enhance plant resistance to abiotic stresses. A high-temperature-related gene, Apium graveolens DREBA6b (AgDREBA6b; accession number: OR727346), was [...] Read more.
The APETALA2/ethylene response factor (AP2/ERF) is a class of plant-specific transcription factors, among which the dehydration-responsive element-binding protein (DREB) subfamily has been widely reported to enhance plant resistance to abiotic stresses. A high-temperature-related gene, Apium graveolens DREBA6b (AgDREBA6b; accession number: OR727346), was previously cloned from a heat-tolerant celery variety. In this study, we transformed this gene into Arabidopsis thaliana using an Agrobacterium rhizogenes-mediated method to explore its function. The results showed that overexpressing AgDREBA6b in Arabidopsis thaliana significantly improved plant growth under high-temperature stress (38 °C) compared to the dreb mutant and wild-type (WT) plants. The anatomical structure of the leaves revealed that the number and degree of stomatal openings in the overexpressed plants were significantly higher than those in the WT and dreb plants, suggesting that AgDREBA6b enhances stomatal opening. Additionally, the chlorophyll content, chlorophyll fluorescence properties, proline (Pro), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities were higher in the transgenic plants, indicating better stress tolerance. qPCR analysis showed that four heat tolerance-related genes (AtHSP98.7, AtHSP70-1, AtAPX1, and AtGOLS1) were upregulated in the transgenic plants, with higher expression levels than in WT and mutant plants. This study provides valuable genetic resources for understanding the molecular mechanisms of celery’s heat tolerance and offers insights for breeding heat-tolerant celery varieties. Full article
(This article belongs to the Topic Vegetable Breeding, Genetics and Genomics, 2nd Volume)
Show Figures

Figure 1

45 pages, 2961 KiB  
Article
The Nariño Cat, the Tigrinas and Their Problematic Systematics and Phylogeography: The Real Story
by Manuel Ruiz-García, Javier Vega, Myreya Pinedo-Castro and Joseph Mark Shostell
Animals 2025, 15(13), 1891; https://doi.org/10.3390/ani15131891 - 26 Jun 2025
Viewed by 654
Abstract
The systematics and phylogeny of the most speciose genus (Leopardus) of the felidae have historically been contentious and problematic. These issues have been compounded with the recent advancement of genetic techniques that make it possible to detect events such as incomplete [...] Read more.
The systematics and phylogeny of the most speciose genus (Leopardus) of the felidae have historically been contentious and problematic. These issues have been compounded with the recent advancement of genetic techniques that make it possible to detect events such as incomplete lineage sorting (ILS), punctual historical ancestral introgression (PHAI), and repetitive introgression or recent hybridization (RI-RH). Each of these events have noteworthily affected the Leopardus genus. One Leopardus taxon (Leopardus tigrinus, herein called tigrina) has been especially complex from a phylogenetic point of view. In the last decade, one new species has been reported (L. guttulus) and two other new species likely exist within the tigrinas (L. emiliae and L. pardinoides). However, the most surprising find was the discovery of a new and not previously reported tigrina, the Nariño cat, from the southern Andean region of Colombia (2023). Later that same year, a new paper criticized the discovery. In response to that criticism, herein, we provide new molecular genetics results of the Nariño cat as well as new insights into the molecular phylogeny of the tigrinas inside the Leopardus genus: (1) In this new work, we analyzed the mtND5 gene of Nariño cat samples collected over four years (2001, 2007, 2017, 2023) as well as analyzed mitogenomes of Nariño cat samples collected in three different years (2001, 2017, 2023). The temporal Nariño cat samples (2001, 2007, 2017, 2023) refer to samples taken from a single specimen across different years. Based on these analyses, data from 2001 and 2007 represent the most reliable information. In contrast, samples from 2017 and 2023 may be contaminated with DNA from the Pampas cat and tigrina, respectively. (2) On the other hand, based on sequencing the mtND5 gene of 164 specimens of Leopardus, northern Andean and Central American tigrinas (37 specimens) are divided into at least six different groups (without counting the Nariño cat). Based on our analysis of sequenced mitogenomes of 102 specimens (including 34 northern Andean and Central American tigrinas) of the Leopardus genus, there are at least eight different groups of tigrinas (without counting the Nariño cat). Henceforth, there are strong datasets which support the existence of multiple lineages within the presumed “a priori” northern Andean tigrina and thus much of the genetic diversity of this wild cat has gone unnoticed. There are a series of potential taxa that have gone unnoticed due to a lack of sampling of this polyphyletic Andean feline. Full article
Show Figures

Figure 1

18 pages, 3115 KiB  
Article
Comparative Analysis of Different Body Composition, Mucus Biochemical Indices, and Body Color in Five Strains of Larimichthys crocea
by Hongjin Deng, Quanyou Guo, Banghong Wei, Jiehui Zhong, Mengyao Zheng, Yao Zheng, Na Lin and Shengyang Zheng
Fishes 2025, 10(7), 305; https://doi.org/10.3390/fishes10070305 - 25 Jun 2025
Viewed by 285
Abstract
The large yellow croaker, or Larimichthys crocea, is highly prized for its golden color and nutritional content. The purpose of this study was to investigate the differences in body composition, mucus biochemical indices and body color in five strains of large yellow [...] Read more.
The large yellow croaker, or Larimichthys crocea, is highly prized for its golden color and nutritional content. The purpose of this study was to investigate the differences in body composition, mucus biochemical indices and body color in five strains of large yellow croakers (body weight: 347.01 ± 5.86 g). To conduct genetic diversity analyses of the populations, a total of 50 tailfin samples were randomly chosen from the following populations of large yellow croakers: wild (LYC1), Dai-qu population (LYC2), Yongdai 1 (LYC3), Min-yuedong population (LYC4), and Fufa 1 (LYC5). The findings demonstrated that the LYC3 group’s pigment contents, crude protein, crude lipid, and chromatic values were comparable to those of the LYC1 group (p > 0.05). There was no significant difference between the LYC1 and LYC5 groups’ mucus superoxide dismutase (SOD) and catalase (CAT) activities (p > 0.05). The alkaline phosphatases (ALP), acid phosphatases (ACP), and lysozyme (LYS) activities of the mucus in the LYC1 group were not significantly different from the LYC3 group (p > 0.05). The back skin mRNA expressions of tyrosinase (tyr), tyrosinase-related protein 1 (tyrp1), dopachrome tautomerase (dct), microphtalmia-associated transcription factor (mitf), and melanocortin 1 receptor (mc1r) were significantly up-regulated in the LYC2 and LYC4 groups compared to the LYC1, LYC3, and LYC5 groups (p < 0.05). Forkhead box d3 (foxd3), paired box 3 (pax3), purine nucleoside phosphorylase 4a (pnp4a), aristaless-like homeobox 4a (alx4a), cAMP dependent protein kinase (pka), anaplastic lymphoma kinase (alk), leukocyte receptor tyrosine kinase (ltk), and colony stimulating factor (fms) were among the mRNA expressions of the abdominal skin in the LYC1, LYC3, and LYC5 groups significantly higher than those in the LYC2 and LYC4 groups (p < 0.05). In conclusion, the LYC3 group’s crude protein, crude lipid, carotenoid, and lutein contents were most similar to those of the large yellow croaker found in the wild. Furthermore, the molecular mechanism underlying the variations in body color among the various strains of large yellow croakers was supplied for additional research. Full article
(This article belongs to the Section Genetics and Biotechnology)
Show Figures

Figure 1

12 pages, 5996 KiB  
Article
Cases of Lungworm in Cats from Southern Poland in the Autopsy and Cytological Material
by Stanisław Dzimira, Małgorzata Kandefer-Gola, Rafał Ciaputa and Marta Demkowska-Kutrzepa
Pathogens 2025, 14(7), 630; https://doi.org/10.3390/pathogens14070630 - 25 Jun 2025
Viewed by 733
Abstract
Lungworms in carnivorous domestic animals are infestations that are relatively uncommon. However, in felines, especially wild ones, they are not at all rare. This study aimed to assess the prevalence of respiratory parasite infections (lung nematodes) in domestic cats based on necropsy and [...] Read more.
Lungworms in carnivorous domestic animals are infestations that are relatively uncommon. However, in felines, especially wild ones, they are not at all rare. This study aimed to assess the prevalence of respiratory parasite infections (lung nematodes) in domestic cats based on necropsy and cytological examinations and to highlight the cytological examination of respiratory material as a practical and straightforward diagnostic method. For the presence of lung parasites, necropsy material (cadavers of cats) and samples submitted for cytological examinations from 2005 to 2022 were analyzed. In total, 730 cat samples from southern and southwestern Poland were examined—420 autopsied and 310 cats whose samples were examined cytologically. The material was collected using the bronchoalveolar lavage (BAL) and submitted for cytological examination. Out of 420 cat autopsies, larvae and eggs of Aelurostrongylus abstrusus were found in 4 individuals (0.95%). In cytological material obtained from BAL, out of 310 samples analyzed, larvae and eggs of A. abstrusus and Capillaria aerophila were found in only 2 cases (0.64%). Respiratory parasitic infections in cats can pose a serious health risk, especially with high intensity, in young animals. Considering that such cases present a diagnostic challenge, it is advisable to encourage cat owners to limit their pets’ contact with intermediate and paratenic hosts and use anthelmintics to combat lung parasites. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

20 pages, 4894 KiB  
Article
Overexpression of a Malus baccata (L.) Borkh WRKY Factor Gene MbWRKY33 Increased High Salinity Stress Tolerance in Arabidopsis thaliana
by Xinhui Wang, Ming Gao, Yihan Kong, Qian Yu, Lu Yao, Xingguo Li, Wenhui Li, Wanda Liu, Ruining Hou, Lihua Zhang and Deguo Han
Int. J. Mol. Sci. 2025, 26(12), 5833; https://doi.org/10.3390/ijms26125833 - 18 Jun 2025
Viewed by 310
Abstract
The WRKY transcription factor family is a significant family of plant transcription factors (TFs). Plant growth and development are often influenced by abiotic factors, such as salinity and low temperature. Numerous studies have demonstrated that WRKY TFs primarily influence plant responses to adversity. [...] Read more.
The WRKY transcription factor family is a significant family of plant transcription factors (TFs). Plant growth and development are often influenced by abiotic factors, such as salinity and low temperature. Numerous studies have demonstrated that WRKY TFs primarily influence plant responses to adversity. However, there are few studies on the role of WRKY genes in the stress responses of Malus baccata (L.) Borkh. We cloned the MbWRKY33 gene from Malus baccata for this research, and its roles in salt stress tolerance were analyzed. Phylogenetic tree analysis revealed that MbWRKY33 and PbWRKY33 have the highest homology. Subcellular localization revealed that MbWRKY33 was located within the nucleus. An analysis of tissue-specific expression showed that MbWRKY33 had relatively high expression levels in young leaves and roots. Moreover, Arabidopsis thaliana plants overexpressing MbWRKY33 exhibited stronger resistance to salt stress compared with the wild type (WT) and the unloaded line empty vector (UL). Under the treatment of 200 mM NaCl, transgenic Arabidopsis thaliana plants exhibited significantly higher activities of antioxidant enzymes like superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) than the control. In contrast, the WT and the UL lines had elevated levels of malondialdehyde (MDA) and reactive oxygen species (ROS). In addition, MbWRKY33 elevates transgenic plant resistance to salt stress by regulating the expression levels of AtNHX1, AtSOS1, AtSOS3, AtNCED3, AtSnRK2, and AtRD29a. Results indicated that MbWRKY33 in Malus might be linked to high-salinity stress responses, laying a foundation for understanding WRKY TFs’ reaction to such stress. Full article
(This article belongs to the Special Issue Advance in Plant Abiotic Stress: 3rd Edition)
Show Figures

Figure 1

19 pages, 3097 KiB  
Article
BLH3 Regulates the ABA Pathway and Lignin Synthesis Under Salt Stress in Lilium pumilum
by Wenhao Wan, Lingshu Zhang, Xingyu Liu, Huitao Cui, Miaoxin Shi, Hao Sun, Wei Yang, Xinran Wang, Fengshan Yang and Shumei Jin
Plants 2025, 14(12), 1860; https://doi.org/10.3390/plants14121860 - 17 Jun 2025
Viewed by 531
Abstract
BEL1-like homeodomain protein 3 (BLH3) plays a crucial role in plant development. However, its involvement in the salt stress response has not been studied. In this study, we investigated the molecular mechanism underlying the response of LpBLH3 to salt stress in Lilium pumilum [...] Read more.
BEL1-like homeodomain protein 3 (BLH3) plays a crucial role in plant development. However, its involvement in the salt stress response has not been studied. In this study, we investigated the molecular mechanism underlying the response of LpBLH3 to salt stress in Lilium pumilum (L. pumilum) using various techniques, including quantitative PCR (RT-qPCR), determination of physiological indices of plant after Saline-Alkali stress, yeast two-hybrid screening, luciferase complementation imaging (LCI), and chromosome walking to obtain the promoter sequence, analyzed by PlantCARE, electrophoretic mobility shift assay (EMSA), and then dual-luciferase reporter assay(LUC). RT-qPCR analysis revealed that LpBLH3 is most highly expressed in the leaves of L. pumilum. The expression of LpBLH3 peaks at 24 or 36 h in the leaves under different saline stress. Under various treatments, compared to the wild type (WT), the LpBLH3 overexpression lines exhibited less chlorosis and leaf curling and stronger photosynthesis. The overexpression of LpBLH3 can enhance lignin accumulation in root and stem by positively modulating the expression of crucial genes within the lignin biosynthesis pathway. Y2H and LCI analyses demonstrated that LpBLH3 interacts with LpKNAT3. Additionally, EMSA and LUC analyses confirmed that LpBLH3 can bind to the promoter of LpABI5 and upregulate the expression of ABI5 downstream genes (LpCAT1/LpATEM/LpRD29B). In summary, LpBLH3 enhances the plant’s salt tolerance through the ABA pathway and lignin synthesis. This study can enrich the functional network of the BLH transcription factor family, obtain Lilium pumilum lines with good saline-alkali resistance, expand the planting area of Lilium pumilum, and improve its medicinal and ornamental values. Additionally, the functional analysis of the BLH transcription factor family provides new insights into how crops adapt to the extreme growth environment of saline-alkali soils. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

21 pages, 2306 KiB  
Article
ZnO NPs: A Nanomaterial-Based Fertilizer That Significantly Enhanced Salt Tolerance of Glycyrrhiza uralensis Fisch and Improved the Yield and Quality of Its Root
by Ning Wu and Miao Ma
Plants 2025, 14(12), 1763; https://doi.org/10.3390/plants14121763 - 9 Jun 2025
Viewed by 610
Abstract
Glycyrrhiza uralensis Fisch. is an important economic plant. With its wild populations on the brink of extinction and the area of salinized soil increasing sharply, farmers have gradually used saline soil to carry out artificial cultivation of the licorice. However, the salt stress [...] Read more.
Glycyrrhiza uralensis Fisch. is an important economic plant. With its wild populations on the brink of extinction and the area of salinized soil increasing sharply, farmers have gradually used saline soil to carry out artificial cultivation of the licorice. However, the salt stress has led to a significant decrease in the yield and quality of its medicinal organ (root), seriously restricting the sustainable development of the licorice industry. Therefore, we investigated zinc oxide nanoparticles (ZnO NPs) as a nano-fertilizer to enhance root biomass and bioactive compound accumulation under salinity. Our results indicate that under 160 mM NaCl stress, the application of 30 mg/kg ZnO NPs increased the root biomass of the licorice and the contents of glycyrrhizic acid, glycyrrhizin, and total flavonoids in the roots by 182%, 158%, 87%, and 201%, respectively. And the ZnO treatment made the enzyme activities of SOD, CAT, and POD exhibit increase, and made the levels of superoxide anions, electrolyte leakage, soluble sugar, and proline reduce. These results demonstrate that ZnO NPs not only enhance salt tolerance but also redirect metabolic resources toward medicinal compound biosynthesis. Our findings provide a mechanistic basis for utilizing nanotechnology to sustainably cultivate the licorice in marginal saline environments, bridging agricultural productivity and pharmacological value. Full article
Show Figures

Graphical abstract

12 pages, 302 KiB  
Article
Potential Resistance to Oxaliplatin-Based Regimens in Gastric Cancer Patients with ERBB2 R678Q Mutation: Evidence from a National Genomic Database
by Shuhei Suzuki, Manabu Seino, Hidenori Sato, Yosuke Saito, Koki Saito, Yuta Yamada, Koshi Takahashi, Ryosuke Kumanishi and Tadahisa Fukui
Curr. Issues Mol. Biol. 2025, 47(6), 430; https://doi.org/10.3390/cimb47060430 - 6 Jun 2025
Viewed by 416
Abstract
Epidermal growth factor receptor 2 (ERBB2/HER2) is a critical biomarker in gastric cancer management, but the clinical implications of specific ERBB2 mutations remain poorly characterized. Methods/Results: We investigated the ERBB2 R678Q mutation, utilizing the Center for Cancer Genomics and Advanced Therapeutics [...] Read more.
Epidermal growth factor receptor 2 (ERBB2/HER2) is a critical biomarker in gastric cancer management, but the clinical implications of specific ERBB2 mutations remain poorly characterized. Methods/Results: We investigated the ERBB2 R678Q mutation, utilizing the Center for Cancer Genomics and Advanced Therapeutics (C-CAT) database, which involved the analysis of 3116 gastric/gastroesophageal junction adenocarcinomas. ERBB2 mutations were identified in 130 cases, with R678Q present in 40 patients. These patients exhibited significantly lower response rates to oxaliplatin-based regimens compared to ERBB2 wild-type cases (19.0% vs. 38.0%, p = 0.03), while other ERBB2 mutations demonstrated no such resistance. No significant differences in the response were observed to the ramucirumab or nivolumab regimens. Conclusions: Our findings suggest that the ERBB2 R678Q mutation may predict a poor response to oxaliplatin-based therapy. This study provides real-world evidence supporting the potential clinical relevance of this specific ERBB2 mutation in treatment decision making for gastric cancer. Full article
Show Figures

Figure 1

13 pages, 2720 KiB  
Article
Peanut 9-cis-epoxycarotenoid Dioxygenase Enhances Salt and Drought Stress Tolerance by Regulating ROS Homeostasis
by Wenlin Wang, Mo Zhou, Shaohui Xu, Zhong Huang, Xiaobei Li, Cai Zhou, Siming Wang, Kaiyuan Zhang, Lixian Qiao and Yanyan Tang
Plants 2025, 14(12), 1741; https://doi.org/10.3390/plants14121741 - 6 Jun 2025
Viewed by 401
Abstract
Peanut (Arachis hypogaea L.), a vital oilseed and cash crop, faces yield limitations due to abiotic stresses. The 9-cis-epoxycarotenoid dioxygenase (NCED) enzyme, a key enzyme in abscisic acid (ABA) biosynthesis regulating plant development and stress responses, remains mechanistically uncharacterized in [...] Read more.
Peanut (Arachis hypogaea L.), a vital oilseed and cash crop, faces yield limitations due to abiotic stresses. The 9-cis-epoxycarotenoid dioxygenase (NCED) enzyme, a key enzyme in abscisic acid (ABA) biosynthesis regulating plant development and stress responses, remains mechanistically uncharacterized in peanut abiotic stress tolerance. In this study, we isolated a novel gene, AhNCED4, from the salt-tolerant mutant M24. The expression of AhNCED4 was strongly induced by NaCl, PEG6000, and ABA in peanut huayu20. Overexpression of AhNCED4 enhanced salt and drought tolerance in Arabidopsis. Transgenic overexpression of AhNCED4 improved salt and stress resistance through upregulated ROS-scavenging genes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) with elevated enzymatic activities while reducing malondialdehyde (MDA), superoxide anion (O2−), and hydrogen peroxide (H2O2) accumulation compared to wild-type plants. Further research showed that the chlorophyll fluorescence parameters of transgenic lines were significantly increased, while light damage was significantly reduced. These findings establish AhNCED4 as a critical regulator of stress adaptation and an excellent candidate gene for resistance breeding in peanut. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

Back to TopTop