Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (183)

Search Parameters:
Keywords = whole-cell-based therapeutics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 2429 KiB  
Review
Hepatocytes as Model for Investigating Natural Senotherapeutic Compounds and Their Effects on Cell Cycle Dynamics and Genome Stability
by Anastasia Fizikova, Anna Prokhorova, Daria Churikova, Zahar Konstantinov, Roman Ivanov, Alexander Karabelsky and Stanislav Rybtsov
Int. J. Mol. Sci. 2025, 26(14), 6794; https://doi.org/10.3390/ijms26146794 - 16 Jul 2025
Viewed by 707
Abstract
DNA is inherently unstable and is susceptible to damage from both endogenous sources (such as reactive oxygen species) and exogenous factors (including UV, ionizing radiation, and chemicals). The accumulation of DNA damage manifests as genetic mutations, chromosomal instability, and the stalling of DNA [...] Read more.
DNA is inherently unstable and is susceptible to damage from both endogenous sources (such as reactive oxygen species) and exogenous factors (including UV, ionizing radiation, and chemicals). The accumulation of DNA damage manifests as genetic mutations, chromosomal instability, and the stalling of DNA replication and transcription processes. Accumulated DNA damage influences apoptosis and cell cycle checkpoints, serving as one of the key triggers for the manifestation of the senescent phenotype. Both aging and cancer are associated with the accumulation of mutations in somatic cells. Disruption of cell cycle control and uncontrolled proliferation are fundamental characteristics of any cancer cell, with the majority of anticancer drugs acting as inhibitors of cyclin-dependent kinases, thereby inducing a transition of cells into a senescent state. Consequently, disturbances in the dynamics and regulation of inflammatory responses, oxidative stress, cell proliferation, DNA damage repair, and epigenetic anomalies, along with the influence of retroviruses and transposons, lead to the accumulation of senescent cells within the human body, characterized by blocked replication and cell cycle, as well as a distinct secretory phenotype. The age-related or disease-associated accumulation of these senescent cells significantly alters the physiology of tissues and the organism as a whole. Many secondary metabolites of higher plants exhibit senolytic and senomorphic activities, although most of them are not fully characterized. In this review, we will explore the principal signaling pathways in mammalian cells that govern the cell cycle and cellular senescence, with a particular emphasis on how their dynamics, expression, and regulation have been modified through the application of senotherapeutic compounds. The second section of the review will identify key target genes for the metabolic engineering, primarily aimed at enhancing the accumulation of plant secondary metabolites with potential therapeutic benefits. Lastly, we will discuss the rationale for utilizing liver cells as a model system to investigate the effects of senolytic compounds on human physiology and health, as well as how senotherapeutic substances can be leveraged to improve gene therapy approaches based on CRISPR/Cas9 and prime-editing technologies. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Russia)
Show Figures

Figure 1

40 pages, 1203 KiB  
Review
Overview of Preclinical and Clinical Trials of Nanoparticles for the Treatment of Brain Metastases
by Muhammad Izhar, Mohamed Al Gharyani, Ahed H. Kattaa, Juan J. Cardona, Ruchit P. Jain, Elaheh Shaghaghian, Yusuke S. Hori, Fred C. Lam, Deyaaldeen Abu Reesh, Sara C. Emrich, Louisa Ustrzynski, Armine Tayag, Maciej S. Lesniak, Steven D. Chang and David J. Park
Pharmaceutics 2025, 17(7), 899; https://doi.org/10.3390/pharmaceutics17070899 - 11 Jul 2025
Viewed by 617
Abstract
Brain metastases (BM), which most commonly originate from lung, breast, or skin cancers, remain a major clinical challenge, with standard treatments such as stereotactic radiosurgery (SRS), surgical resection, and whole-brain radiation therapy (WBRT). The prognosis for patients with BM remains poor, with a [...] Read more.
Brain metastases (BM), which most commonly originate from lung, breast, or skin cancers, remain a major clinical challenge, with standard treatments such as stereotactic radiosurgery (SRS), surgical resection, and whole-brain radiation therapy (WBRT). The prognosis for patients with BM remains poor, with a median overall survival (OS) of just 10–16 months. Although recent advances in systemic therapies, including small molecule inhibitors, monoclonal antibodies, chemotherapeutics, and gene therapies, have demonstrated success in other malignancies, their effectiveness in central nervous system (CNS) cancers is significantly limited by poor blood–brain barrier (BBB) permeability and subtherapeutic drug concentrations in the brain. Nanoparticle-based drug delivery systems have emerged as a promising strategy to overcome these limitations by enhancing CNS drug penetration and selectively targeting metastatic brain tumor cells while minimizing off-target effects. This review summarizes recent preclinical and clinical developments in nanoparticle-based therapies for BM. It is evident from these studies that NPs can carry with them a range of therapeutics, including chemotherapy, immunotherapy, small molecule inhibitors, gene therapies, radiosensitizers, and modulators of tumor microenvironment to the BM. Moreover, preclinical studies have shown encouraging efficacy in murine models, highlighting the potential of these platforms to improve therapeutic outcomes. However, clinical translation remains limited, with few ongoing trials. To close this translational gap, future work must address clinical challenges such as trial design, regulatory hurdles, and variability in BBB permeability while developing personalized nanoparticle-based therapies tailored to individual tumor characteristics. Full article
(This article belongs to the Special Issue Development of Novel Tumor-Targeting Nanoparticles, 2nd Edition)
Show Figures

Figure 1

13 pages, 1483 KiB  
Article
Analytical Validation of an LC-MS/MS Method for Simultaneous Quantification of Multiple Immunosuppressants in Microvolume Whole Blood
by Kenichi Aizawa, Natsuka Kimura, Takahiro Goda, Sho Nishida, Yasunaru Sakuma, Daiki Iwami and Ryozo Nagai
Int. J. Mol. Sci. 2025, 26(13), 6358; https://doi.org/10.3390/ijms26136358 - 1 Jul 2025
Viewed by 488
Abstract
Immunosuppressants are essential for preventing allograft rejection; however, they require therapeutic drug monitoring to maintain efficacy and to prevent severe complications such as opportunistic infections. Calcineurin inhibitors (CIs) are primarily distributed in red blood cells, whereas mycophenolic acid (MPA) and its metabolites are [...] Read more.
Immunosuppressants are essential for preventing allograft rejection; however, they require therapeutic drug monitoring to maintain efficacy and to prevent severe complications such as opportunistic infections. Calcineurin inhibitors (CIs) are primarily distributed in red blood cells, whereas mycophenolic acid (MPA) and its metabolites are found in plasma. These differences necessitate separate analyses for each drug, increasing laboratory workload, analytical complexity, and patient burden. We developed a liquid chromatography–tandem mass spectrometry method for simultaneous quantification of CIs such as tacrolimus (Tac), everolimus (Eve), sirolimus (Sir), cyclosporine A (CycA) and MPA in 2.8-µL whole-blood samples, with a hematocrit-based correction to estimate plasma-equivalent MPA concentrations. Performance of this method was assessed by comparison with conventional immunoassay results using linear regression and Bland–Altman analyses, demonstrating excellent agreement, with strong linearity (R2 > 0.995) at <2 to 35 ng/mL for three CIs, 26.0 to 1866 ng/mL for CycA, and 0.1 to 50 μg/mL for MPA. Furthermore, MPA and tacrolimus concentrations closely aligned with routine clinical results (R2 > 0.900), indicating high accuracy and reproducibility. This new approach may be particularly beneficial for hospitalized patients with limited venous access, pediatric populations, and in remote care settings where frequent blood sampling is challenging because of simultaneous quantification and fewer sample volume requirements. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

36 pages, 1115 KiB  
Review
Role of Liquid Biopsy for Early Detection, Prognosis, and Therapeutic Monitoring of Hepatocellular Carcinoma
by Faris Alrumaihi
Diagnostics 2025, 15(13), 1655; https://doi.org/10.3390/diagnostics15131655 - 28 Jun 2025
Viewed by 648
Abstract
The global prevalence of hepatocellular carcinoma (HCC) is getting worse, leading to an urgent need for improved diagnostic and prognostic strategies. Liquid biopsy, which analyzes circulating tumor cells (CTCs), cell-free DNA (cfDNA), cell-free RNA (cfRNA), and extracellular vesicles (EVs), has emerged as a [...] Read more.
The global prevalence of hepatocellular carcinoma (HCC) is getting worse, leading to an urgent need for improved diagnostic and prognostic strategies. Liquid biopsy, which analyzes circulating tumor cells (CTCs), cell-free DNA (cfDNA), cell-free RNA (cfRNA), and extracellular vesicles (EVs), has emerged as a minimally invasive and promising alternative to traditional tissue biopsy. These biomarkers can be detected using sensitive molecular techniques such as digital PCR, quantitative PCR, methylation-specific assays, immunoaffinity-based CTC isolation, nanoparticle tracking analysis, ELISA, next-generation sequencing, whole-genome sequencing, and whole-exome sequencing. Despite several advantages, liquid biopsy still has challenges like sensitivity, cost-effectiveness, and clinical accessibility. Reports highlight the significance of multi-analyte liquid biopsy panels in enhancing diagnostic sensitivity and specificity. This approach offers a more comprehensive molecular profile of HCC, early detection, and tracking therapeutic treatment, particularly in those cases where single-analyte assays and imaging fail. The technological advancement in the isolation and analysis of CTC, cell-free nucleic acids, and EVs is increasing our understanding of extracting genetic information from HCC tumors and discovering mechanisms of therapeutic resistance. Furthermore, crucial information on tumor-specific transcriptomic and genomic changes can be obtained using cfRNA and cfDNA released into the peripheral blood by tumor cells. This review provides an overview of current liquid biopsy strategies in HCC and their use for early detection, prognosis, and monitoring the effectiveness of HCC therapy. Full article
(This article belongs to the Special Issue Diagnosis and Management of Liver Diseases—2nd Edition)
Show Figures

Figure 1

18 pages, 696 KiB  
Article
Exome Study of Single Nucleotide Variations in Patients with Syndromic and Non-Syndromic Autism Reveals Potential Candidate Genes for Diagnostics and Novel Single Nucleotide Variants
by Lyudmila Belenska-Todorova, Milen Zamfirov, Tihomir Todorov, Slavena Atemin, Mila Sleptsova, Zornitsa Pavlova, Tanya Kadiyska, Ales Maver, Borut Peterlin and Albena Todorova
Cells 2025, 14(12), 915; https://doi.org/10.3390/cells14120915 - 17 Jun 2025
Viewed by 2694
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental impairment that occurs due to mutations related to the formation of the nervous system, combined with the impact of various epigenetic and environmental factors. This necessitates the identification of the genetic variations involved in ASD pathogenesis. [...] Read more.
Autism spectrum disorder (ASD) is a neurodevelopmental impairment that occurs due to mutations related to the formation of the nervous system, combined with the impact of various epigenetic and environmental factors. This necessitates the identification of the genetic variations involved in ASD pathogenesis. We performed whole exome sequencing (WES) in a cohort of 22 Bulgarian male and female individuals showing ASD features alongside segregation analyses of their families. A targeted panel of genes was chosen and analyzed for each case, based on a detailed examination of clinical data. Gene analyses revealed that specific variants concern key neurobiological processes involving neuronal architecture, development, and function. These variants occur in a number of genes, including SHANK3, DLG3, NALCN, and PACS2 which are critical for synaptic signaling imbalance, CEP120 and BBS5 for ciliopathies, SPTAN1 for spectrins structure, SPATA5, TRAK1, and VPS13B for neuronal organelles trafficking and integrity, TAF6, SMARCB1, DDX3X, MECP2, and SETD1A for gene expression, CDK13 for cell cycle control, ALDH5A1, DPYD, FH, and PDHX for mitochondrial function, and PQBP1, HUWE1, and WDR45 for neuron homeostasis. Novel single nucleotide variants in the SPATA5, CEP120, BBS5, SETD1A, TRAK1, VPS13B, and DDX3X genes have been identified and proposed for use in ASD diagnostics. Our data contribute to a better understanding of the complex neurobiological features of autism and are applicable in the diagnosis and development of personalized therapeutic approaches. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Autism Spectrum Disorder)
Show Figures

Figure 1

14 pages, 672 KiB  
Review
Towards Extracellular Vesicles in the Treatment of Epidermolysis Bullosa
by Aaron Gabriel W. Sandoval and Evangelos V. Badiavas
Bioengineering 2025, 12(6), 574; https://doi.org/10.3390/bioengineering12060574 - 27 May 2025
Viewed by 818
Abstract
Epidermolysis bullosa (EB) is a debilitating genetic skin disorder characterized by extreme fragility, chronic wounds, and severe complications, particularly in its most severe form, recessive dystrophic EB (RDEB). Current treatments focus on symptomatic relief through wound care and pain management, with recent FDA [...] Read more.
Epidermolysis bullosa (EB) is a debilitating genetic skin disorder characterized by extreme fragility, chronic wounds, and severe complications, particularly in its most severe form, recessive dystrophic EB (RDEB). Current treatments focus on symptomatic relief through wound care and pain management, with recent FDA approvals of Vyjuvek and Filsuvez providing new but limited therapeutic options. However, emerging research highlights the potential of extracellular vesicles (EVs) derived from mesenchymal stem cells as a promising approach to address both the symptoms and underlying pathology of EB. EVs function as carriers of bioactive molecules, modulating inflammation, promoting tissue regeneration, and even delivering functional type VII collagen to RDEB patient cells. Unlike whole-cell therapies, EVs are non-immunogenic, have greater stability, and avoid risks such as graft-versus-host disease or tumorigenic transformation. Additionally, EVs offer diverse administration routes, including topical application, local injection, and intravenous delivery, which could extend their therapeutic reach beyond skin lesions to systemic manifestations of EB. However, challenges remain, including standardization of EV production, scalability, and ensuring consistent therapeutic potency. Despite these hurdles, EV-based therapies represent a transformative step toward addressing the complex pathology of EB, with the potential to improve wound healing, reduce fibrosis, and enhance patient quality of life. Full article
(This article belongs to the Special Issue Advances and Innovations in Wound Repair and Regeneration)
Show Figures

Figure 1

29 pages, 3694 KiB  
Article
Enhanced Detection of Mitochondrial Heteroplasmy and DNA Hypomethylation in Adipose-Derived Mesenchymal Stem Cells Using a Novel Adaptive Sampling Protocol
by Antonina Gospodinova, Yuliia Mariienko, Diana Pendicheva-Duhlenska, Soren Hayrabedyan and Krassimira Todorova
Appl. Sci. 2025, 15(11), 5822; https://doi.org/10.3390/app15115822 - 22 May 2025
Viewed by 661
Abstract
Objective: Mitochondria drive cellular energy production and regulate key biological processes. High levels of heteroplasmic in mitochondrial DNA (mtDNA) variants can cause mitochondrial dysfunction and clinical symptoms. Third-generation sequencing overcomes the limitations of traditional mtDNA analysis methods, offering improved cost, throughput, and sensitivity. [...] Read more.
Objective: Mitochondria drive cellular energy production and regulate key biological processes. High levels of heteroplasmic in mitochondrial DNA (mtDNA) variants can cause mitochondrial dysfunction and clinical symptoms. Third-generation sequencing overcomes the limitations of traditional mtDNA analysis methods, offering improved cost, throughput, and sensitivity. We developed an integrated approach for analyzing methylation patterns and genetic variations in mtDNA and ADME genes. Methods: We implemented Oxford Nanopore’s long-read sequencing with adaptive sampling (AS) to enrich enzymatically linearized mtDNA and absorption, distribution, metabolism, and excretion (ADME) genes without PCR amplification, enabling native sequencing in adipose-derived mesenchymal stem cells (AdMSC). Our custom algorithm preserved phase relationships between base modifications and sequence polymorphisms. Results: We identified differential methylation patterns in ADME genes correlating with specific genetic variants, suggesting epigenetic regulation of drug response. Adaptive sampling identifies a wider range of variant diversity, while whole genome sequencing (WGS) uncovers higher-frequency hotspots. Both methods offer complementary insights into mitochondrial heteroplasmy. In mtDNA, direct sequencing showed extensive hypomethylation, and low levels of non-CpG methylation were detected regardless of sequencing coverage depth. These sparse methylation patterns showed non-random distribution, correlating with functional regions and heteroplasmic sites. Conclusions: This study demonstrates the utility of adaptive sampling for the integrated analysis of mtDNA heteroplasmy and native base modifications, revealing widespread hypomethylation independent of coverage depth. The approach showcases the potential for combined pharmacoepigenomic and mitochondrial profiling in precision medicine, disease modeling, and therapeutic development. Full article
(This article belongs to the Special Issue Cell Biology: Latest Advances and Prospects)
Show Figures

Figure 1

29 pages, 1537 KiB  
Review
HER2-Positive Breast Cancer—Current Treatment Management and New Therapeutic Methods for Brain Metastasis
by Hanna Miski, Kamila Krupa, Michał Piotr Budzik, Andrzej Deptała and Anna Badowska-Kozakiewicz
Biomedicines 2025, 13(5), 1153; https://doi.org/10.3390/biomedicines13051153 - 9 May 2025
Viewed by 1797
Abstract
Background: Breast cancer can be classified based on the immunohistochemistry (IHC) phenotypes, defined by the presence or absence of the main IHC markers. IHC phenotyping is important as it determines the prognosis and guides treatment. For example, human epidermal growth factor receptor [...] Read more.
Background: Breast cancer can be classified based on the immunohistochemistry (IHC) phenotypes, defined by the presence or absence of the main IHC markers. IHC phenotyping is important as it determines the prognosis and guides treatment. For example, human epidermal growth factor receptor 2 (HER2) overexpression, which triggers cell growth and division, is observed in HER2-positive breast cancer. Methods: The standard treatment is based on trastuzumab plus pertuzumab in combination with taxane chemotherapy. The possibility of developing metastases depends on those phenotypes. Approximately 25–50% of patients with HER2-positive breast cancer experience brain metastases. This aspect is especially important, as 20% of those patients die as a result. Results: Through the years, many advanced therapies have been introduced to treat brain metastases, including whole brain radiotherapy, stereotactic radiosurgery, and a tyrosine kinase inhibitor (TKI), neratinib. Nonetheless, this still remains a therapeutic challenge. Conclusions: In this review, we focus on the treatment and efficiency of therapies targeting HER2-positive breast cancer, mainly concentrating on the current and newly developed treatment options for brain metastases, such as trastuzumab deruxtecan and tucatinib. Full article
(This article belongs to the Special Issue Advanced Research in Breast Diseases and Histopathology)
Show Figures

Figure 1

16 pages, 3104 KiB  
Article
The Protective Effect of Topical PACAP38 in Retinal Morphology and Function of Type 2 Diabetic Retinopathy
by Lina Li, Evelin Patko, Edina Szabo, Dorottya Molitor, Balazs Meresz, Dora Reglodi, Andras Varga, Diana Denes, Lei Dai, Hongjie Wang, Alexandra Vaczy and Tamas Atlasz
Int. J. Mol. Sci. 2025, 26(8), 3753; https://doi.org/10.3390/ijms26083753 - 16 Apr 2025
Viewed by 767
Abstract
The continuously growing diabetes population is a significant concern with type 2 diabetic retinal disease (T2DRD), which is a leading cause of permanent blindness. However, the underlying pathophysiological mechanism of T2DRD has not yet been fully understood. Pituitary adenylate cyclase-activating polypeptide (PACAP) was [...] Read more.
The continuously growing diabetes population is a significant concern with type 2 diabetic retinal disease (T2DRD), which is a leading cause of permanent blindness. However, the underlying pathophysiological mechanism of T2DRD has not yet been fully understood. Pituitary adenylate cyclase-activating polypeptide (PACAP) was first isolated from the ovine hypothalamus based on its stimulating effect on the adenylate cyclase enzyme in anterior pituitary cells. PACAP38 (PACAP with 38 amino acids) activates anti-apoptotic pathways, inhibits pro-apoptotic signaling, and creates an anti-inflammatory environment in the retina. The aim of the present study was to test the possible retinoprotective effect of the topical administration of PACAP38 in a type 2 diabetic animal model induced by a high-fat diet and the intraperitoneally injected low-dose streptozotocin (STZ). Wistar rats were divided into four groups: the control, control + PACAP38, diabetes, and diabetes + PACAP38 groups randomly. Type 2 diabetes was induced with the combination of STZ (30 mg/kg) and a high-fat diet. All rats were treated topically two times a day for 16 weeks: the control + PACAP38 and diabetes + PACAP38 groups were applied with PACAP38 eye drops (1 µg/drop), while the control and diabetes groups were administered using vehicles (artificial tears). The diabetes model was validated by a fasting oral glucose tolerance test (OGTT) and C-peptide ELISA test. Animals were monitored during the whole experiment for the progression of the disease using electroretinography (ERG) and optical coherence tomography (OCT). Post-mortem immunohistochemistry and a vessel analysis were performed in the retina samples after 16 weeks. An OGTT, a C-peptide ELISA test, and the investigation of blood parameters proved the development of type 2 diabetes. Significant differences could be detected in visual function between the two diabetic groups at week 16 (in the a-wave, b-wave, and OP amplitudes), where the diabetes PACAP38-treated group was similar to the control ones. OCT measurements correlated with ERG data, where the total retinal thickness was preserved in the diabetes + PACAP38 group. PACAP38 also protected the microvascular structure in the retina. Topically administered PACAP38 has potent neuroprotective effects against type 2 diabetic retinal disease; therefore, it could be a promising therapeutic approach for the treatment of T2DRD. Full article
Show Figures

Figure 1

18 pages, 4761 KiB  
Article
Whole-Body Physiologically Based Pharmacokinetic Modeling Framework for Tissue Target Engagement of CD3 Bispecific Antibodies
by Monica E. Susilo, Stephan Schaller, Luis David Jiménez-Franco, Alexander Kulesza, Wilhelmus E. A. de Witte, Shang-Chiung Chen, C. Andrew Boswell, Danielle Mandikian and Chi-Chung Li
Pharmaceutics 2025, 17(4), 500; https://doi.org/10.3390/pharmaceutics17040500 - 9 Apr 2025
Viewed by 1150
Abstract
Background: T-cell-engaging bispecific (TCB) antibodies represent a promising therapy that utilizes T-cells to eliminate cancer cells independently of the major histocompatibility complex. Despite their success in hematologic cancers, challenges such as cytokine release syndrome (CRS), off-tumor toxicity, and resistance limit their efficacy [...] Read more.
Background: T-cell-engaging bispecific (TCB) antibodies represent a promising therapy that utilizes T-cells to eliminate cancer cells independently of the major histocompatibility complex. Despite their success in hematologic cancers, challenges such as cytokine release syndrome (CRS), off-tumor toxicity, and resistance limit their efficacy in solid tumors. Optimizing biodistribution is key to overcoming these challenges. Methods: A physiologically based pharmacokinetic (PBPK) model was developed that incorporates T-cell transmigration, retention, receptor binding, receptor turnover, and cellular engagement. Preclinical biodistribution data were modeled using two TCB formats: one lacking tumor target binding and another with target arm binding, each with varying CD3 affinities in a transgenic tumor-bearing mouse model. Results: The PBPK model successfully described the distribution of activated T-cells and various TCB formats. It accurately predicted preclinical biodistribution patterns, demonstrating that higher CD3 affinity leads to faster clearance from the blood and increased accumulation in T-cell-rich organs, often reducing tumor exposure. Simulations of HER2-CD3 TCB doses (0.1 µg to 100 mg) revealed monotonic increases in synapse AUC within the tumor. A bell-shaped dose-Cmax relationship for synapse formation was observed, and Tmax was delayed at higher doses. Blood PK was a reasonable surrogate for tumor synapse at low doses but less predictive at higher doses. Conclusions: We developed a whole-body PBPK model to simulate the biodistribution of T-cells and TCB molecules. The insights from this model provide a comprehensive understanding of the factors affecting PK, synapse formation, and TCB activity, aiding in dose optimization and the design of effective therapeutic strategies. Full article
(This article belongs to the Special Issue Development of Physiologically Based Pharmacokinetic (PBPK) Modeling)
Show Figures

Figure 1

17 pages, 4128 KiB  
Article
Phenotypic and Genomic Insights into Schleiferilactobacillus harbinensis WU01, a Candidate Probiotic with Broad-Spectrum Antimicrobial Activity Against ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter) Pathogens
by Chonticha Romyasamit, Komwit Surachat, Nawanwat C. Pattaranggoon, Pinkanok Suksabay, Uttapol Permpoon, Tae-Gyu Nam and Phoomjai Sornsenee
Foods 2025, 14(7), 1161; https://doi.org/10.3390/foods14071161 - 27 Mar 2025
Cited by 1 | Viewed by 1013
Abstract
The increasing prevalence of multidrug-resistant (MDR) pathogens, particularly ESKAPE bacteria, necessitates alternative antimicrobial strategies. Probiotics, particularly lactic acid bacteria, protect against pathogenic infections. This study aimed to characterize Schleiferilactobacillus harbinensis WU01, isolated from fermented palm sap, and evaluate its probiotic potential and antimicrobial [...] Read more.
The increasing prevalence of multidrug-resistant (MDR) pathogens, particularly ESKAPE bacteria, necessitates alternative antimicrobial strategies. Probiotics, particularly lactic acid bacteria, protect against pathogenic infections. This study aimed to characterize Schleiferilactobacillus harbinensis WU01, isolated from fermented palm sap, and evaluate its probiotic potential and antimicrobial activity. Its probiotic characteristics were assessed based on low-pH and bile tolerance, auto-aggregation, hydrophobicity, and adhesion to Caco-2 cells. Antimicrobial activity against ESKAPE pathogens was evaluated using the agar well diffusion assay. Whole-genome sequencing (WGS) and in silico analysis were performed to identify bacteriocin-related genes, virulence factors, and antibiotic-resistance genes. WU01 exhibited a strong tolerance to gastrointestinal conditions, with high survival rates under acidic and bile-salt environments. S. harbinensis WU01 demonstrated significant auto-aggregation, high hydrophobicity, and strong adhesion to Caco-2 cells. Antimicrobial assays revealed inhibitory activity against MDR ESKAPE pathogens, which correlated with the presence of bacteriocin-related genes, including those homologous to Carnocin_CP52. Molecular dynamics (MDs) simulations confirmed the interaction of Carnocin_CP52 with bacterial membranes, suggesting a mechanism for pathogen disruption. WGS confirmed the absence of virulence and antimicrobial-resistance genes, confirming its safety for probiotic applications. These findings suggest that S. harbinensis WU01 possesses probiotic properties and antimicrobial activity against ESKAPE pathogens. The combined results highlight its potential application in functional foods and therapeutic interventions. Full article
Show Figures

Figure 1

30 pages, 4468 KiB  
Review
Piezoelectric Nanomaterials for Cancer Therapy: Current Research and Future Perspectives on Glioblastoma
by Zayne Knight, Amalia Ruiz and Jacobo Elies
J. Funct. Biomater. 2025, 16(4), 114; https://doi.org/10.3390/jfb16040114 - 24 Mar 2025
Cited by 4 | Viewed by 1750
Abstract
Cancer significantly impacts human quality of life and life expectancy, with an estimated 20 million new cases and 10 million cancer-related deaths worldwide every year. Standard treatments including chemotherapy, radiotherapy, and surgical removal, for aggressive cancers, such as glioblastoma, are often ineffective in [...] Read more.
Cancer significantly impacts human quality of life and life expectancy, with an estimated 20 million new cases and 10 million cancer-related deaths worldwide every year. Standard treatments including chemotherapy, radiotherapy, and surgical removal, for aggressive cancers, such as glioblastoma, are often ineffective in late stages. Glioblastoma, for example, is known for its poor prognosis post-diagnosis, with a median survival time of approximately 15 months. Novel therapies using local electric fields have shown anti-tumour effects in glioblastoma by disrupting mitotic spindle assembly and inhibiting cell growth. However, constant application poses risks like patient burns. Wireless stimulation via piezoelectric nanomaterials offers a safer alternative, requiring ultrasound activation to induce therapeutic effects, such as altering voltage-gated ion channel conductance by depolarising membrane potentials. This review highlights the piezoelectric mechanism, drug delivery, ion channel activation, and current technologies in cancer therapy, emphasising the need for further research to address limitations like biocompatibility in whole systems. The goal is to underscore these areas to inspire new avenues of research and overcome barriers to developing piezoelectric nanoparticle-based cancer therapies. Full article
(This article belongs to the Special Issue Medical Application of Functional Biomaterials (2nd Edition))
Show Figures

Figure 1

19 pages, 3419 KiB  
Article
Regulating AMPA Receptors with Isoxazole-4-Carboxamide Derivatives: An Electrophysiological Study
by Mohammad Qneibi, Mohammed Hawash, Sosana Bdir, Mohammad Bdair, Tala Idais, Iyas Sarhan and Joud Touqan
J. Xenobiot. 2025, 15(2), 40; https://doi.org/10.3390/jox15020040 - 8 Mar 2025
Viewed by 1322
Abstract
Isoxazole carboxamide derivatives are intriguing modulators of ionotropic glutamate receptors; more specifically, their prospective analgesic activities based on non-opioid pathways have sparked widespread research. α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, especially Ca2+-permeable subtypes that are highly expressed in the spinal dorsal horn, play [...] Read more.
Isoxazole carboxamide derivatives are intriguing modulators of ionotropic glutamate receptors; more specifically, their prospective analgesic activities based on non-opioid pathways have sparked widespread research. α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, especially Ca2+-permeable subtypes that are highly expressed in the spinal dorsal horn, play a critical role in nociceptive transmission and inflammatory pain. Herein, the neuromodulatory effects of these derivatives on AMPA receptor activity have been studied, focusing on their potential as modulators of AMPA receptors, a target implicated in pain and neurological disorders. The whole-cell patch clamp technique for electrophysiological recordings was used to investigate the effect of twelve isoxazole-4-carboxamide derivatives (CIC-1-12) on AMPA receptors’ whole-cell currents and kinetics, including deactivation and desensitization. The isoxazole-4-carboxamide derivatives tested as inhibitors of AMPA receptor activity were very potent, with an 8-fold inhibition by CIC-1 and a 7.8-fold reduction by CIC-2. Additionally, these compounds profoundly altered the biophysical gating properties of both homomeric and heteromeric receptor subunits. These findings emphasize the therapeutic promise of isoxazole-4-carboxamide derivatives due to their potential as AMPA receptor modulators. Their ability to affect receptor activity and gating properties makes them promising candidates for future treatments for controlling pain. Full article
Show Figures

Graphical abstract

21 pages, 20627 KiB  
Article
GluOC Induced SLC7A11 and SLC38A1 to Activate Redox Processes and Resist Ferroptosis in TNBC
by Jiaojiao Xu, Xue Bai, Keting Dong, Qian Du, Ping Ma, Ziqian Zhang and Jianhong Yang
Cancers 2025, 17(5), 739; https://doi.org/10.3390/cancers17050739 - 21 Feb 2025
Viewed by 1208
Abstract
Background/Objectives: Ferroptosis, a type of programmed cell death, is mainly associated with disruptions in iron metabolism, imbalances in the amino acid antioxidant system, and the build-up of lipid peroxides. Triple-negative breast cancer (TNBC) has a dismal prognosis. Since activating ferroptosis can suppress breast [...] Read more.
Background/Objectives: Ferroptosis, a type of programmed cell death, is mainly associated with disruptions in iron metabolism, imbalances in the amino acid antioxidant system, and the build-up of lipid peroxides. Triple-negative breast cancer (TNBC) has a dismal prognosis. Since activating ferroptosis can suppress breast cancer cell proliferation, it holds promise as a novel therapeutic target for breast cancer patients. Thus, the objective of this study was to clarify the mechanism of ferroptosis in TNBC, aiming to find new treatment strategies for TNBC patients. Methods: We screened out the differential genes related to ferroptosis in TNBC after GluOC treatment based on the whole-genome sequencing results. At the cellular level, we conducted explorations using techniques such as quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, fluorescence staining, and siRNA transfection. Moreover, we further verified the role of GluOC in inhibiting ferroptosis in TNBC through in vivo experiments using nude mice. Results: The results showed that GluOC enhanced glutathione expression levels by inducing SLC7A11 accumulation via the specific signaling pathway. Additionally, GluOC increased ATP production and tricarboxylic acid flux resistance to ferroptosis through SLC38A1. Overall, GluOC coordinately regulated SLC7A11 and SLC38A1 to inhibit ferroptosis in TNBC. Conclusions: This study elucidated the mechanism of GluOC in inhibiting ferroptosis in TNBC. The findings not only provided new insights into ferroptosis but also potentially offered new concepts for the development of future anticancer therapies, which may contribute to improving the treatment of TNBC patients. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

15 pages, 3595 KiB  
Article
Enhancement of In Vivo Bone Regeneration by the Carbohydrate Derivative DP2
by Nissrine Ballout, Sylvestre Toumieux, Walaa Darwiche, Cathy Gomila, Eric Trécherel, Franck Accadbled, Sara Laurencin-Dalicieux, Isabelle Gennero, José Kovensky, Agnès Boullier and Jérôme Ausseil
Pharmaceuticals 2025, 18(2), 215; https://doi.org/10.3390/ph18020215 - 5 Feb 2025
Viewed by 954
Abstract
Background/Objectives: Delays in bone healing and complications of remodeling constitute a major medical problem—particularly in older adults and patients with comorbidities. Current therapeutic approaches are based on strategies that promote bone regeneration. We recently identified a disaccharide compound (DP2) that enhances in [...] Read more.
Background/Objectives: Delays in bone healing and complications of remodeling constitute a major medical problem—particularly in older adults and patients with comorbidities. Current therapeutic approaches are based on strategies that promote bone regeneration. We recently identified a disaccharide compound (DP2) that enhances in vitro mineralization in human osteoblast cells via the early activation of Runx2 and the induction of osteoblast differentiation. Methods: First, a calcium quantification assay was performed to assess mineralization in MC3T3-E1 cells. Next, microcomputed tomography and histological analyses were used to examine in vivo bone repair in a rat 5 mm cranial defect model following the implantation of DP2 coupled to a micro/macroporous biphasic CaP ceramic (MBCP+) or collagen scaffold. Results: Here, we demonstrated that DP2 induced osteogenic differentiation and significantly elevated calcium matrix deposition in the murine preosteoblast cell line MC3T3-E1. We found that treatment with DP2 coupled to MBCP+ repaired the calvarial defect on post-implantation day 91. It significantly increased bone mineral density starting on day 29 post-treatment. In addition, DP2 did not induce ectopic bone formation. Conclusions: Taken as a whole, these results show that DP2 is a promising candidate treatment for delayed bone healing. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

Back to TopTop