Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (315)

Search Parameters:
Keywords = whole flours

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7224 KiB  
Article
Exploring Sorghum Flour as a Sustainable Ingredient in Gluten-Free Cookie Production
by Simona Bukonja, Jelena Tomić, Mladenka Pestorić, Nikola Maravić, Saša Despotović, Zorica Tomičić, Biljana Kiprovski and Nebojša Đ. Pantelić
Foods 2025, 14(15), 2668; https://doi.org/10.3390/foods14152668 - 29 Jul 2025
Viewed by 198
Abstract
In this study, whole grain sorghum flour was used to partially substitute the gluten-free flour blend in cookie formulation at 20% (C20) and 40% (C40) replacement levels. The goal was to explore its potential to improve the nutritional value and sensory appeal of [...] Read more.
In this study, whole grain sorghum flour was used to partially substitute the gluten-free flour blend in cookie formulation at 20% (C20) and 40% (C40) replacement levels. The goal was to explore its potential to improve the nutritional value and sensory appeal of cookies relative to conventional and commercially available gluten-free alternatives. Nutritional analysis revealed that cookies with added sorghum flour showed increased levels of protein, ash, and polyphenolic compounds, while maintaining favorable macronutrient profiles. Notably, several bioactive compounds, such as gallic acid, caffeic acid, and apigenin, were detected exclusively in sorghum-containing samples, suggesting enhanced functional properties. Despite these compositional changes, textural measurements showed no significant differences in hardness or fracturability compared with the control. Sensory profiling using the Rate-All-That-Apply (RATA) method demonstrated that both samples (C20 and C40) achieved balanced results in terms of aroma as well as texture and were generally well accepted by the panel. The results indicate that moderate inclusion of sorghum flour (20% and 40%) can improve the sensory and nutritional profiles of gluten-free cookies without compromising product acceptability. Sorghum thus offers a promising pathway for the development of high-quality, health-oriented, gluten-free bakery products. Full article
(This article belongs to the Special Issue Formulation and Nutritional Aspects of Cereal-Based Functional Foods)
Show Figures

Figure 1

17 pages, 848 KiB  
Article
Mycotoxin Assessment in Minimally Processed Traditional Ecuadorian Foods
by Johana Ortiz-Ulloa, Jorge Saquicela, Michelle Castro, Alexander Cueva-Chamba, Juan Manuel Cevallos-Cevallos and Jessica León
Foods 2025, 14(15), 2621; https://doi.org/10.3390/foods14152621 - 26 Jul 2025
Viewed by 316
Abstract
Nowadays, there is special interest in promoting the consumption of ancestral crops and minimally processed foods with high nutritional value. However, besides nutritional issues, safety assessments must be addressed. This study aimed to evaluate mycotoxin contamination in five minimally processed traditional Ecuadorian foods: [...] Read more.
Nowadays, there is special interest in promoting the consumption of ancestral crops and minimally processed foods with high nutritional value. However, besides nutritional issues, safety assessments must be addressed. This study aimed to evaluate mycotoxin contamination in five minimally processed traditional Ecuadorian foods: ochratoxin A (OTA), fumonisin B1 (FB1), and aflatoxins (AFs) in brown rice, lupin, and quinoa; OTA, FB1, and deoxynivalenol (DON) in whole-wheat flour; and OTA and AFs in peanuts. Samples (45 samples of peanuts and whole-wheat flour, 47 of brown rice, 46 of quinoa, and 36 of lupin) were collected from local markets and supermarkets in the three most populated cities in Ecuador. Mycotoxins were determined by RP-HPLC with fluorescence and detection. Results were compared with the maximum permitted levels (MPLs) of European Regulation 2023/915/EC. Overall contamination reached up to 59.8% of the analyzed samples (38.4% with one mycotoxin and 21.5% with co-occurrence). OTA was the most prevalent mycotoxin (in 82.6% of quinoa, 76.7% of whole-wheat flour, 53.3% of peanuts, 48.6% of lupin, and 25.5% of brown rice), and a modest number of quinoa (17%) and lupin (5.7%) samples surpassed the MPLs. DON was found in 82.2% of whole-wheat flour (28.9% > MPL). FB1 was detected in above 25% of brown rice and whole-wheat flour and in 9% of the quinoa samples. FB1 levels were above the MPLs only for whole-wheat flour (17.8%). AFB1 and AFG1 showed similar prevalence (about 6.5 and 8.5%, respectively) in quinoa and rice and about 27% in peanuts. Overall, these findings underscore the importance of enhancing fungal control in the pre- and post-harvest stages of these foods, which are recognized for their high nutritional value and ancestral worth; consequently, the results present key issues related to healthy diet promotion and food sovereignty. This study provides compelling insights into mycotoxin occurrence in minimally processed Ecuadorian foods and highlights the need for further exposure assessments by combining population consumption data. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

21 pages, 9234 KiB  
Article
Effects of Aqueous Extracts from Wheat Bran Layers on the Functional Properties of Wheat Starch and Gluten
by Bingbing Wu, Chunlei Yu, Zhongwei Chen and Bin Xu
Foods 2025, 14(11), 1988; https://doi.org/10.3390/foods14111988 - 4 Jun 2025
Viewed by 543
Abstract
Wheat bran (WB) is rich in bioactive compounds, but its incorporation into food products often negatively affects dough properties. The soluble components in WB, including polysaccharides, minerals, and proteins, exhibit significant variations across different bran layers and may dissolve and interact with flour [...] Read more.
Wheat bran (WB) is rich in bioactive compounds, but its incorporation into food products often negatively affects dough properties. The soluble components in WB, including polysaccharides, minerals, and proteins, exhibit significant variations across different bran layers and may dissolve and interact with flour components during food processing, affecting dough properties. This study aims to investigate the influence of aqueous extracts from different WB layers (aleurone layer, AL; non-aleurone layer, NAL) and their components on the functional properties of wheat starch and gluten. The results indicate that the AL-rich fraction yielded a higher extract content (30.6%) compared to the NAL-rich fraction (15.1%), attributable to the higher cellular content in the AL. Both the extracts and residues from AL and NAL significantly lowered the denaturation temperature of wheat gluten. The aqueous extracts reduced the storage (G′) and loss (G″) moduli of wheat gluten, primarily attributed to the effect of polysaccharide components, whereas the protein and ash fractions elevated the G′ and G″ at suitable dosages. The extracts elevated the gelatinization temperature of starch, but reduced enthalpy (ΔH). Moreover, the pasting viscosity of starch with WB extract decreased due to the combined effects of protein and ash fractions. These findings provide insights into the roles of water extracts from different WB layers and their components in modulating wheat-based product quality. This study also offers a theoretical basis for optimizing WB utilization in foods, thus providing a theoretical foundation for promoting whole-wheat foods or foods containing WB. Full article
Show Figures

Graphical abstract

18 pages, 1905 KiB  
Article
From Molecular to Macroscopic: Dual-Pathway Regulation of Carrot Whole Flour on the Gluten-Starch System
by Han Wang, Xiaoxuan Tian, Ruoyu Zhang and Huijing Li
Foods 2025, 14(11), 1964; https://doi.org/10.3390/foods14111964 - 31 May 2025
Viewed by 442
Abstract
Carrots are gaining attention due to their health effects, high yield, low cost, and bright color in food processing. This study analyzed the impact of carrot whole flour (CWF) on steamed cake quality. The effects of CWF and its active ingredients, carrot dietary [...] Read more.
Carrots are gaining attention due to their health effects, high yield, low cost, and bright color in food processing. This study analyzed the impact of carrot whole flour (CWF) on steamed cake quality. The effects of CWF and its active ingredients, carrot dietary fiber (CDF) and carrot polyphenols (CPs), on gluten and starch properties were studied. Results showed that steamed cake quality was better at a 12% additional dose. CPs caused gluten to form more hydrogen bonds, increasing the specific volume. CDF weakened the gluten structure by reducing disulfide bonds, decreasing the hardness. Both CDF and CPs disrupted the starch structure by decreasing the short-range order, causing a reduction in springiness and cohesiveness. CDF and CPs increased starch crystallinity, which also contributed to decreasing springiness. This study systematically evaluated the effect of CWF on the steamed cake from the microstructure level to macroscopic quality. Wheat-vegetable blend flour is a key path for nutritional upgrading of traditional staple foods and an essential direction for functional wheat products. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

20 pages, 1978 KiB  
Article
Pea and Lentil Flours Increase Postprandial Glycemic Response in Adults with Type 2 Diabetes and Metabolic Syndrome
by Donna M. Winham, Mariel Camacho-Arriola, Abigail A. Glick, Clifford A. Hall and Mack C. Shelley
Foods 2025, 14(11), 1933; https://doi.org/10.3390/foods14111933 - 29 May 2025
Viewed by 823
Abstract
Pea and lentil flours are added to baked foods, pastas, and snacks to improve nutritional quality and functionality compared to products made solely with refined wheat flour. However, the effect of whole pulses versus their serving size equivalent of flour on blood glucose [...] Read more.
Pea and lentil flours are added to baked foods, pastas, and snacks to improve nutritional quality and functionality compared to products made solely with refined wheat flour. However, the effect of whole pulses versus their serving size equivalent of flour on blood glucose has not been investigated in persons with altered glycemic response. Health claims for whole pulses are based on a ½ cup amount whereas commercial pulse flour servings are typically a smaller size. The glycemic responses of four treatment meals containing 50 g available carbohydrate as ½ cup whole pulse or the dry weight equivalent of pulse flour were compared with a control beverage (Glucola®). Eleven adults with type 2 diabetes mellitus (T2DM) and eight adults with metabolic syndrome (MetS) completed the study. Venous blood samples were collected at fasting and at 30 min intervals postprandial for three hours. Changes in net difference in plasma glucose over time from baseline and incremental area under the curve (iAUC) segments were analyzed. All four pulse meals attenuated the iAUC compared to the control from 0 to 120 min for T2DM participants and 0–180 min for MetS participants. Whole pulses produced a lower glycemic response than pulse flours in the early postprandial period for persons with T2DM and during the overall test period for those with MetS. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

38 pages, 943 KiB  
Review
Nutrients and Bioactive Compounds from Cannabis sativa Seeds: A Review Focused on Omics-Based Investigations
by Tiziana M. Sirangelo, Gianfranco Diretto, Alessia Fiore, Simona Felletti, Tatiana Chenet, Martina Catani and Natasha Damiana Spadafora
Int. J. Mol. Sci. 2025, 26(11), 5219; https://doi.org/10.3390/ijms26115219 - 29 May 2025
Cited by 2 | Viewed by 982
Abstract
Hemp (Cannabis sativa L.) is a versatile crop that can be processed to obtain different products with multiple applications. Its seeds are a well-documented ancient source of proteins, fibers and fats, all of which possess high nutritional value. Additionally, metabolites such as [...] Read more.
Hemp (Cannabis sativa L.) is a versatile crop that can be processed to obtain different products with multiple applications. Its seeds are a well-documented ancient source of proteins, fibers and fats, all of which possess high nutritional value. Additionally, metabolites such as flavones and phenols are present in the seeds, contributing to their antioxidant properties. Due to hemp seeds’ distinctive nutritional profile, the interest in exploring the potential use in food and nutraceuticals is growing, and they can be considered an interesting and promising alternative resource for human and animal feeding. Omics studies on hemp seeds and their by-products are also being developed, and they contribute to improving our knowledge about the genome, transcriptome, proteome, metabolome/lipidome, and ionome of these sustainable food resources. This review illustrates the main nutrients and bioactive compounds of hemp seeds and explores the most relevant omics techniques and investigations related to them. It also addresses the various products derived from processing the whole seed, such as oil, dehulled seeds, hulls, flour, cakes, meals, and proteins. Moreover, this work discusses research aimed at elucidating the molecular mechanisms underlying their protein, lipid, fiber, and metabolic profile. The advantages of using omics and multi-omics approaches to highlight the nutritional values of hemp seed by-products are also discussed. In our opinion, this work represents an excellent starting point for researchers interested in studying hemp seeds as source of nutrients and bioactive compounds from a multi-level molecular perspective. Full article
(This article belongs to the Special Issue Advances in Plant Metabolite Research)
Show Figures

Figure 1

10 pages, 674 KiB  
Proceeding Paper
Microbial Growth Kinetics of Fermenting Botanicals Used as Gluten-Free Flour Blends
by Peace Omoikhudu Oleghe, Fred Coolborn Akharaiyi and Chioma Bertha Ehis-Eriakha
Biol. Life Sci. Forum 2025, 41(1), 9; https://doi.org/10.3390/blsf2025041009 - 23 May 2025
Viewed by 438
Abstract
The fragmentary and whole substitution of wheat flour with flour blends is an alternative approach for producing cheaper, nutrient-rich, and comparatively advantageous gluten-free foods through fermentation. Dry samples of sweet potato, pigeon pea, and maize botanicals were purchased from local vendors, authenticated and [...] Read more.
The fragmentary and whole substitution of wheat flour with flour blends is an alternative approach for producing cheaper, nutrient-rich, and comparatively advantageous gluten-free foods through fermentation. Dry samples of sweet potato, pigeon pea, and maize botanicals were purchased from local vendors, authenticated and processed before spontaneous fermentation at room temperature. The pH and microbiological growth patterns of the fermenting botanicals were evaluated every 12 h for 72 h, using standard test protocols. It revealed that the rates of growth of isolated microorganisms were affected by pH; all the botanicals fermented had a reduction in their pH values. Acids were produced during fermentation, leading to a reduction in pH. Bacteria growth on the fermenting samples on nutrient agar reveals that the bacterial load increased with fermentation time, from 7.52 Log10 CFU/g to 10.6 Log10 CFU/g (sweet potato); 6.3 Log10 CFU/g to 10.54 Log10 CFU/g (pigeon pea), and 6.3 Log10 CFU/g to 10.54 Log10 CFU/g (maize). On MacConkey agar, the bacterial load on all samples started after 24 h of fermentation, peaked at 48 h, and gradually reduced towards 72 h of fermentation. There was increase in fungal growth with time from 0 to 36 h across all samples. The microorganisms isolated can be categorized into lactic acid bacteria, spore formers, Enterobacteriaceae, Staphylococcace, yeast, and molds. Fermentation of botanicals over 72 h results in organic acid formation, which lowers pH; this attribute helps in checkmating undesirable microorganisms capable of affecting the production of gluten-free flours with good keeping qualities. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Agronomy)
Show Figures

Figure 1

21 pages, 3143 KiB  
Article
The Effects of Milling Conditions on the Particle Size, Quality, and Noodle-Making Performance of Whole-Wheat Flour: A Mortar Mill Study
by Jeonghan Moon, Yujin Moon and Meera Kweon
Foods 2025, 14(9), 1609; https://doi.org/10.3390/foods14091609 - 1 May 2025
Viewed by 744
Abstract
In this study, we investigated the effects of mortar milling conditions on the quality and noodle-processing suitability of whole-wheat flours (WWFs). The WWFs were milled at varying pestle speeds (50 and 130 rpm) and for varying durations (10, 20, 40, and 60 min) [...] Read more.
In this study, we investigated the effects of mortar milling conditions on the quality and noodle-processing suitability of whole-wheat flours (WWFs). The WWFs were milled at varying pestle speeds (50 and 130 rpm) and for varying durations (10, 20, 40, and 60 min) and analyzed to determine their particle size distribution, physicochemical properties, dough-mixing characteristics, antioxidant activities, and noodle-making performance. High pestle speed (Group H) produced significantly smaller particle sizes, higher flour temperatures, greater moisture loss, and increased starch damage compared to that produced at low pestle speeds (Group L). Compared with Group L, Group H exhibited higher water and sodium carbonate solvent-retention capacity (SRC) values, increased pasting viscosities, and greater gluten strength owing to finer particles. Total phenolic content increased with reduced particle size, whereas antioxidant activity (ABTS radical scavenging) exhibited inconsistent trends. Fresh noodle properties varied with milling conditions; finer WWF particles improved dough resistance but reduced extensibility when water was adjusted according to water SRC. Thus, WWF particle size strongly influences flour functionality and noodle quality, which highlights the need for precise milling control. This study demonstrates, for the first time, the applicability of a mortar-type mill for producing WWFs, with implications for enhancing WWF functionality. Full article
Show Figures

Figure 1

13 pages, 2261 KiB  
Article
Influence of Thermal Processing on In Vitro Starch Digestibility in Cereal-Based Infant Foods
by Marianela D. Rodríguez, Nicolás F. Bongianino, Alberto E. León and Mariela C. Bustos
Foods 2025, 14(8), 1367; https://doi.org/10.3390/foods14081367 - 16 Apr 2025
Viewed by 2693
Abstract
Early-life nutrition is crucial for healthy infant development. This study explored the effects of high-temperature (30 min, 121 °C) and high-humidity treatments on the starch properties and digestibility of infant purees made from wheat, rice, and maize. Purees were prepared using whole grains [...] Read more.
Early-life nutrition is crucial for healthy infant development. This study explored the effects of high-temperature (30 min, 121 °C) and high-humidity treatments on the starch properties and digestibility of infant purees made from wheat, rice, and maize. Purees were prepared using whole grains (WGs), whole grain flours (WGFs), and flour suspensions (FSs) subjected to thermal treatment. Untreated whole grain samples from each cereal served as controls. Samples were analyzed for microstructure, thermal properties, viscosity, and starch digestibility. Microstructural analysis revealed partial to complete loss of amyloplast birefringence, particularly in FS. The thermal treatment reduced peak viscosity in WGs, WGFs, and FSs. Also, the flour suspensions showed lower thermal stability and a phytic acid content reduction of 30%. In vitro digestion revealed a significant reduction in total hydrolyzed starch (THS) in wheat- (27.8 g/100 g starch) and maize- (11.3 g/100 g starch) WG purees compared to controls. In contrast, WGF purees showed significant increases in THS: 29% (wheat), 70% (rice), and 92% (maize). FS purees also showed significant increases in THS (57.4, 39.3, and 45.4 g/100 g starch for wheat, rice, and maize, respectively), alongside a decrease in resistant starch. In conclusion, thermal treatment modulates starch digestibility and viscosity properties in a cereal-dependent manner, offering a potential approach to optimize infant nutrition. Full article
Show Figures

Figure 1

19 pages, 2415 KiB  
Article
Pre-Treatment Effects on Chemico-Physical Characteristics of Argan Press Cake Used for Bread Production
by Asma El Kaourat, Hasnae Choukri, Badr Eddine Kartah, Ahmed Snoussi, Giuseppe Zeppa, Aouatif Benali, Mouna Taghouti and Hanae El Monfalouti
Foods 2025, 14(8), 1315; https://doi.org/10.3390/foods14081315 - 10 Apr 2025
Viewed by 723
Abstract
Argan oil is known worldwide for its nutritional, therapeutic, and cosmetic benefits. However, the extraction process produces 40–50% of argan press cake (APC), which is rich in protein, fiber, and minerals. Despite its nutritional potential, the high saponin content of APC imparts a [...] Read more.
Argan oil is known worldwide for its nutritional, therapeutic, and cosmetic benefits. However, the extraction process produces 40–50% of argan press cake (APC), which is rich in protein, fiber, and minerals. Despite its nutritional potential, the high saponin content of APC imparts a bitter taste and anti-nutritional properties, making it unsuitable for human consumption and often wasted. This study addresses this issue by using boiling treatments with citric acid (CA) and distilled water (DW) to reduce the saponin content while evaluating the impact on APC quality. In addition, this study explores, for the first time, the incorporation of treated argan press cake, APC-CA and APC-DW, at different levels (5%, 10%, 15%, and 20%) into whole wheat flour (WWF) for bread production to improve the nutritional profile. The results indicate that both treatments significantly reduce saponin content while maintaining nutritional quality comparable to untreated APC. This includes a 50% reduction in phytic acid levels. The absence of tryptophan fluorescence emission was observed in APC-CA, which may be related to chemical degradation or interactions with other molecules. The substitution of APC-CA and APC-DW increased the protein of composite flours in a level-dependent manner. At substitution levels up to 10%, APC-CA and APC-DW positively influenced the technological properties of the bread. This study demonstrates the potential of APC to improve the nutritional value of bread and supports zero-waste initiatives by reusing by-products. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

28 pages, 2310 KiB  
Article
Changes in BMI and Fat Mass and Nutritional Behaviors in Children Between 10 and 14 Years of Age
by Katarzyna Ługowska, Elżbieta Krzęcio-Nieczyporuk, Joanna Trafiałek and Wojciech Kolanowski
Nutrients 2025, 17(7), 1264; https://doi.org/10.3390/nu17071264 - 3 Apr 2025
Cited by 1 | Viewed by 730
Abstract
Background/Objectives: Unhealthy nutritional behaviors and excess body weight constitute a serious challenge for public health in children and adolescents. The aim of this study was to examine changes in body mass index (BMI), body fat mass (FM), and nutritional behaviors in the [...] Read more.
Background/Objectives: Unhealthy nutritional behaviors and excess body weight constitute a serious challenge for public health in children and adolescents. The aim of this study was to examine changes in body mass index (BMI), body fat mass (FM), and nutritional behaviors in the same group of children during a 4-year observation between 10 and 14 years of age including the period of the COVID-19 pandemic. Methods: BMI and FM using bioelectrical impedance were assessed. To assess nutritional behavior, a questionnaire on eating behavior was used. The study was carried out in a group of 250 children, starting from the age of 10 and finishing at the age of 14. The measurements were collected in the years 2017 and 2021. The results were compared and analyzed. Results: Excessive BMI (overweight and obesity) was more often found in girls (28.29%) than boys (23.63%), while normal body weight was more often found in boys (65.76%) than girls (60.96%). Between the initial and final assessments, the percentage of children with normal body mass decreased from 65.65% to 61.07%. Excessive BMI (overweight and obesity) increased from 27.09% to 29.50% in girls, and from 21.26% to 26.00% in boys. The mean percentage of FM was higher in girls than boys (23.17% vs. 16.20%, respectively). The mean FM decreased from 17.80% to 14.60% in boys and increased from 21.77% to 24.57% in girls. Poor nutritional behaviors were observed in 20.35% of children, more often in boys (22.25%) than in girls (18.50%). Between the initial and final assessments, an increase in the mean consumption of fruit, whole-grain bread, and milk was noted. These were products that should be consumed more often to demonstrate a healthy diet. However, the consumption of products that should be limited for a healthy diet, such as fried flour dishes, fried meat dishes, fatty cheeses, butter, fast food, sweets, and carbonated drinks, also increased. Boys more often than girls consumed red meat and poultry meat, eggs, butter, and fast food, while girls more often than boys consumed fruit, vegetables, yogurts, cottage cheese, wholemeal bread, fruit, and sweets. Conclusions: Children usually showed moderate nutritional behavior. After four years, there was a significant increase in the consumption of fruit and whole-grain bread, i.e., products that should be consumed as part of a healthy diet, as well as fried flour and meat dishes, fatty cheeses, butter, fast food, and sweets, i.e., products whose consumption should be limited. With age, the percentage of children showing unfavorable nutritional behaviors and excessive body weight increased. More extreme levels of overweight and obesity and higher body fat contents were found in girls than boys. Although girls’ nutritional behaviors were healthier, they were at a higher risk of excessive body weight. Increased promotion of a healthy diet and regular monitoring of body fat content in school-aged children is strongly recommended. Full article
Show Figures

Figure 1

19 pages, 4762 KiB  
Review
Historical, Technological, Biochemical, and Microbiological Aspects of Pastirma, an Ethnic Meat Product from Asia to Anatolia: A Narrative Literature Review
by Alper Güngören
Sustainability 2025, 17(7), 2801; https://doi.org/10.3390/su17072801 - 21 Mar 2025
Cited by 2 | Viewed by 1017
Abstract
Pastirma is an ethnic meat product derived from dry curing, drying, and pressing the whole muscles of cattle and buffalo and coating them with a special paste containing fenugreek seed flour, garlic, milled red capia pepper, and water. In this narrative literature review, [...] Read more.
Pastirma is an ethnic meat product derived from dry curing, drying, and pressing the whole muscles of cattle and buffalo and coating them with a special paste containing fenugreek seed flour, garlic, milled red capia pepper, and water. In this narrative literature review, the history of pastirma, its definition and classification, detailed production steps, composition and yield, chemical and microbiological properties, pastirma fraud, and customer concerns are mentioned. In this narrative review, relevant studies were identified by searching Scopus, Science Direct, Web of Science, Trdizin, and Google Scholar, including articles, online reports, books, and electronic books in English or Turkish. The keywords “pastirma, cemen, cemening, cemen paste, fenugreek” were used. The results of this review indicate that future studies on pastirma may focus on the related cultural aspects, the elimination of unpleasant odor from fenugreek, providing a detailed grading guide, the histological and chemical effects of pressing meat parts, the kinetics of drying, osmotic dehydration, and developing new starter combinations. Additionally, this is the first article to provide information on grading and food fraud in pastirma. Full article
Show Figures

Figure 1

24 pages, 2256 KiB  
Article
Technological Challenges of Spirulina Powder as the Functional Ingredient in Gluten-Free Rice Crackers
by Ivana Nikolić, Ivana Lončarević, Slađana Rakita, Ivana Čabarkapa, Jelena Vulić, Aleksandar Takači and Jovana Petrović
Processes 2025, 13(3), 908; https://doi.org/10.3390/pr13030908 - 19 Mar 2025
Viewed by 1049
Abstract
Technological issues with the production of gluten-free rice crackers with spirulina powder were examined in this work through their rheological, textural, color, sensory, and nutritional aspects. A part of gluten-free whole-grain rice flour was replaced with 5, 10, and 15% spirulina powder in [...] Read more.
Technological issues with the production of gluten-free rice crackers with spirulina powder were examined in this work through their rheological, textural, color, sensory, and nutritional aspects. A part of gluten-free whole-grain rice flour was replaced with 5, 10, and 15% spirulina powder in an appropriate recipe for crackers. The rheological analysis presented obtained dough samples as viscoelastic systems with dominant elastic components (G′ > G″ and Tan δ = G″/G′ is less than 0). The addition of spirulina contributed to a softer dough consistency according to a statistically significant (p < 0.5) decrease of Newtonian viscosity during the creep phase for a maximum of 43.37%, compared to the control dough. The 10 and 15% quantities of spirulina powder led to a statistically significant (p < 0.5) increase in the viscoelastic parameter Jmax, which indicated a greater dough adaptability to stress. The textural determination of the dough pointed statistically significantly (p < 0.05) to decreased dough hardness and improved dough extensibility and confirmed all rheological measurements with high correlation coefficients, indicating good physical dough properties during processing. Spirulina certainly affected the change in the color of the dough from a yellow-white to intense green, which also had a significant impact on the sensory quality of the baked crackers. Many sensory properties of the crackers were improved by the addition of and increasing amounts of spirulina (appearance, brittleness, hardness, graininess, and stickiness). The results for the dough and for the final crackers pointed to very good technological aspects for the development of a gluten-free bakery product with high nutritional value, such as increased polyphenolic content (with the majority of catechins), protein, total dietary fibers, and mineral content compared to the control sample. Full article
(This article belongs to the Special Issue Rheological Properties of Food Products)
Show Figures

Graphical abstract

20 pages, 8305 KiB  
Article
Effect of Addition Amount on Rheological, Structural, and Sensory Properties of Whole-Grain Sweet Potato Noodles Using Extrusion
by Yan Zeng, Jie Wang, Mengxiao Bao, Yue Wu and Zhigang Chen
Foods 2025, 14(6), 1040; https://doi.org/10.3390/foods14061040 - 19 Mar 2025
Viewed by 767
Abstract
Whole grain foods have been recommended to preserve biologically active components and benefit human health. The effect of the addition amount of whole sweet potato flour (WSPF, 25%, 51%, and 75%) on the physicochemical and structural properties of extruded whole-grain noodles was evaluated. [...] Read more.
Whole grain foods have been recommended to preserve biologically active components and benefit human health. The effect of the addition amount of whole sweet potato flour (WSPF, 25%, 51%, and 75%) on the physicochemical and structural properties of extruded whole-grain noodles was evaluated. Compared with traditional wheat flour (WF), the increased content of WSPF led to an enhancement in the dough’s water retention capacity, resulting in the reduction of dough development time and stability time. The modulus of elasticity and the modulus of loss of the dough exhibited a positive correlation with the proportion of WSPF added, while the tangent value and maximum creep flexibility were negatively correlated. Confocal laser scanning microscopy (CLSM) observed that WSPF induced protein aggregation in the dough. Compared to conventional WF, the increased incorporation of WSPF resulted in improved textural characteristics of the extruded noodles. Sensory evaluation indicated that the addition of WSPF could enhance the quality of the noodles by imparting a sweet potato aroma, a distinctive color, and a satisfactory taste. These characteristics were correlated with their enhanced relative crystallinity, enthalpy, and short-range ordered structure. Additionally, 75% whole-grain sweet potato noodles exhibited the highest relative crystallinity (11.05%), enthalpy of pasting (ΔH, 22.6 J/g), and short-range ordered structure (0.78). SEM results indicated that the presence of holes in the cross-section of the sweet potato extruded noodles facilitated their rapid rehydration. Overall, the whole-grain sweet potato noodles have great potential in promoting the textural, sensory, and nutritional properties compared to traditional wheat noodles. Full article
Show Figures

Figure 1

26 pages, 3565 KiB  
Article
Sensory Properties and Acceptability of Fermented Pearl Millet, a Climate-Resistant and Nutritious Grain, Among Consumers in the United States—A Pilot Study
by May M. Cheung, Lauren Miller, Jonathan Deutsch, Rachel Sherman, Solomon H. Katz and Paul M. Wise
Foods 2025, 14(5), 871; https://doi.org/10.3390/foods14050871 - 3 Mar 2025
Viewed by 1472
Abstract
Millets are climate-resistant, potential alternatives to wheat that could provide environmental, food security, and health benefits (e.g., lower glycemic index). However, millets are high in phytic acid, which reduces the bioavailability of essential minerals. Millets are often fermented in Africa and parts of [...] Read more.
Millets are climate-resistant, potential alternatives to wheat that could provide environmental, food security, and health benefits (e.g., lower glycemic index). However, millets are high in phytic acid, which reduces the bioavailability of essential minerals. Millets are often fermented in Africa and parts of Asia to improve bioavailability and, thus, nutritional value, but both unfermented and fermented millets may have flavors unfamiliar to Western cultures. We conducted two pilot studies on sensory perception and liking of whole grain, United States pearl millet (Pennisetum glaucum), in a group of U.S. consumers. In a preliminary study, we compared pearl millet treated under five different conditions (0, 48, and 96 h of fermentation fully submerged in either distilled water or in a 5% NaCl solution at 28 °C). We found that 96 h of spontaneous fermentation in water, an inexpensive and accessible technique consistent with consumer demand for minimally processed foods, reduced phytic acid by ~72%. However, consumers (n = 12) rated flatbreads made with fermented pearl millet as more bitter and sour than flatbreads made with unfermented pearl millet. In a second study, participants (n = 30) rated liking and purchase intent for whole wheat bread with 0 to 50% (w/w) substitution of pearl millet flour. Replacing up to 20% of wheat with fermented or unfermented pearl millet had no measurable effect on liking or purchase intent. More extensive substitution compromised liking, particularly with fermented pearl millet. More work is needed, but so far, there appear to be no sensory barriers to at least partial substitution of whole-grain pearl millet for wheat in whole wheat bread for United States consumers. Full article
(This article belongs to the Section Sensory and Consumer Sciences)
Show Figures

Figure 1

Back to TopTop