Pea and Lentil Flours Increase Postprandial Glycemic Response in Adults with Type 2 Diabetes and Metabolic Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Recruitment and Selection Criteria
2.3. Lentil and Pea Cultivars and Their Flour Production
2.4. Whole Pulse vs. Pulse Flour Equivalency Calculations
2.5. Nutrient Analysis of Pulses and Test Meal Components
2.6. Subjective Appetite and Gastrointestinal (GI) Symptoms Survey
2.7. Participant Test Day Procedures
2.8. Test Meal Preparation
2.9. Data Transformations and Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. Postprandial Glucose Response
3.2.1. Glucose Differences over 30-Min Increments
3.2.2. Incremental Area Under the Curve (iAUC)
3.3. Satiety
3.4. Gastrointestinal Symptoms
4. Discussion
Limitations and Strengths
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Centers for Disease Control and Prevention. Estimates of Diabetes and Its Burden in the United States National Diabetes Statistics Report. National Diabetes Statistics Report. 2023; pp. 1–32. Available online: https://stacks.cdc.gov/view/cdc/148231 (accessed on 25 November 2024).
- Kovács, N.; Shahin, B.; Andrade, C.A.S.; Mahrouseh, N.; Varga, O. Lifestyle and metabolic risk factors, and diabetes mellitus prevalence in European countries from three waves of the European Health Interview Survey. Sci. Rep. 2024, 14, 11623. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H.; et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M.; Ng, S.W. The nutrition transition to a stage of high obesity and noncommunicable disease prevalence dominated by ultra-processed foods is not inevitable. Obes. Rev. 2022, 23, e13366. [Google Scholar] [CrossRef]
- Shin, J.A.; Lee, J.H.; Lim, S.Y.; Ha, H.S.; Kwon, H.S.; Park, Y.M.; Lee, W.C.; Kang, M.I.; Yim, H.W.; Yoon, K.H. Metabolic syndrome as a predictor of type 2 diabetes, and its clinical interpretations and usefulness. J. Diabetes Investig. 2013, 4, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Mollard, R.C.; Zykus, A.; Luhovyy, B.L.; Nunez, M.F.; Wong, C.L.; Anderson, G.H. The acute effects of a pulse-containing meal on glycaemic responses and measures of satiety and satiation within and at a later meal. Br. J. Nutr. 2012, 108, 509–517. [Google Scholar] [CrossRef]
- Agarwal, S.; Fulgoni, V.L., 3rd. Effect of adding pulses to replace protein foods and refined grains in healthy dietary patterns. Nutrients 2023, 15, 4355. [Google Scholar] [CrossRef]
- Havemeier, S.; Erickson, J.; Slavin, J. Dietary guidance for pulses: The challenge and opportunity to be part of both the vegetable and protein food groups. Ann. N. Y. Acad. Sci. 2017, 1392, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Hutchins, A.M.; Winham, D.M.; Thompson, S.V. Phaseolus beans: Impact on glycaemic response and chronic disease risk in human subjects. Br. J. Nutr. 2012, 108 (Suppl. S1), S52–S65. [Google Scholar] [CrossRef]
- Noah, L.; Guillon, F.; Bouchet, B.; Buléon, A.; Molis, C.; Gratas, M.; Champ, M. Digestion of Carbohydrate from White Beans (Phaseolus vulgaris L.) in Healthy Humans. J. Nutr. 1998, 128, 977–985. [Google Scholar] [CrossRef]
- Li, P.; Zhang, B.; Liu, R.; Ding, L.; Fu, X.; Li, H.; Huang, Q.; He, X. Insights into the relations between cell wall integrity and in vitro digestion properties of granular starches in pulse cotyledon cells after dry heat treatment. Food Sci. Hum. Wellness 2023, 12, 528–535. [Google Scholar] [CrossRef]
- Hafiz, M.S.; Campbell, M.D.; O’Mahoney, L.L.; Holmes, M.; Orfila, C.; Boesch, C. Pulse consumption improves indices of glycemic control in adults with and without type 2 diabetes: A systematic review and meta-analysis of acute and long-term randomized controlled trials. Eur. J. Nutr. 2022, 61, 809–824. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.V.; Winham, D.M.; Hutchins, A.M. Bean and rice meals reduce postprandial glycemic response in adults with type 2 diabetes: A cross-over study. Nutr. J. 2012, 11, 23. [Google Scholar] [CrossRef]
- Bornet, F.R.; Jardy-Gennetier, A.E.; Jacquet, N.; Stowell, J. Glycaemic response to foods: Impact on satiety and long-term weight regulation. Appetite 2007, 49, 535–553. [Google Scholar] [CrossRef] [PubMed]
- Erbersdobler, H.F.; Barth, C.A.; Jahreis, G. Legumes in human nutrition. Nutrient content and protein quality of pulses. Ernahr. Umsch. 2017, 64, 140–144. [Google Scholar] [CrossRef]
- Awika, J.M.; Rose, D.J.; Simsek, S. Complementary effects of cereal and pulse polyphenols and dietary fiber on chronic inflammation and gut health. Food Funct. 2018, 9, 1389–1409. [Google Scholar] [CrossRef] [PubMed]
- Gazan, R.; Maillot, M.; Reboul, E.; Darmon, N. Pulses Twice a Week in Replacement of Meat Modestly Increases Diet Sustainability. Nutrients 2021, 13, 3059. [Google Scholar] [CrossRef]
- Pulse Canada. Sustainability. Pulse Canada website. Available online: https://pulsecanada.com/sustainability (accessed on 22 April 2025).
- Foschia, M.; Horstmann, S.W.; Arendt, E.K.; Zannini, E. Legumes as functional ingredients in gluten-free bakery and pasta products. Annu. Rev. Food Sci. Technol. 2017, 8, 75–96. [Google Scholar] [CrossRef]
- International Food Information Council Foundation (IFIC) 2024 Food and Health Survey. Available online: https://foodinsight.org/wp-content/uploads/2024/06/2024-IFIC-Food-Health-Survey.pdf (accessed on 23 March 2025).
- IMARC Group. Pulse Flour Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2024–2032. Available online: https://www.imarcgroup.com/pulse-flour-market (accessed on 8 April 2025).
- IMARC Group. Wheat Flour Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2024–2032. Available online: https://www.imarcgroup.com/wheat-flour-market (accessed on 8 April 2025).
- Thakur, S.; Scanlon, M.G.; Tyler, R.T.; Milani, A.; Paliwal, J. Pulse flour characteristics from a wheat flour miller’s perspective: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 775–797. [Google Scholar] [CrossRef]
- Scanlon, M.G.; Thakur, S.; Tyler, R.T.; Milani, A.; Der, T.; Paliwal, J. The critical role of milling in pulse ingredient functionality. Cereal Foods World 2018, 63, 201–206. [Google Scholar] [CrossRef]
- Hall, C. Pulses: Milling and Baking Applications. In Breeding for Enhanced Nutrition and Bio-Active Compounds in Food Legumes; Gupta, D.S., Gupta, S., Kumar, J., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Tovar, J.; Granfeldt, Y.; Björck, I.M. Effect of processing on blood glucose and insulin responses to starch in legumes. J. Agric. Food Chem. 1992, 40, 1846–1851. [Google Scholar] [CrossRef]
- Glick, A.A.; Winham, D.M.; Heer, M.M.; Hutchins, A.M.; Shelley, M.C. Nutrition Knowledge Varies by Food Group and Nutrient Among Adults. Foods 2025, 14, 606. [Google Scholar] [CrossRef] [PubMed]
- Winham, D.M.; Hutchins, A.M.; Melde, C.L. Pinto bean, navy bean, and black-eyed pea consumption do not significantly lower the glycemic response to a high glycemic index treatment in normoglycemic adults. Nutr. Res. 2007, 27, 535–541. [Google Scholar] [CrossRef]
- Winham, D.M.; Thompson, S.V.; Heer, M.M.; Davitt, E.D.; Hooper, S.D.; Cichy, K.A.; Knoblauch, S.T. Black bean pasta meals with varying protein concentrations reduce postprandial glycemia and insulinemia similarly compared to white bread control in adults. Foods 2022, 11, 1652. [Google Scholar] [CrossRef]
- Anderson, G.H.; Liu, Y.; Smith, C.E.; Liu, T.T.; Nunez, M.F.; Mollard, R.C.; Luhovyy, B.L. The acute effect of commercially available pulse powders on postprandial glycaemic response in healthy young men. Br. J. Nutr. 2014, 112, 1966–1973. [Google Scholar] [CrossRef] [PubMed]
- Johnston, A.J.; Mollard, R.C.; Dandeneau, D.; MacKay, D.S.; Ames, N.; Curran, J.; Bouchard, D.R.; Jones, P.J. Acute effects of extruded pea fractions on glycemic response, insulin, appetite, and food intake in healthy young adults, results of a double-blind, randomized crossover trial. Appl. Physiol. Nutr. Metab. 2021, 46, 1126–1132. [Google Scholar] [CrossRef]
- Giuberti, G.; Gallo, A. Reducing the glycaemic index and increasing the slowly digestible starch content in gluten-free cereal-based foods: A review. Int. J. Food Sci. Technol. 2018, 53, 50–60. [Google Scholar] [CrossRef]
- Zafar, T.A.; Al-Hassawi, F.; Al-Khulaifi, F.; Al-Rayyes, G.; Waslien, C.; Huffman, F.G. Organoleptic and glycemic properties of chickpea-wheat composite breads. J. Food Sci. Technol. 2015, 52, 2256–2263. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.K.; Thomas, S.J.; Hall, R.S. Palatability and glucose, insulin and satiety responses of chickpea flour and extruded chickpea flour bread eaten as part of a breakfast. Eur. J. Clin. Nutr. 2005, 59, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Chamoun, D.; Duncan, A.M.; Lukus, P.K.; Loreto, M.D.; Pals-Horne, F.; Hawke, A.; Ramdath, D.D. Postprandial Blood Glucose and Insulin Response in Healthy Adults When Lentils Replace High-Glycemic Index Food Ingredients in Muffins, Chilies and Soups. Nutrients 2024, 16, 2669. [Google Scholar] [CrossRef]
- Fujiwara, N.; Hall, C.; Jenkins, A.L. Development of low glycemic index (GI) foods by incorporating pulse ingredients into cereal-based products: Use of in vitro screening and in vivo methodologies. Cereal Chem. 2017, 94, 110–116. [Google Scholar] [CrossRef]
- Ramdath, D.; Wolever, T.M.S.; Chris Siow, Y.; Ryland, D.; Hawke, A.; Taylor, C.; Zahradka, P.; Aliani, M. Effect of processing on postprandial glycemic response and consumer acceptability of lentil-containing food items. Foods 2018, 7, 76. [Google Scholar] [CrossRef] [PubMed]
- Marinangeli, C.P.; Curran, J.; Barr, S.I.; Slavin, J.; Puri, S.; Swaminathan, S.; Tapsell, L.; Patterson, C.A. Enhancing nutrition with pulses: Defining a recommended serving size for adults. Nutr. Rev. 2017, 75, 990–1006. [Google Scholar] [CrossRef]
- Cioffi, I.; Martini, D.; Del Bo, C.; Brusamolino, A.; Casiraghi, M.C.; Porrini, M.; Riso, P. Lentils based pasta affect satiation, satiety and food intake in healthy volunteers. Curr. Res. Food Sci. 2024, 9, 100858. [Google Scholar] [CrossRef]
- Winham, D.M.; Hutchins, A.M. Perceptions of flatulence from bean consumption among adults in 3 feeding studies. Nutr. J. 2011, 10, 128. [Google Scholar] [CrossRef]
- Doma, K.M.; Farrell, E.L.; Leith-Bailey, E.R.; Soucier, V.D.; Duncan, A.M. Motivators, barriers and other factors related to bean consumption in older adults. J. Nutr. Gerontol. Geriatr. 2019, 38, 397–413. [Google Scholar] [CrossRef]
- US Department of Agriculture; US Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025, 9th ed.; Government Publishing Office: Washington, DC, USA, 2020.
- Huang, P.L. A comprehensive definition for metabolic syndrome. Dis. Models Mech. 2009, 2, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Burness, C.B.; Scott, L.J. Dulaglutide: A review in type 2 diabetes. BioDrugs 2015, 29, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Arriola, M. Postprandial Glycemic Response of Whole Peas and Lentils and their Flours in Adults with Type 2 Diabetes. Master’s Thesis, Iowa State University, Ames, IA, USA, 2020. ISBN 9781083653710. [Google Scholar]
- Bulyaba, R.; Winham, D.M.; Lenssen, A.W.; Moore, K.J.; Kelly, J.D.; Brick, M.A.; Wright, E.M.; Ogg, J.B. Genotype by location effects on yield and seed nutrient composition of common bean. Agronomy 2020, 10, 347. [Google Scholar] [CrossRef]
- Amin, M.N.; Islam, M.M.; Coyne, C.J.; Carpenter-Boggs, L.; McGee, R.J. Spectral indices for characterizing lentil accessions in the dryland of Pacific Northwest. Genet. Resour. Crop Evol. 2024, 71, 167–179. [Google Scholar] [CrossRef]
- Daba, S.D.; McGee, R.J.; Finnie, S.M. Physicochemical, Morphological, and Digestibility Properties of Round and Wrinkled Pea Starches. Cereal Chem. 2025, 102, 611–627. [Google Scholar] [CrossRef]
- Patterson, C.A.; Curran, J.; Der, T. Effect of processing on antinutrient compounds in pulses. Cereal Chem. 2017, 94, 2–10. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Fat (crude) or ether extraction in pet food. Gravimetric method. In Official Methods of Analysis of AOAC International, 19th ed.; Horwitz, W., Latimer, G., Eds.; AOAC International: Gaithersburg, MD, USA, 2012; AOAC Official Method 954.02. [Google Scholar]
- Association of Official Analytical Chemists. Protein (Crude) in Animal Feed, Combustion Method. In Official Methods of Analysis of AOAC International, 18th ed.; Horwitz, W., Latimer, G., Eds.; AOAC International: Gaithersburg, MD, USA, 2006; AOAC Official Method 990.03. [Google Scholar]
- Association of Official Analytical Chemists. Solids (Total) and Moisture in Flour—Vacuum Oven Method. In Official Methods of Analysis of AOAC International, 17th ed.; Horwitz, W., Ed.; AOAC International: Gaithersburg, MD, USA, 2000; AOAC Official Method 925.09. [Google Scholar]
- Association of Official Analytical Chemists. Ash of Animal Feed. In Official Methods of Analysis of AOAC International, 18th ed.; Horwitz, W., Latimer, G., Eds.; AOAC International: Gaithersburg, MD, USA, 2006; AOAC Official Method 954.02. [Google Scholar]
- Association of Official Analytical Chemists. Starch (Total) in Cereal Products Amyloglucosidase–α-Amylase Method. In Official Methods of Analysis of AOAC International, 17th ed.; Horwitz, W., Ed.; AOAC International: Gaithersburg, MD, USA, 2000; AOAC Official Method 996.11. [Google Scholar]
- Association of Official Analytical Chemists. Total, Soluble, and Insoluble Dietary Fibre in Foods. In Official Methods of Analysis of AOAC International, 18th ed.; Horwitz, W., Latimer, G., Eds.; AOAC International: Gaithersburg, MD, USA, 2006; AOAC Official Method 991.43. [Google Scholar]
- BeMiller, J.N. Carbohydrate Analysis. In Food Analysis; Nielsen, S.S., Ed.; Food Science Text Series; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Mattes, R.D. Effects of a combination fiber system on appetite and energy intake in overweight humans. Physiol. Behav. 2007, 90, 705–711. [Google Scholar] [CrossRef]
- Austin, P.C.; White, I.R.; Lee, D.S.; van Buuren, S. Missing data in clinical research: A tutorial on multiple imputation. Can. J. Cardiol. 2021, 37, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Duh, M.S.; Lefebvre, P.; Fastenau, J.; Piech, C.T.; Waltzman, R.J. Assessing the clinical benefits of erythropoietic agents using area under the hemoglobin change curve. Oncologist 2005, 10, 438–448. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health. National Heart, Lung, and Blood Institute. High Blood Triglycerides. Available online: https://www.nhlbi.nih.gov/health/high-blood-triglycerides (accessed on 3 March 2025).
- Winham, D.M.; Nikl, R.R.; Hutchins, A.M.; Martin, R.L.; Campbell, C.G. Dietitians vary by counseling status in bean promotion with type 2 diabetes clients: A pilot study. Food Sci. Nutr. 2020, 8, 2839–2847. [Google Scholar] [CrossRef] [PubMed]
- Brummer, Y.; Kaviani, M.; Tosh, S.M. Structural and functional characteristics of dietary fibre in beans, lentils, peas and chickpeas. Food Res. Int. 2015, 67, 117–125. [Google Scholar] [CrossRef]
- Rodriguez-Delgado, E.; García del Moral, R.; Cobos-Vargas, A.; Martín-López, J.; Colmenero, M. Agreement of blood glucose measured with glucose meter in arterial, central venous, and capillary samples in adult critically ill patients. Nurs. Crit. Care 2022, 27, 711–717. [Google Scholar] [CrossRef]
Particle Size | Lentil Flour (%) | Pea Flour (%) |
---|---|---|
Above 177 µm | 3.4 | 5.1 |
150–176 µm | 28.5 | 61.6 |
149 µm and smaller | 61.1 | 33.3 |
T2DM COHORT | Glucola | Whole Lentil | Lentil Flour | Whole Pea | PEA Flour |
---|---|---|---|---|---|
Total weight (g) | 215 | 295.6 | 339.0 | 295.6 | 335.7 |
Pasta sauce (g) | -- | 166.6 | 166.6 | 166.6 | 166.6 |
Bread (g) | -- | 49.0 | 49.0 | 49.0 | 49.0 |
Pulses (g) | -- | 80.0 | 40.1 | 76.0 | 32.8 |
Water (g) | -- | -- | 83.3 | -- | 83.3 |
Sugar (g) | -- | -- | -- | 4.0 | 4.0 |
Energy (kcal) | 200 | 391.0 | 392.0 | 382.0 | 383.0 |
Total carbohydrate (g) | 50 | 66.8 | 66.0 | 68.2 | 67.7 |
Fiber (g) | 0 | 11.6 | 13.9 | 12.3 | 11.5 |
Available CHO (g) | 50 | 55.2 | 52.1 | 55.9 | 56.3 |
Pasta sauce (g) | -- | 15.6 | 15.6 | 15.6 | 15.6 |
Bread (g) | -- | 20.0 | 20.0 | 20.0 | 20.0 |
Pulse (g) | -- | 19.6 | 16.6 | 16.3 | 16.7 |
Sugar | -- | -- | -- | 4.0 | 4.0 |
Protein (g) | 0 | 17.0 | 17.6 | 13.8 | 13.8 |
Fat (g) | 0 | 6.1 | 6.3 | 5.9 | 6.3 |
METS COHORT | |||||
Total weight (g) | 215 | 291.6 | 335.0 | 287.6 | 327.7 |
Pasta Sauce (g) | -- | 166.6 | 166.6 | 166.6 | 166.6 |
Bread (g) | -- | 45.0 | 45.0 | 45.0 | 45.0 |
Pulse (g) | -- | 80.0 | 40.1 | 76.0 | 32.8 |
Water (g) | -- | -- | 83.3 | -- | 83.3 |
Energy (kcal) | 200 | 380.0 | 380.9 | 355 | 356.4 |
Total carbohydrate (g) | 50 | 64.9 | 64.2 | 62.3 | 61.9 |
Fiber (g) | 0 | 11.3 | 13.6 | 12.1 | 11.2 |
Available CHO (g) | 50 | 53.6 | 50.5 | 50.3 | 50.6 |
Pasta Sauce (g) | 15.6 | 15.6 | 15.6 | 15.6 | |
Bread (g) | 18.3 | 18.3 | 18.3 | 18.3 | |
Pulse (g) | - | 19.6 | 16.6 | 16.3 | 16.7 |
Protein (g) | 0 | 16.6 | 17.1 | 13.4 | 13.4 |
Fat (g) | 0 | 5.9 | 6.1 | 5.7 | 6.1 |
Variable | All | T2DM | MetS | p |
---|---|---|---|---|
± SEM | ||||
Age (yrs) | 51 ± 3 | 55 ± 4 | 44 ± 3 | 0.07 |
Weight (kg) 1 | 101.6 ± 3.8 | 101.1 ± 5.5 | 102.3 ± 5.2 | 0.88 |
Height (cm) 1 | 172.2 ± 2.1 | 173.4 ± 3.0 | 170.7 ± 3.1 | 0.55 |
BMI (kg/m2) 1 | 34.1 ± 0.7 | 33.4 ± 1.0 | 35.0 ± 1.1 | 0.31 |
HbA1c (%) | 6.2 ± 0.2 | 6.5 ± 0.2 | 5.9 ± 0.1 | 0.07 |
Glucose (mmol/L) | 6.7 ± 0.4 | 7.3 ± 0.6 | 5.9 ± 0.2 | 0.05 |
Waist circumference (cm) | 114.7 ± 2.7 | 115.5 ± 4.3 | 113.7 ± 3.0 | 0.76 |
Total Cholesterol (mmol/L) | 4.7 ± 0.3 | 4.1 ± 0.3 | 5.5 ± 0.4 | 0.01 |
LDL-C (mmol/L) | 2.7 ± 0.3 | 2.2 ± 0.3 | 3.4 ± 0.4 | 0.01 |
HDL-C (mmol/L) | 1.1 ± 0.1 | 1.1 ± 0.1 | 1.1 ± 0.1 | 0.56 |
Triglycerides (mmol/L) | 2.3 ± 0.2 | 2.3 ± 0.4 | 2.3 ± 0.4 | 0.98 |
Systolic blood pressure (mm Hg) | 126.8 ± 2.7 | 129.6 ± 3.6 | 123.0 ± 4.0 | 0.24 |
Diastolic blood pressure (mm Hg) | 82.8 ± 1.4 | 81.4 ± 1.2 | 84.8 ± 2.9 | 0.25 |
Glucola | Whole Lentil | Lentil Flour | Whole Pea | Pea Flour | |
---|---|---|---|---|---|
T2DM | |||||
Fasting | 7.2 ± 0.6 | 7.3 ± 0.6 | 7.4 ± 0.4 | 7.2 ± 0.5 | 7.1 ± 0.5 |
30 min | 11.3 ± 0.7 | 8.4 ± 0.6 | 9.7 ± 0.6 | 8.9 ± 0.6 | 10.2 ± 0.7 |
60 min | 13.4 ± 0.8 | 9.8 ± 0.8 | 11.2 ± 0.8 | 10.1 ± 0.8 | 11.0 ± 0.9 |
90 min | 12.1 ± 0.9 | 9.4 ± 0.8 | 10.9 ± 0.8 | 10.0 ± 0.8 | 10.1 ± 0.9 |
120 min | 9.7 ± 0.9 | 8.3 ± 0.8 | 9.7 ± 0.8 | 8.8 ± 0.7 | 8.4 ± 0.9 |
150 min | 7.8 ± 0.8 | 7.3 ± 0.7 | 8.5 ± 0.8 | 7.5 ± 0.7 | 7.5 ± 0.9 |
180 min | 6.8 ± 0.7 | 6.6 ± 0.7 | 7.4 ± 0.7 | 6.8 ± 0.7 | 6.6 ± 0.7 |
METS | |||||
Fasting | 5.8 ± 0.2 | 5.6 ± 0.2 | 6.1 ± 0.2 | 5.6 ± 0.2 | 5.8 ± 0.2 |
30 min | 9.2 ± 0.5 | 6.2 ± 0.3 | 7.8 ± 0.3 | 6.4 ± 0.3 | 7.6 ± 0.3 |
60 min | 10.5 ± 0.8 | 7.0 ± 0.3 | 7.9 ± 0.4 | 7.5 ± 0.4 | 7.8 ± 0.6 |
90 min | 8.6 ± 0.7 | 6.6 ± 0.4 | 7.2 ± 0.4 | 7.0 ± 0.4 | 6.9 ± 0.6 |
120 min | 6.6 ± 0.5 | 6.1 ± 0.3 | 6.5 ± 0.3 | 6.3 ± 0.2 | 6.1 ± 0.2 |
150 min | 5.3 ± 0.5 | 5.6 ± 0.3 | 6.0 ± 0.2 | 5.5 ± 0.2 | 5.3 ± 0.3 |
180 min | 4.5 ± 0.3 | 5.2 ± 0.3 | 5.1 ± 0.2 | 5.1 ± 0.2 | 4.8 ± 0.2 |
Glucola | Whole Lentil | Lentil Flour | Whole Pea | Pea Flour | |
---|---|---|---|---|---|
60 min iAUC | 217.5 ± 17.7 | 73.4 ± 10.6 | 124.6 ± 16.9 | 91.5 ± 10.5 | 150.9 ± 14.9 |
120 min iAUC | 494.2 ± 40.6 | 192.9 ± 30.5 | 316.7 ± 47.6 | 241.7 ± 30.2 | 319.7 ± 39.8 |
180 min iAUC | 564.8 ± 56.7 | 223.5 ± 38.2 | 394.6 ± 71.1 | 280.1 ± 41.9 | 369.7 ± 53.5 |
Glucola | Whole Lentil | Lentil Flour | Whole Pea | Pea Flour | |
---|---|---|---|---|---|
60 min iAUC | 173.4 ± 18.3 | 39.8 ± 5.6 | 77.4 ± 9.1 | 54.0 ± 8.7 | 82.9 ± 11.6 |
120 min iAUC | 349.7 ± 43.9 | 101.1 ± 19.6 | 146.3 ± 27.5 | 136.5 ± 24.1 | 162.9 ± 32.1 |
180 min iAUC | 377.4 ± 50.8 | 119.4 ± 23.4 | 160.2 ± 33.0 | 153.1 ± 28.6 | 179.7 ± 37.4 |
Meal Average | Glucola | Whole Lentils | Lentil Flour | Whole Peas | Pea Flour | |
---|---|---|---|---|---|---|
% (n) | ||||||
Flatulence | ||||||
No Change | 73.9 (65) | 88.9 (16) | 70.6 (12) | 68.8 (11) | 66.7 (12) | 73.7 (14) |
Increased | 26.1 (23) | 11.1 (2) | 29.4 (5) | 31.3 (5) | 33.3 (6) | 26.3 (5) |
Decreased | 0 | 0 | 0 | 0 | 0 | 0 |
Bloating | ||||||
No Change | 80.7 (71) | 83.3 (15) | 88.2 (15) | 81.3 (13) | 77.8 (14) | 73.7 (14) |
Increased | 19.3 (17) | 16.7 (3) | 11.8 (2) | 18.8 (3) | 22.2 (4) | 26.3 (5) |
Decreased | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winham, D.M.; Camacho-Arriola, M.; Glick, A.A.; Hall, C.A.; Shelley, M.C. Pea and Lentil Flours Increase Postprandial Glycemic Response in Adults with Type 2 Diabetes and Metabolic Syndrome. Foods 2025, 14, 1933. https://doi.org/10.3390/foods14111933
Winham DM, Camacho-Arriola M, Glick AA, Hall CA, Shelley MC. Pea and Lentil Flours Increase Postprandial Glycemic Response in Adults with Type 2 Diabetes and Metabolic Syndrome. Foods. 2025; 14(11):1933. https://doi.org/10.3390/foods14111933
Chicago/Turabian StyleWinham, Donna M., Mariel Camacho-Arriola, Abigail A. Glick, Clifford A. Hall, and Mack C. Shelley. 2025. "Pea and Lentil Flours Increase Postprandial Glycemic Response in Adults with Type 2 Diabetes and Metabolic Syndrome" Foods 14, no. 11: 1933. https://doi.org/10.3390/foods14111933
APA StyleWinham, D. M., Camacho-Arriola, M., Glick, A. A., Hall, C. A., & Shelley, M. C. (2025). Pea and Lentil Flours Increase Postprandial Glycemic Response in Adults with Type 2 Diabetes and Metabolic Syndrome. Foods, 14(11), 1933. https://doi.org/10.3390/foods14111933