Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (356)

Search Parameters:
Keywords = whey treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6042 KiB  
Article
Whey Protein–Quercetin–Gellan Gum Complexes Prepared Using pH-Shift Treatment: Structural and Functional Properties
by Na Guo, Xin Zhou, Ganghua Zhou, Yimeng Zhang, Guoqing Yu, Yangliu Liu, Beibei Li, Fangyan Zhang and Guilan Zhu
Foods 2025, 14(15), 2720; https://doi.org/10.3390/foods14152720 - 3 Aug 2025
Viewed by 222
Abstract
The objectives of this study were to prepare whey protein–quercetin–gellan gum conjugates using the pH-shift method and to evaluate the impacts of varying pH values and quercetin concentrations on the interaction mechanisms and functional characteristics of the complexes. Spectroscopic analyses (fluorescence, UV-vis, and [...] Read more.
The objectives of this study were to prepare whey protein–quercetin–gellan gum conjugates using the pH-shift method and to evaluate the impacts of varying pH values and quercetin concentrations on the interaction mechanisms and functional characteristics of the complexes. Spectroscopic analyses (fluorescence, UV-vis, and FT-IR) revealed that new complexes formed under alkaline conditions. Notably, an increasing quercetin concentration led to a reduction in complex particle size and an increase in the zeta potential value, with these effects being more pronounced under alkaline conditions. The particle size was 425.7 nm, and the zeta potential value was −30.00 mV at a quercetin addition concentration of 15 umol/g protein. Additionally, the complexes formed under alkaline conditions exhibited superior foaming capacity, emulsification properties, and significantly enhanced free radical scavenging activity. The complex’s DPPH and ABTS radical scavenging rates rose by 41.57% and 57.69%, respectively. This study provides theoretical foundations and practical insights for developing protein—polyphenol systems, offering significant implications for the application of quercetin functional foods and supplements in the food science and pharmaceutical industries. Full article
(This article belongs to the Special Issue Oil and Protein Engineering and Its Applications in Food Industry)
Show Figures

Figure 1

21 pages, 4228 KiB  
Article
The Combined Effect of Caseinates, Native or Heat-Treated Whey Proteins, and Cryogel Formation on the Characteristics of Kefiran Films
by Nikoletta Pouliou, Eirini Chrysovalantou Paraskevaidou, Athanasios Goulas, Stylianos Exarhopoulos and Georgia Dimitreli
Molecules 2025, 30(15), 3230; https://doi.org/10.3390/molecules30153230 - 1 Aug 2025
Viewed by 228
Abstract
Kefiran, the extracellular polysaccharide produced from the Generally Recognized as Safe (GRAS) bacteria in kefir grains, with its well-documented functional and health-promoting properties, constitutes a promising biopolymer with a variety of possible uses. Its compatibility with other biopolymers, such as milk proteins, and [...] Read more.
Kefiran, the extracellular polysaccharide produced from the Generally Recognized as Safe (GRAS) bacteria in kefir grains, with its well-documented functional and health-promoting properties, constitutes a promising biopolymer with a variety of possible uses. Its compatibility with other biopolymers, such as milk proteins, and its ability to form standalone cryogels allow it to be utilized for the fabrication of films with improved properties for applications in the food and biomedical–pharmaceutical industries. In the present work, the properties of kefiran films were investigated in the presence of milk proteins (sodium caseinate, native and heat-treated whey proteins, and their mixtures), alongside glycerol (as a plasticizer) and cryo-treatment of the film-forming solution prior to drying. A total of 24 kefiran films were fabricated and studied for their physical (thickness, moisture content, water solubility, color parameters and vapor adsorption), mechanical (tensile strength and elongation at break), and optical properties. Milk proteins increased film thickness, solubility and tensile strength and reduced water vapor adsorption. The hygroscopic effect of glycerol was mitigated in the presence of milk proteins and/or the application of cryo-treatment. Glycerol was the most effective at reducing the films’ opacity. Heat treatment of whey proteins proved to be the most effective in increasing film tensile strength, reducing, at the same time, the elongation at break, while sodium caseinates in combination with cryo-treatment resulted in films with high tensile strength and the highest elongation at break. Cryo-treatment, carried out in the present study through freezing followed by gradual thawing of the film-forming solution, proved to be the most effective factor in decreasing film roughness. Based on our results, proper selection of the film-forming solution composition and its treatment prior to drying can result in kefiran–glycerol films with favorable properties for particular applications. Full article
(This article belongs to the Special Issue Development of Food Packaging Materials)
Show Figures

Figure 1

19 pages, 523 KiB  
Review
Whey Proteins and Metabolic Dysfunction-Associated Steatotic Liver Disease Features: Evolving the Current Knowledge and Future Trends
by Maja Milanović, Nataša Milošević, Maja Ružić, Ludovico Abenavoli and Nataša Milić
Metabolites 2025, 15(8), 516; https://doi.org/10.3390/metabo15080516 - 1 Aug 2025
Viewed by 422
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is a prevalent, multisystem disease affecting approximately 30% of adults worldwide. Obesity, along with dyslipidemia, type 2 diabetes mellitus, and hypertension, are closely intertwined with MASLD. In people with [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is a prevalent, multisystem disease affecting approximately 30% of adults worldwide. Obesity, along with dyslipidemia, type 2 diabetes mellitus, and hypertension, are closely intertwined with MASLD. In people with obesity, MASLD prevalence is estimated to be about 75%. Despite various approaches to MASLD treatment, dietary changes remain the most accessible and safe interventions in MASLD, especially in obese and overweight patients. Whey proteins are rich in bioactive compounds, essential amino acids with antioxidant properties, offering potential benefits for MASLD prevention and management. This state-of-the-art review summarizes whey protein impacts on a spectrum of MASLD-related manifestations, such as obesity, impaired glucose and lipid metabolism, hypertension, liver injury, oxidative stress, and inflammation. The results obtained in clinical environments, with a focus on meta-analysis, propose whey protein supplementation as a promising strategy aimed at managing multifaced MASLD disorders. Well-designed cohort studies are needed for validation of the efficacy and long-term safety of whey proteins in MASLD patients. Full article
(This article belongs to the Special Issue Effects of Diet on Metabolic Health of Obese People)
Show Figures

Figure 1

46 pages, 5039 KiB  
Review
Harnessing Insects as Novel Food Ingredients: Nutritional, Functional, and Processing Perspectives
by Hugo M. Lisboa, Rogério Andrade, Janaina Lima, Leonardo Batista, Maria Eduarda Costa, Ana Sarinho and Matheus Bittencourt Pasquali
Insects 2025, 16(8), 783; https://doi.org/10.3390/insects16080783 - 30 Jul 2025
Viewed by 586
Abstract
The rising demand for sustainable protein is driving interest in insects as a raw material for advanced food ingredients. This review collates and critically analyses over 300 studies on the conversion of crickets, mealworms, black soldier flies, and other farmed species into powders, [...] Read more.
The rising demand for sustainable protein is driving interest in insects as a raw material for advanced food ingredients. This review collates and critically analyses over 300 studies on the conversion of crickets, mealworms, black soldier flies, and other farmed species into powders, protein isolates, oils, and chitosan-rich fibers with targeted techno-functional roles. This survey maps how thermal pre-treatments, blanch–dry–mill routes, enzymatic hydrolysis, and isoelectric solubilization–precipitation preserve or enhance the water- and oil-holding capacity, emulsification, foaming, and gelation, while also mitigating off-flavors, allergenicity, and microbial risks. A meta-analysis shows insect flours can absorb up to 3.2 g of water g−1, stabilize oil-in-water emulsions for 14 days at 4 °C, and form gels with 180 kPa strength, outperforming or matching eggs, soy, or whey in specific applications. Case studies demonstrate a successful incorporation at 5–15% into bakery, meat analogs and dairy alternatives without sensory penalties, and chitin-derived chitosan films extend the bread shelf life by three days. Comparative life-cycle data indicate 45–80% lower greenhouse gas emissions and land use than equivalent animal-derived ingredients. Collectively, the evidence positions insect-based ingredients as versatile, safe, and climate-smart tools to enhance food quality and sustainability, while outlining research gaps in allergen mitigation, consumer acceptance, and regulatory harmonization. Full article
(This article belongs to the Special Issue Insects and Their Derivatives for Human Practical Uses 3rd Edition)
Show Figures

Figure 1

41 pages, 2824 KiB  
Review
Assessing Milk Authenticity Using Protein and Peptide Biomarkers: A Decade of Progress in Species Differentiation and Fraud Detection
by Achilleas Karamoutsios, Pelagia Lekka, Chrysoula Chrysa Voidarou, Marilena Dasenaki, Nikolaos S. Thomaidis, Ioannis Skoufos and Athina Tzora
Foods 2025, 14(15), 2588; https://doi.org/10.3390/foods14152588 - 23 Jul 2025
Viewed by 733
Abstract
Milk is a nutritionally rich food and a frequent target of economically motivated adulteration, particularly through substitution with lower-cost milk types. Over the past decade, significant progress has been made in the authentication of milk using advanced proteomic and chemometric approaches, with a [...] Read more.
Milk is a nutritionally rich food and a frequent target of economically motivated adulteration, particularly through substitution with lower-cost milk types. Over the past decade, significant progress has been made in the authentication of milk using advanced proteomic and chemometric approaches, with a focus on the discovery and application of protein and peptide biomarkers for species differentiation and fraud detection. Recent innovations in both top-down and bottom-up proteomics have markedly improved the sensitivity and specificity of detecting key molecular targets, including caseins and whey proteins. Peptide-based methods are especially valuable in processed dairy products due to their thermal stability and resilience to harsh treatment, although their species specificity may be limited when sequences are conserved across related species. Robust chemometric approaches are increasingly integrated with proteomic pipelines to handle high-dimensional datasets and enhance classification performance. Multivariate techniques, such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), are frequently employed to extract discriminatory features and model adulteration scenarios. Despite these advances, key challenges persist, including the lack of standardized protocols, variability in sample preparation, and the need for broader validation across breeds, geographies, and production systems. Future progress will depend on the convergence of high-resolution proteomics with multi-omics integration, structured data fusion, and machine learning frameworks, enabling scalable, specific, and robust solutions for milk authentication in increasingly complex food systems. Full article
Show Figures

Figure 1

20 pages, 2935 KiB  
Article
Multilayer Double Emulsion Encapsulation of Limosilactobacillus reuteri Using Pectin-Protein Systems
by Kattya Rodríguez, Diego Catalán, Tatiana Beldarraín-Iznaga, Juan Esteban Reyes-Parra, Keyla Tortoló Cabañas, Marbelis Valdés Veliz and Ricardo Villalobos-Carvajal
Foods 2025, 14(14), 2455; https://doi.org/10.3390/foods14142455 - 12 Jul 2025
Viewed by 424
Abstract
The development of bakeable foods supplemented with probiotics requires novel strategies to preserve the functionality of probiotic cells during thermal and gastrointestinal stress conditions. The objective of the present study was to evaluate the protective effect of multilayer double emulsions (W1/O/W [...] Read more.
The development of bakeable foods supplemented with probiotics requires novel strategies to preserve the functionality of probiotic cells during thermal and gastrointestinal stress conditions. The objective of the present study was to evaluate the protective effect of multilayer double emulsions (W1/O/W2) stabilized with pectin-protein complexes on the viability of Limosilactobacillus reuteri (Lr) under thermal treatment (95 °C, 30 min), storage (4 °C, 28 d), and simulated gastrointestinal conditions. Emulsions were prepared with whey protein isolate (WPI) or sodium caseinate (Cas) as outer aqueous phase emulsifiers, followed by pectin coating and ionic gelation with calcium. All emulsions were stable and exhibited high encapsulation efficiency (>92%) with initial viable counts of 9 log CFU/mL. Double emulsions coated with ionically gelled pectin showed the highest protection against heat stress and gastrointestinal conditions due to the formation of a denser layer with lower permeability, regardless of the type of protein used as an emulsifier. At the end of storage, Lr viability exceeded 7 log CFU/mL in cross-linked pectin-coated microcapsules. These microcapsules maintained >6 log CFU/mL after thermal treatment, while viability remained >6.5 log CFU/mL during digestion and >5.0 log CFU/mL after consecutive heat treatment and simulated digestion. According to these results, the combination of double emulsion, multilayer formation and ionic crosslinking emerges as a promising microencapsulation technique. This approach offers enhanced protection for probiotics against extreme thermal and digestive conditions compared to previous studies that only use double emulsions. These findings support the potential application of this encapsulation method for the formulation of functional bakeable products. Full article
Show Figures

Graphical abstract

18 pages, 1467 KiB  
Article
Effect of a Protein–Polysaccharide Coating on the Physicochemical Properties of Banana (Musa paradisiaca) During Storage
by Maritza D. Ruiz Medina, Yadira Quimbita Yupangui and Jenny Ruales
Coatings 2025, 15(7), 812; https://doi.org/10.3390/coatings15070812 - 11 Jul 2025
Cited by 2 | Viewed by 662
Abstract
Banana (Musa paradisiaca) is a climacteric fruit with high postharvest perishability, limiting its export potential. This study evaluated the effectiveness of a natural protein–polysaccharide edible coating—comprising whey, agar, cassava starch, and glycerol—on maintaining the physicochemical quality of green bananas during 28 [...] Read more.
Banana (Musa paradisiaca) is a climacteric fruit with high postharvest perishability, limiting its export potential. This study evaluated the effectiveness of a natural protein–polysaccharide edible coating—comprising whey, agar, cassava starch, and glycerol—on maintaining the physicochemical quality of green bananas during 28 days of refrigerated storage (13 °C, 95% RH). Seven formulations were tested, including an uncoated control. Physicochemical parameters such as weight loss, firmness, fruit dimensions, peel color, titratable acidity, pH, and soluble solids (°Brix) were systematically monitored. Significant differences were observed among treatments (ANOVA, p < 0.001). The most effective coating (T5), composed of 16.7% whey, 16.7% agar, 33.3% cassava starch, and 33.3% glycerol (based on 30 g/L solids), reduced weight loss by 58.8%, improved firmness retention by 48.4%, and limited sugar accumulation by 17.0% compared to the control. It also stabilized pH and acidity, preserved peel thickness and color parameters (L*, a*, b*), and delayed ripening. These findings confirm the coating’s capacity to form a cohesive semipermeable barrier that modulates moisture loss and respiration, making it a functional and sustainable alternative for extending banana shelf life in tropical supply chains. Full article
Show Figures

Figure 1

20 pages, 6883 KiB  
Review
Nutritional Composition and Biological Activities of Donkey Milk: A Narrative Review
by Qingyu Xu, Lin Wei, Xiuwen Chen, Hongzhen Zhu, Jinjin Wei, Mingxia Zhu, Muhammad Zahoor Khan, Changfa Wang and Zhenwei Zhang
Foods 2025, 14(13), 2337; https://doi.org/10.3390/foods14132337 - 1 Jul 2025
Viewed by 716
Abstract
Donkey milk has received increasing attention in recent years due to its unique nutritional composition and potential biological activities. This comprehensive review analyzed the main nutritional components of donkey milk, including proteins, lipids, carbohydrates, vitamins, and minerals, while also examining its significant biological [...] Read more.
Donkey milk has received increasing attention in recent years due to its unique nutritional composition and potential biological activities. This comprehensive review analyzed the main nutritional components of donkey milk, including proteins, lipids, carbohydrates, vitamins, and minerals, while also examining its significant biological activities such as antioxidant, antimicrobial, immunomodulatory, and anti-inflammatory properties. The protein profile of donkey milk is notable for its high proportion of whey proteins (55–65%), resembling human milk more closely than cow milk. Its relatively low-fat content (approximately 1.29%) with higher proportions of unsaturated fatty acids provides nutritional advantages for specific dietary needs. The carbohydrate content, primarily lactose, contributes to energy provision and calcium absorption. Donkey milk is also distinguished by its rich vitamin profile, particularly vitamin C (about 4.75 times higher than cow milk), and essential minerals including calcium, phosphorus, and zinc. The biological activities of donkey milk extend to various applications in infant nutrition, particularly for children with cow milk protein allergies, potential medical treatments for infections and inflammatory conditions, and cosmetic formulations. Despite these promising attributes, the donkey milk industry faces challenges including low milk yield, lack of standardized production methods, and quality control measures. The sustainable development of the donkey milk industry requires comprehensive approaches to resource protection, technological innovation, brand building, and supportive policies to realize its full potential in contributing to human health and economic development. Full article
Show Figures

Figure 1

18 pages, 8394 KiB  
Article
Goat Whey Protein Hydrolysate Mitigates High-Fructose Corn Syrup-Induced Hepatic Steatosis in a Murine Model
by Chun-Hui Shao, Vipul Wayal and Chang-Chi Hsieh
Nutrients 2025, 17(12), 2011; https://doi.org/10.3390/nu17122011 - 16 Jun 2025
Viewed by 610
Abstract
Background/Objectives: Hepatic steatosis, characterized by abnormal fat accumulation in the liver, is a major health concern with limited effective treatments. Goat milk whey proteins have demonstrated various therapeutic benefits. This study aimed to evaluate the hepatoprotective effects of goat whey protein hydrolysate [...] Read more.
Background/Objectives: Hepatic steatosis, characterized by abnormal fat accumulation in the liver, is a major health concern with limited effective treatments. Goat milk whey proteins have demonstrated various therapeutic benefits. This study aimed to evaluate the hepatoprotective effects of goat whey protein hydrolysate (GWPH) on high-fructose corn syrup (HFCS)-induced hepatic steatosis in a murine model. Methods: The GWPH was prepared through enzymatic hydrolysis using Alcalase® and divided into fractions: GWPH03 (<3 kDa), GWPH0310 (3–10 kDa), GWPH1030 (10–30 kDa), and GWPH30 (>30 kDa). These fractions were administered to respective GWPH treatment groups at 200 mg/kg b.w/day via intragastric gavage for 8 weeks, with HFCS provided to all groups except the Naïve group. After dietary intervention, an oral glucose tolerance test (OGTT) was performed, and the mice were then sacrificed for further analysis. Results: Our results demonstrate that GWPH mitigates HFCS-induced hepatic steatosis, reduces body weight gain, improves glucose homeostasis, alleviates liver injury, and regulates hepatic lipid metabolism. Notably, GWPH treatment significantly suppressed hepatic fatty acid synthase (FASN) expressions, indicating reduced de novo lipogenesis (DNL). Molecular docking of the identified peptides from GWPH—particularly PFNVYNVV, which showed strong binding affinity for KHK—suggests that it has potential as a competitive inhibitor of fructose metabolism. Conclusions: Collectively, our findings suggest that GWPH and its derived peptides could be promising candidates for managing hepatic steatosis and related metabolic abnormalities. Full article
(This article belongs to the Section Carbohydrates)
Show Figures

Figure 1

17 pages, 3931 KiB  
Article
Whey Protein Isolate Hydrogels Containing Cannabidiol Support the Proliferation of Pre-Osteoblasts
by Daniel K. Baines, Varvara Platania, Nikoleta N. Tavernaraki, Karen Wright, Maria Chatzinikolaidou and Timothy E. L. Douglas
Gels 2025, 11(6), 418; https://doi.org/10.3390/gels11060418 - 30 May 2025
Viewed by 474
Abstract
Bone-associated pathologies are major contributors to chronic pathology statistics. Current gold standard treatments present limitations such as the ability to act as scaffolds whilst effectively delivering medications to promote cellular proliferation. Recent advancements in biomaterials have suggested whey protein isolate (WPI) hydrogel as [...] Read more.
Bone-associated pathologies are major contributors to chronic pathology statistics. Current gold standard treatments present limitations such as the ability to act as scaffolds whilst effectively delivering medications to promote cellular proliferation. Recent advancements in biomaterials have suggested whey protein isolate (WPI) hydrogel as a potential candidate to act as a scaffold with the capacity for drug delivery for bone regeneration. In this study, we investigate whey protein isolate hydrogels enhanced with the phytocannabinoid cannabidiol (CBD). The use of CBD in WPI hydrogels for bone regeneration is original. The results suggest that CBD was successfully incorporated into the hydrogels bound potentially through hydrophobic interactions formed between hydrophobic patches of the protein and the hydrophobic cannabinoid. The incorporation of CBD into the WPI hydrogels improved the mechanical strength of the hydrogels. The Young’s modulus was improved from 2700 kPa ± 117 kPa to 7100 kPa ± 97 kPa when compared to the WPI control, without plant-derived cannabinoids, to the WPI with the maximum CBD concentration. Furthermore, statistically significant differences for both Young’s modulus and compressive strength were observable between the WPI control and CBD hydrogel variables. The release of CBD from the WPI hydrogels was confirmed with the results suggesting a maximum release of 20 μM over the 5-day period. Furthermore, the hydrogels supported the proliferation and synthesis of collagen and calcium, as well as the alkaline phosphatase activity of MC3T3-E1 pre-osteoblasts, which demonstrates the potential of WPI/CBD hydrogels as a biomaterial for osseous tissue regeneration. Full article
Show Figures

Graphical abstract

13 pages, 951 KiB  
Article
Optimization of the Treatment of Beer Lees for Their Use in Sustainable Biomass Production of Lactic Acid Bacteria
by Natalia S. Brizuela, Marina E. Navarro, Gabriel Rivas, Gabriel Gómez, Carolina Pérez, Liliana Semorile, Emma E. Tymczyszyn and Bárbara Bravo-Ferrada
Appl. Microbiol. 2025, 5(2), 51; https://doi.org/10.3390/applmicrobiol5020051 - 30 May 2025
Viewed by 420
Abstract
Beer lees (BL), a by-product of beer production, consist mainly of dead yeast cells with potential nutritional value. On the other hand, yeast extract (YE), obtained through the lysis of yeast cells, is commonly used as a nutrient-rich supplement for the growth of [...] Read more.
Beer lees (BL), a by-product of beer production, consist mainly of dead yeast cells with potential nutritional value. On the other hand, yeast extract (YE), obtained through the lysis of yeast cells, is commonly used as a nutrient-rich supplement for the growth of fastidious microorganisms such as lactic acid bacteria (LAB). However, YE is a high-cost ingredient. Therefore, the aim of this study was to optimize the use of BL as a low-cost alternative source of YE through different lysis treatments, evaluating its suitability to support the growth of UNQLpc 10 and UNQLp 11 strains in a whey permeate (WP)-based medium. Growth kinetics and cell viability were compared with those obtained in MRS broth. The best results were observed with sonicated BL, up to 10 logarithmic units, which supported LAB growth comparable to MRS. Although autolyzed BL promoted lower bacterial growth than sonicated BL, it showed greater cell disruption and higher levels of nitrogen, proteins, and amino acids (5.32%, 26.0%, and 277 nM, respectively). Additionally, autolyzed BL exhibited lower concentrations of reducing sugars and a higher presence of Maillard reaction products, as indicated by colorimetric analysis. These changes, which may be related to the formation of Maillard reaction products during the autolysis process, could have negatively affected the nutritional quality of the extract and, thus, reduced its effectiveness as a bacterial growth promoter. Full article
(This article belongs to the Special Issue Applied Microbiology of Foods, 3rd Edition)
Show Figures

Figure 1

22 pages, 3126 KiB  
Article
Anti-Inflammatory and Osteogenic Effect of Phloroglucinol-Enriched Whey Protein Isolate Fibrillar Coating on Ti-6Al-4V Alloy
by Anna Mieszkowska, Laurine Martocq, Andrey Koptyug, Maria A. Surmeneva, Roman A. Surmenev, Javad Naderi, Maria Muchova, Katarzyna A. Gurzawska-Comis and Timothy E. L. Douglas
Polymers 2025, 17(11), 1514; https://doi.org/10.3390/polym17111514 - 29 May 2025
Viewed by 600
Abstract
Biomaterials play a crucial role in the long-term success of bone implant treatment. The accumulation of bacterial biofilm on the implants induces inflammation, leading to implant failure. Modification of the implant surface with bioactive molecules is one of the strategies to improve biomaterial [...] Read more.
Biomaterials play a crucial role in the long-term success of bone implant treatment. The accumulation of bacterial biofilm on the implants induces inflammation, leading to implant failure. Modification of the implant surface with bioactive molecules is one of the strategies to improve biomaterial compatibility and limit inflammation. In this study, whey protein isolate (WPI) fibrillar coatings were used as a matrix to incorporate biologically active phenolic compound phloroglucinol (PG) at different concentrations (0.1% and 0.5%) on titanium alloy (Ti6Al4V) scaffolds. Successful Ti6Al4V coatings were validated by X-ray photoelectron spectroscopy (XPS), showing a decrease in %Ti and increases in %C, %N, and %O, which demonstrate the presence of the protein layer. The biological activity of PG-enriched WPI (WPI/PG) coatings was assessed using bone-forming cells, human bone marrow-derived mesenchymal stem cells (BM-MSCs). WPI/PG coatings modulated the behavior of BM-MSCs but did not have a negative impact on cell viability. A WPI with higher concentrations of PG increased gene expression relative to osteogenesis and reduced the pro-inflammatory response of BM-MSCs after biofilm stimulation. Autoclaving reduced WPI/PG bioactivity compared to filtration. By using WPI/PG coatings, this study addresses the challenge of improving osteogenic potential while limiting biofilm-induced inflammation at the Ti6Al4V surface. These coatings represent a promising strategy to enhance implant bioactivity. Full article
(This article belongs to the Special Issue Smart and Bio-Medical Polymers: 2nd Edition)
Show Figures

Figure 1

17 pages, 991 KiB  
Article
Insights into the Formation of Ternary Complexes Among Wheat Starch, Lauric Acid and Protein: Effects of Plasma Pretreatment Times and Protein Types
by Bin Niu, Ziyu Wang and Yizhe Yan
Foods 2025, 14(11), 1922; https://doi.org/10.3390/foods14111922 - 28 May 2025
Viewed by 408
Abstract
Starch-lipid-protein ternary complexes have attracted more attention, and physical processing is gradually being applied to their preparation. This study was to understand the effect of atmospheric cold plasma (ACP) pretreatment times (1–4 min) and protein types (whey protein isolate (WPI), soy protein isolate [...] Read more.
Starch-lipid-protein ternary complexes have attracted more attention, and physical processing is gradually being applied to their preparation. This study was to understand the effect of atmospheric cold plasma (ACP) pretreatment times (1–4 min) and protein types (whey protein isolate (WPI), soy protein isolate (SPI), and egg white protein isolate (EWP)) on the wheat starch (WS)-lauric acid (LA)-protein ternary complexes. Experimental results indicated that one-minute ACP pretreatment of WS led to the increase in the amylose content to 30.02%, which produced the largest number of WS-LA-protein complexes (CI value of 69.21%, 67.41%, and 62.81% for WS-LA-WPI, WS-LA-SPI, and WS-LA-EWP complexes, respectively), resulting in the most ordered structure and higher enthalpy change. In vitro digestibility results based on starch showed that WS1-LA-protein complexes exhibited the lowest digestibility with the highest resistant starch content of 28.09%, 27.93%, and 27.41% for these three kinds of complexes, respectively. However, when the treatment time for WS was more than 1 min, a downward trend occurred, indicating that ACP pretreatment of WS for 1 min was the most beneficial for forming complexes. PCA results also verified that ACP pretreatment of WS for different times could significantly impact the generation and structure of ternary complexes. Moreover, protein types also affected the formation and physicochemical properties of ternary complexes. Notably, WPI, with the higher emulsifying property, formed a larger number (CI value of 69.21%), more ordered structure (Xv of 10.56%), and higher thermal stability of ternary complexes than SPI and EWP. This study presents a burgeoning technology to regulate the generation, structure, and functional properties of starch-lipid-protein complexes. Full article
Show Figures

Graphical abstract

18 pages, 1283 KiB  
Article
Chromochloris zofingiensis-Based Treatment of Whey Wastewater for Biorefinery Application: Biomass, Nutrient Removal, Astaxanthin and Lipid Production
by Houria El Bakraoui, Amina Malaki, Miloudia Slaoui and Céline Laroche
Appl. Sci. 2025, 15(11), 5832; https://doi.org/10.3390/app15115832 - 22 May 2025
Viewed by 625
Abstract
The dairy industry generates substantial quantities of wastewater, primarily whey wastewater, posing environmental challenges. Current treatment methods involve physical, chemical, and biological processes, but efficient solutions are still sought. Biological treatments using microalgae are gaining attention due to their potential to remove pollutants [...] Read more.
The dairy industry generates substantial quantities of wastewater, primarily whey wastewater, posing environmental challenges. Current treatment methods involve physical, chemical, and biological processes, but efficient solutions are still sought. Biological treatments using microalgae are gaining attention due to their potential to remove pollutants from wastewater and generate valuable products, making them an alternative way to improve environmental sustainability. The physicochemical characterization of whey effluents reveals a high organic content, an acidic pH, and elevated nutrient levels. This study investigates the potential of Chromochloris zofingiensis (formerly known as Chlorella zofingiensis) for treating whey wastewater using three concentrations, 10%, 20%, and 50%, over a 7-day culture period. The optimal concentration of whey wastewater for biomass, nutrient removal, astaxanthin, and lipid production was found to be 10%. At this concentration, C. zofingiensis achieved a biomass of 3.86 g L−1 and a removal efficiency of nutrients between 77.08% and 99.90%. Analysis of pigment production revealed decreases in chlorophyll and carotenoid production with increasing whey wastewater concentration, while lipid and astaxanthin production peaked at the 10% dilution. The chlorophyll a, chlorophyll b, total carotenoid, astaxanthin, and lipid contents were, respectively, 11.49 mg g−1, 4.56 mg g−1, 4.04 mg g−1, 0.71 mg g−1, and 30.49% in 10% whey wastewater. The fatty acid profiles indicated the predominance of saturated and unsaturated fatty acids, enhancing the biofuel potential of C. zofingiensis cultivated in whey wastewater. These findings demonstrate the dual benefit of using C. zofingiensis for sustainable whey wastewater treatment and high-value bioproduct generation, supporting the development of circular biorefinery systems. Full article
(This article belongs to the Special Issue Green Chemistry and Application of Biorefineries)
Show Figures

Figure 1

20 pages, 3688 KiB  
Article
Rutin–Whey Protein Nanoparticles Inhibit D-Galactose-Induced Skeletal Muscle Dysfunction by Modulating Gut Microbiota and Metabolic Pathways
by Yijing Ren, Lianyan Wang, Danyang Wang, Jian Huang, Ou Wang and Gangqiang Ding
Nutrients 2025, 17(10), 1734; https://doi.org/10.3390/nu17101734 - 20 May 2025
Viewed by 573
Abstract
Background: Rutin (R) is a bioactive compound with antioxidant and anti-inflammatory properties, but its low bioavailability limits its application. To address this problem, R was encapsulated with whey protein (W) as nanoparticles, and the potential effect and mechanism of rutin–whey protein nanoparticles [...] Read more.
Background: Rutin (R) is a bioactive compound with antioxidant and anti-inflammatory properties, but its low bioavailability limits its application. To address this problem, R was encapsulated with whey protein (W) as nanoparticles, and the potential effect and mechanism of rutin–whey protein nanoparticles (RW) on skeletal muscle dysfunction was investigated in D-galactose induced mice. Methods: R was encapsulated with W to form RW, and its characteristics like particle size, encapsulation efficiency, and bioaccessibility were evaluated. In the in vivo study, male C57BL/6J mice were treated with R, W or RW, respectively. The muscle function, hepatic antioxidant capacity, serum inflammatory levels, gut microbiota, and metabolomic profiles of mice were evaluated. Results: RW showed a uniform particle size, with an encapsulation efficiency of 68.7%. In the RW, the bioaccessibility of rutin was approximately 3.3 times that of free rutin. This in vivo study indicated that in comparison with D-galactose induced mice (model group), R, W and RW treatments could enhance hepatic antioxidative capacity and regulate inflammation levels, while W and RW could also increase muscle strength. Among these, RW treatment significantly elevated the hepatic GSH-PX activity and decreased the serum MSTN, TNF-α, and IL-6 levels, which were all markedly better than those of the individual effect of R or W. Such effects of R, W, and RW may be achieved through the modulation of gut microbiota that produced short-chain fatty acids or involved in anti-inflammatory function and the regulation of metabolic profiles associated with amino acid metabolism, aminoacyl-tRNA biosynthesis, etc. Conclusions: RW was found to enhance the bioaccessibility of rutin, and exhibited positive effects on skeletal muscle dysfunction via the modulation of gut microbiota and metabolic pathways. The results of this study may provide new scientific strategy for the utilization of rutin to achieve its health benefits. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

Back to TopTop