Optimization of the Treatment of Beer Lees for Their Use in Sustainable Biomass Production of Lactic Acid Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain Information
2.2. Lysis Treatments of Beer Lees
2.3. Disruption Efficiency Determination
2.4. Strain Growth
2.5. Determination of Total and Soluble Proteins and Total Amino Acids
2.6. Measurement of Reducing Sugars
2.7. Color Development by the Maillard Reaction
2.8. Reproducibility of Results and Statistical Analysis
3. Results and Discussion
3.1. Growth of UNQLpc10 and UNQLp11
3.2. Composition of YE from BL Treated with Different Lysis Treatments
YE Treatment | Methods | Autolyzed | Sonicated | % Change vs. Autolyzed BL | References |
---|---|---|---|---|---|
Nitrogen (%) | Kjeldahl | 5.32 ± 0.02 | 4.08 ± 0.02 | ↓ 23.31% | - |
Total proteins (%) | N × 6.25 | 33.28 ± 0.13 | 25.49 ± 0.27 | ↓ 23.41% | [31] |
Total proteins (%) | Lowry | 26 ± 1 | 14.24 ± 1 | ↓ 46% | [32] |
TCA-soluble peptides (%) | Lowry | 16 ± 1 | 7 ± 1 | ↓ 56% | [32] |
Total amino acids (mM) | IEC | 277 ± 5 | 189 ± 6 | ↓ 31.83% | [21] |
Sugars (%) | Fehling | 5.88 ± 0.12 | 10.51 ± 1.19 | ↑ 78.74% | [33] |
Disruption efficiency Time and temperature | - | 0.65 ± 0.020 48 h, 55 °C | 0.81 ± 0.02 2 h, 30 °C | ↓ 24.62% - | [16] - |
3.3. Maillard Reaction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LAB | Lactic acid bacteria |
BL | Beer lees |
YE | Yeast extract |
DE | Disruption efficiency |
WP | Whey permeate |
References
- Behera, S.S.; Ray, R.C.; Zdolec, N. Lactobacillus plantarum with Functional Properties: An Approach to Increase Safety and Shelf-Life of Fermented Foods. Biomed. Res. Int. 2018, 2018, 9361614. [Google Scholar] [CrossRef] [PubMed]
- Castellone, V.; Bancalari, E.; Rubert, J.; Gatti, M.; Neviani, E.; Bottari, B. Eating Fermented: Health Benefits of LAB-Fermented Foods. Foods 2021, 10, 2639. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Banat, F.; Taher, H. A Review on the Lactic Acid Fermentation from Low-Cost Renewable Materials: Recent Developments and Challenges. Environ. Technol. Innov. 2020, 20, 101138. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Durán, A.I.; Menduíña, A.; Nogueira, M.; Gomes, A.M.; Antunes, J.; Freitas, A.C.; Dagá, E.; Dagá, P.; Valcarcel, J. Bioconversion of Fish Discards through the Production of Lactic Acid Bacteria and Metabolites: Sustainable Application of Fish Peptones in Nutritive Fermentation Media. Foods 2020, 9, 1239. [Google Scholar] [CrossRef] [PubMed]
- Bustos, G.; Moldes, A.B.; Cruz, J.M.; Domínguez, J.M. Evaluation of Vinification Lees as a General Medium for Lactobacillus Strains. J. Agric. Food Chem. 2004, 52, 5233–5239. [Google Scholar] [CrossRef]
- Pejin, J.; Radosavljević, M.; Kocić-Tanackov, S.; Marković, R.; Djukić-Vuković, A.; Mojović, L. Use of Spent Brewer’s Yeast in L-(+) Lactic Acid Fermentation. J. Inst. Brew. 2019, 125, 357–363. [Google Scholar] [CrossRef]
- Varelas, V.; Tataridis, P.; Liouni, M.; Nerantzis, E.T. Valorization of Winery Spent Yeast Waste Biomass as a New Source for the Production of β-Glucan. Waste Biomass Valorization 2016, 7, 807–817. [Google Scholar] [CrossRef]
- Ciobanu, L.T.; Constantinescu-Aruxandei, D.; Tritean, N.; Lupu, C.; Negrilă, R.N.; Farcasanu, I.C.; Oancea, F. Valorization of Spent Brewer’s Yeast Bioactive Components via an Optimized Ultrasonication Process. Fermentation 2023, 9, 952. [Google Scholar] [CrossRef]
- De Iseppi, A.; Lomolino, G.; Marangon, M.; Curioni, A. Current and Future Strategies for Wine Yeast Lees Valorization. Food Res. Int. 2020, 137, 109352. [Google Scholar] [CrossRef]
- Kokkinomagoulos, E.; Kandylis, P. Sustainable Exploitation of Wine Lees as Yeast Extract Supplement for Application in Food Industry and Its Effect on the Growth and Fermentative Ability of Lactiplantibacillus Plantarum and Saccharomyces Cerevisiae. Sustainability 2024, 16, 8449. [Google Scholar] [CrossRef]
- Demirgül, F.; Şimşek, Ö.; Bozkurt, F.; Dertli, E.; Sağdıç, O. Production and Characterization of Yeast Extracts Produced by Saccharomyces cerevisiae, Saccharomyces boulardii and Kluyveromyces marxianus. Prep. Biochem. Biotechnol. 2022, 52, 657–667. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Bibbins, B.; Torrado-Agrasar, A.; Salgado, J.M.; Oliveira, R.P.d.S.; Domínguez, J.M. Potential of Lees from Wine, Beer and Cider Manufacturing as a Source of Economic Nutrients: An Overview. Waste Manag. 2015, 40, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Brizuela, N.S.; Bravo-Ferrada, B.M.; La Hens, D.V.; Hollmann, A.; Delfederico, L.; Caballero, A.; Tymczyszyn, E.E.; Semorile, L. Comparative Vinification Assays with Selected Patagonian Strains of Oenococcus oeni and Lactobacillus plantarum. LWT 2017, 77, 348–355. [Google Scholar] [CrossRef]
- Iglesias, N.G.; Brizuela, N.S.; Tymczyszyn, E.E.; Hollmann, A.; Valdés La Hens, D.; Semorile, L.; Bravo-Ferrada, B.M. Complete Genome Sequencing of Lactobacillus plantarum UNQLp 11 Isolated from a Patagonian Pinot Noir Wine. S. Afr. J. Enol. Vitic. 2020, 41, 197–209. [Google Scholar] [CrossRef]
- Iglesias, N.G.; Navarro, M.E.; Brizuela, N.S.; Valdés La Hens, D.; Semorile, L.C.; Tymczyszyn, E.E.; Bravo Ferrada, B.M. Analysis of the Genome Architecture of Lacticaseibacillus paracasei UNQLpc 10, a Strain with Oenological Potential as a Malolactic Starter. Fermentation 2022, 8, 726. [Google Scholar] [CrossRef]
- Avramia, I.; Amariei, S. A Simple and Efficient Mechanical Cell Disruption Method Using Glass Beads to Extract β-Glucans from Spent Brewer’s Yeast. Appl. Sci. 2022, 12, 648. [Google Scholar] [CrossRef]
- Cerdeira, V.; Bravo-Ferrada, B.M.; Semorile, L.; Tymczyszyn, E. Design of a Low-cost Culture Medium Based in Whey Permeate for Biomass Production of Enological Lactobacillus plantarum Strains. Biotechnol. Prog. 2019, 35, e2791. [Google Scholar] [CrossRef]
- De Man, J.C.; Rogosa, M.; Sharpe, M.E. A Medium for the Cultivation of Lactobacilli. J. Appl. Bacteriol. 1960, 23, 130–135. [Google Scholar] [CrossRef]
- Lončar, E.S.; Kanurić, K.G.; Malbaša, R.V.; Đurić, M.S.; Milanović, S.D. Kinetics of Saccharose Fermentation by Kombucha. Chem. Ind. Chem. Eng. Q. 2014, 20, 345–352. [Google Scholar] [CrossRef]
- Waterborg, J.H. Acetic Acid—Urea Polyacrylamide Gel Electrophoresis of Basic Proteins. In The Protein Protocols Handbook; Humana Press: Totowa, NJ, USA, 2009; pp. 239–249. [Google Scholar] [CrossRef]
- Pozo-Bayón, M.Á.; Alcaíde, J.M.; Polo, M.C.; Pueyo, E. Angiotensin I-Converting Enzyme Inhibitory Compounds in White and Red Wines. Food Chem. 2007, 100, 43–47. [Google Scholar] [CrossRef]
- Benedict, S.R. The Detection and Estimation of Reducing Sugars. J. Biol. Chem. 1907, 3, 101–117. [Google Scholar] [CrossRef]
- Goñi, S.M.; Salvadori, V.O. Color Measurement: Comparison of Colorimeter vs. Computer Vision System. J. Food Meas. Charact. 2017, 11, 538–547. [Google Scholar] [CrossRef]
- Skipnes, D.; Johnsen, S.O.; Skåra, T.; Sivertsvik, M.; Lekang, O. Optimization of Heat Processing of Farmed Atlantic Cod (Gadus Morhua) Muscle with Respect to Cook Loss, Water Holding Capacity, Color, and Texture. J. Aquat. Food Prod. Technol. 2011, 20, 331–340. [Google Scholar] [CrossRef]
- Alcine Chan, M.Z.; Chua, J.Y.; Toh, M.; Liu, S.Q. Survival of Probiotic Strain Lactobacillus paracasei L26 during Co-Fermentation with S. Cerevisiae for the Development of a Novel Beer Beverage. Food Microbiol. 2019, 82, 541–550. [Google Scholar] [CrossRef]
- Balmaseda, A.; Miot-Sertier, C.; Lytra, G.; Poulain, B.; Reguant, C.; Lucas, P.; Nioi, C. Application of White Wine Lees for Promoting Lactic Acid Bacteria Growth and Malolactic Fermentation in Wine. Int. J. Food Microbiol. 2024, 413, 110583. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A Taxonomic Note on the Genus Lactobacillus: Description of 23 Novel Genera, Emended Description of the Genus Lactobacillus Beijerinck 1901, and Union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Filannino, P.; Di Cagno, R.; Gobbetti, M. Metabolic and Functional Paths of Lactic Acid Bacteria in Plant Foods: Get out of the Labyrinth. Curr. Opin. Biotechnol. 2018, 49, 64–72. [Google Scholar] [CrossRef]
- Tao, Z.; Yuan, H.; Liu, M.; Liu, Q.; Zhang, S.; Liu, H.; Jiang, Y.; Huang, D.; Wang, T. Yeast Extract: Characteristics, Production, Applications and Future Perspectives. J. Microbiol. Biotechnol. 2022, 33, 151. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, A.; Arendt, E.K.; Zannini, E.; Sahin, A.W. Brewer’s Spent Yeast (BSY), an Underutilized Brewing By-Product. Fermentation 2020, 6, 123. [Google Scholar] [CrossRef]
- Ramírez Tapias, Y.A.; Rezzani, G.D.; Delgado, J.F.; Peltzer, M.A.; Salvay, A.G. New Materials from the Integral Milk Kefir Grain Biomass and the Purified Kefiran: The Role of Glycerol Content on the Film’s Properties. Polymers 2024, 16, 3106. [Google Scholar] [CrossRef]
- Lowry, O.; Resebrough, N.; Farr, A.; Randall, R. Protein Measurment with the Folin Phenol Reagent. J. Biol. Chem. 1951, 19, 52451–52456. [Google Scholar]
- Tiwari, D.; Deen, B. Preparation and Storage of Blended Ready-to-Serve Beverage from Bael and Aloe Vera. Bioscan 2015, 10, 113–116. [Google Scholar]
- Mukai, Y.; Kamei, Y.; Liu, X.; Jiang, S.; Sugimoto, Y.; Nanyan, N.S.B.M.; Watanabe, D.; Takagi, H. Proline Metabolism Regulates Replicative Lifespan in the Yeast Saccharomyces cerevisiae. Microb. Cell 2019, 6, 482. [Google Scholar] [CrossRef]
- Davies, M.G.; Thomas, A.J. An Investigation of Hydrolytic Techniques for the Amino Acid Analysis of Foodstuffs. J. Sci. Food Agric. 1973, 24, 1525–1540. [Google Scholar] [CrossRef]
- Mu, K.; Wang, S.; Kitts, D.D. Evidence to Indicate That Maillard Reaction Products Can Provide Selective Antimicrobial Activity. Integr. Food, Nutr. Metab. 2016, 3, 330–335. [Google Scholar] [CrossRef]
- Alexandre, H.; Costello, P.J.; Remize, F.; Guzzo, J.; Guilloux-Benatier, M. Saccharomyces Cerevisiae-Oenococcus Oeni Interactions in Wine: Current Knowledge and Perspectives. Int. J. Food Microbiol. 2004, 93, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Takalloo, Z.; Nemati, R.; Kazemi, M.; Ghafari, H.; Sajedi, R.H. Acceleration of Yeast Autolysis by Addition of Fatty Acids, Ethanol and Alkaline Protease. Iran. J. Biotechnol. 2022, 20, e3036. [Google Scholar] [CrossRef]
- Cola, P.; Procópio, D.P.; Alves, A.T.d.C.; Carnevalli, L.R.; Sampaio, I.V.; da Costa, B.L.V.; Basso, T.O. Differential Effects of Major Inhibitory Compounds from Sugarcane-Based Lignocellulosic Hydrolysates on the Physiology of Yeast Strains and Lactic Acid Bacteria. Biotechnol. Lett. 2020, 42, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Dimitriu, L.; Constantinescu-Aruxandei, D.; Preda, D.; Nichițean, A.L.; Nicolae, C.A.; Faraon, V.A.; Ghiurea, M.; Ganciarov, M.; Băbeanu, N.E.; Oancea, F. Honey and Its Biomimetic Deep Eutectic Solvent Modulate the Antioxidant Activity of Polyphenols. Antioxidants 2022, 11, 2194. [Google Scholar] [CrossRef]
- Zhang, R.; Grimi, N.; Marchal, L.; Lebovka, N.; Vorobiev, E. Effect of Ultrasonication, High Pressure Homogenization and Their Combination on Efficiency of Extraction of Bio-Molecules from Microalgae Parachlorella kessleri. Algal Res. 2019, 40, 101524. [Google Scholar] [CrossRef]
- Dissaraphong, S.; Benjakul, S.; Visessanguan, W.; Kishimura, H. The Influence of Storage Conditions of Tuna Viscera before Fermentation on the Chemical, Physical and Microbiological Changes in Fish Sauce during Fermentation. Bioresour. Technol. 2006, 97, 2032–2040. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; He, C.; Woo, M.W.; Xiong, H.; Hu, J.; Zhao, Q. Formation of Fibrils Derived from Whey Protein Isolate: Structural Characteristics and Protease Resistance. Food Funct. 2019, 10, 8106–8115. [Google Scholar] [CrossRef] [PubMed]
- Ye, B.; Chen, J.; Ye, H.; Zhang, Y.; Yang, Q.; Yu, H.; Fu, L.; Wang, Y. Development of a Time–Temperature Indicator Based on Maillard Reaction for Visually Monitoring the Freshness of Mackerel. Food Chem. 2022, 373, 131448. [Google Scholar] [CrossRef] [PubMed]
- Morales, F.J.; Jiménez-Pérez, S. Free Radical Scavenging Capacity of Maillard Reaction Products as Related to Colour and Fluorescence. Food Chem. 2001, 72, 119–125. [Google Scholar] [CrossRef]
Medium Composition | Control | Commercial YE | Sonicated BL | Autolyzed BL | BL Supernatant | Pure BL |
---|---|---|---|---|---|---|
WP (%w/v) | 5 | 5 | 5 | 5 | 5 | 5 |
NH4Citrate (g/L) | 2 | 2 | 2 | 2 | 2 | 2 |
K2HPO4 (g/L) | 2 | 2 | 2 | 2 | 2 | 2 |
Tween 80 (mL/L) | 1 | 1 | 1 | 1 | 1 | 1 |
MgSO4 (g/L) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
MnSO4 (g/L) | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
YE (%w/v) | - | 1 | 1 | 1 | 1 | 1 |
Parameter | MRS | Commercial YE | Sonicated BL | Autolyzed BL | Supernatant BL |
---|---|---|---|---|---|
Lacticaseibacillus paracasei UNQLpc10 | |||||
Maximum OD | 1.96 ± 0.03 a | 1.71 ± 0.06 b | 1.45 ± 0.04 c | 0.96 ± 0.08 d | 0.82 ± 0.03 d |
Slope (h−1) | 1.46 ± 0.14 a | 3.06 ± 0.50 b,c | 2.27 ± 0.31 a,b | 3.28 ± 1.04 b,c | 4.26 ± 0.57 c |
V50 (h) | 9.96 ± 0.17 a | 10.44 ± 0.50 a,b | 10.34 ± 0.35 a,b | 12.35 ± 0.92 c | 11.51 ± 0.46 c,b |
R2 | 0.996 | 0.988 | 0.991 | 0.960 | 0.994 |
Viability at 48 h (CFU/mL) | 10.08 ± 0.12 a | 10.10 ± 0.23 a | 10.15 ± 0.21 a | 9.32 ± 0.14 b | 8.76 ± 0.09 c |
Lactiplantibacillus plantarum UNQLp11 | |||||
Maximum OD | 1.97 ± 0.03 a | 1.67 ± 0.13 b | 1.45 ± 0.03 c | 0.99 ± 0.08 d | 1.07 ± 0.04 d |
Slope (h−1) | 1.23 ± 0.15 a | 2.47 ± 0.09 b,c | 2.25 ± 0.21 a,b | 3.90 ± 0.92 d | 3.49 ± 0.34 c,d |
V50 (h) | 10.71 ± 0.18 a | 11.68 ± 0.09 a | 11.46 ± 0.21 a | 13.33 ± 0.78 b | 14.43 ± 0.33 c |
R2 | 0.993 | 0.999 | 0.996 | 0.981 | 0.996 |
Viability at 48 h (Log CFU/mL) | 9.70 ± 0.25 a | 10.03 ± 0.12 a | 10.00 ± 0.17 a | 9.14 ± 0.16 b | 9.04 ± 0.13 b |
Color Parameter | Commercial YE | Autolyzed YE | Sonicated YE |
---|---|---|---|
L* | 80.1 ± 0.7 a | 69.1 ± 3.8 c | 76.7 ± 2.6 b |
a* | −2.37 ± 0.03 a | 6.67 ± 1.0 c | 1.59 ± 0.8 b |
b* | 30.42 ± 0.13 a | 29.94 ± 1.00 a | 28.18 ± 0.81 a |
W | 63.51 ± 0.28 a | 56.45 ± 0.21 b | 63.39 ± 0.90 a |
ΔE | - | 14.38 ± 0.37 a | 5.65 ± 0.41 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brizuela, N.S.; Navarro, M.E.; Rivas, G.; Gómez, G.; Pérez, C.; Semorile, L.; Tymczyszyn, E.E.; Bravo-Ferrada, B. Optimization of the Treatment of Beer Lees for Their Use in Sustainable Biomass Production of Lactic Acid Bacteria. Appl. Microbiol. 2025, 5, 51. https://doi.org/10.3390/applmicrobiol5020051
Brizuela NS, Navarro ME, Rivas G, Gómez G, Pérez C, Semorile L, Tymczyszyn EE, Bravo-Ferrada B. Optimization of the Treatment of Beer Lees for Their Use in Sustainable Biomass Production of Lactic Acid Bacteria. Applied Microbiology. 2025; 5(2):51. https://doi.org/10.3390/applmicrobiol5020051
Chicago/Turabian StyleBrizuela, Natalia S., Marina E. Navarro, Gabriel Rivas, Gabriel Gómez, Carolina Pérez, Liliana Semorile, Emma E. Tymczyszyn, and Bárbara Bravo-Ferrada. 2025. "Optimization of the Treatment of Beer Lees for Their Use in Sustainable Biomass Production of Lactic Acid Bacteria" Applied Microbiology 5, no. 2: 51. https://doi.org/10.3390/applmicrobiol5020051
APA StyleBrizuela, N. S., Navarro, M. E., Rivas, G., Gómez, G., Pérez, C., Semorile, L., Tymczyszyn, E. E., & Bravo-Ferrada, B. (2025). Optimization of the Treatment of Beer Lees for Their Use in Sustainable Biomass Production of Lactic Acid Bacteria. Applied Microbiology, 5(2), 51. https://doi.org/10.3390/applmicrobiol5020051