Multilayer Double Emulsion Encapsulation of Limosilactobacillus reuteri Using Pectin-Protein Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Limosilactobacillus reuteri Inoculum
2.3. Preparation of Multilayer Double Emulsion
2.3.1. Preparation of Double Emulsion Containing Limosilactobacillus reuteri
2.3.2. Formation of Multilayer Double Emulsions
2.4. Characterization of Emulsions
2.4.1. Microstructure and Droplet Size
2.4.2. Zeta Potential
2.4.3. Viability of Microencapsulated Limosilactobacillus reuteri and Encapsulation Efficiency
2.5. Stability of Multilayer Double Emulsions During Storage
2.6. Thermal Tolerance of Microencapsulated Limosilactobacillus reuteri
2.7. Simulated In Vitro Digestion
2.8. Stability of Microencapsulated Limosilactobacillus reuteri Under Combined High Temperature and Gastrointestinal Conditions
2.9. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Multilayer Double Emulsions
3.1.1. Microstructure, Droplet Size Distribution, and Zeta Potential
3.1.2. Viability of Microencapsulated Limosilactobacillus reuteri and Encapsulation Efficiency
3.2. Storage Stability of Microencapsulated Limosilactobacillus reuteri
3.3. Thermal Tolerance of Free and Microencapsulated Limosilactobacillus reuteri
3.4. In Vitro Digestion of Microencapsulated Limosilactobacillus reuteri
3.5. Stability of Microencapsulated Limosilactobacillus reuteri During Combined High Temperature and Gastrointestinal Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Lr | Limosilactobacillus reuteri |
WPI | Whey protein isolate |
Cas | Sodium caseinate |
FOS | Fructooligosaccharide |
GP | Gastric phase |
IP | Intestinal phase |
References
- Frakolaki, G.; Giannou, V.; Kekos, D.; Tzia, C.; Frakolaki, G.; Giannou, V.; Kekos, D. A Review of the Microencapsulation Techniques for the Incorporation of Probiotic Bacteria in Functional Foods. Crit. Rev. Food Sci. Nutr. 2021, 61, 1515–1536. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Mohamadzadeh, M.; Fazeli, A.; Shojaosadati, S.A. Polysaccharides and Proteins-Based Bionanocomposites for Microencapsulation of Probiotics to Improve Stability and Viability in the Gastrointestinal Tract: A Review. Int. J. Biol. Macromol. 2024, 259, 129287. [Google Scholar] [CrossRef] [PubMed]
- Abuqwider, J.; Altamimi, M.; Mauriello, G. Limosilactobacillus reuteri in Health and Disease. Microorganisms 2022, 10, 522. [Google Scholar] [CrossRef]
- Di Porzio, A.; Barrella, V.; Gatto, C.; Cigliano, L.; Spagnuolo, M.S.; Crescenzo, R.; Romano, I.; Mauriello, G.; Iossa, S.; Mazzoli, A. Protective Effect of Probiotic Limosilactobacillus reuteri DSM17938 against Western Diet-Induced Obesity and Associated Metabolic Alterations. J. Funct. Foods 2023, 109, 105805. [Google Scholar] [CrossRef]
- Yao, M.; Xie, J.; Du, H.; McClements, D.J.; Xiao, H.; Li, L. Progress in Microencapsulation of Probiotics: A Review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 857–874. [Google Scholar] [CrossRef]
- Marefati, A.; Pitsiladis, A.; Oscarsson, E.; Ilestam, N.; Bergenståhl, B. Encapsulation of Lactobacillus Reuteri in W1/O/W2 Double Emulsions: Formulation, Storage and In Vitro Gastro-Intestinal Digestion Stability. LWT—Food Sci. Technol. 2021, 146, 111423. [Google Scholar] [CrossRef]
- Wang, J.; Chen, L. Impact of a Novel Nano-Protectant on the Viability of Probiotic Bacterium Lactobacillus casei K17. Foods 2021, 10, 529. [Google Scholar] [CrossRef]
- Frakolaki, G.; Katsouli, M.; Giannou, V.; Tzia, C. Novel Encapsulation Approach for Bifidobacterium Subsp. Lactis (BB-12) Viability Enhancement through Its Incorporation into a Double Emulsion Prior to the Extrusion Process. LWT—Food Sci. Technol. 2020, 130, 109671. [Google Scholar] [CrossRef]
- Peruzzolo, M.; Ceni, G.C.; Junges, A.; Zeni, J.; Cansian, R.L.; Backes, G.T. Probiotics: Health Benefits, Microencapsulation, and Viability, Combination with Natural Compounds, and Applications in Foods. Food Biosci. 2025, 66, 106253. [Google Scholar] [CrossRef]
- Devanthi, P.V.P.; El Kadri, H.; Bowden, A.; Spyropoulos, F.; Gkatzionis, K. Segregation of Tetragenococcus halophilus and Zygosaccharomyces rouxii Using W1/O/W2 double Emulsion for Use in Mixed Culture Fermentation. Food Res. Int. 2018, 105, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Beldarrain-Iznaga, T.; Villalobos-Carvajal, R.; Leiva-Vega, J.; Sevillano, E. Influence of Multilayer Microencapsulation on the Viability of Lactobacillus casei Using a Combined Double Emulsion and Ionic Gelation Approach. Food Bioprod. Process. 2020, 124, 57–71. [Google Scholar] [CrossRef]
- Wang, L.; Song, M.; Zhao, Z.; Chen, X.; Cai, J.; Cao, Y.; Xiao, J. Lactobacillus acidophilus Loaded Pickering Double Emulsion with Enhanced Viability and Colon-Adhesion Efficiency. LWT—Food Sci. Technol. 2020, 121, 108928. [Google Scholar] [CrossRef]
- Muschiolik, G.; Dickinson, E. Double Emulsions Relevant to Food Systems: Preparation, Stability, and Applications. Compr. Rev. Food Sci. Food Saf. 2017, 16, 532–555. [Google Scholar] [CrossRef]
- Prichapan, N.; McClements, D.J.; Klinkesorn, U. Encapsulation of Iron within W1/O/W2 Emulsions Formulated Using a Natural Hydrophilic Surfactant (Saponin): Impact of Surfactant Level and Oil Phase Crystallization. Food Biophys. 2020, 15, 346–354. [Google Scholar] [CrossRef]
- Pimentel-Moral, S.; Ochando-Pulido, J.M.; Segura-Carretero, A.; Martinez-Ferez, A. Stabilization of W/O/W Multiple Emulsion Loaded with Hibiscus sabdariffa Extract through Protein-Polysaccharide Complexes. LWT—Food Sci. Technol. 2018, 90, 389–395. [Google Scholar] [CrossRef]
- Prichapan, N.; McClements, D.J.; Klinkesorn, U. Utilization of Multilayer-Technology to Enhance Encapsulation Efficiency and Osmotic Gradient Tolerance of Iron-Loaded W1/O/W2 Emulsions: Saponin-Chitosan Coatings. Food Hydrocoll. 2021, 112, 106334. [Google Scholar] [CrossRef]
- Ozturk, B.; McClements, D.J. Progress in Natural Emulsifiers for Utilization in Food Emulsions. Curr. Opin. Food Sci. 2016, 7, 1–6. [Google Scholar] [CrossRef]
- Dickinson, E. Interfacial Structure and Stability of Food Emulsions as Affected by Protein-Polysaccharide Interactions. Soft Matter 2008, 4, 932–942. [Google Scholar] [CrossRef]
- Zhou, L.; Huang, Y.; Wang, D.; Yuan, T.; Song, G.; Gong, J.; Xiao, G.; Kim, S.-A.; Li, L. Microencapsulation of Lactobacillus sakei and Lactobacillus rhamnosus in Whey Protein Isolate and Sodium Hyaluronate for Potential Food-Grade Probiotic Delivery System. Food Biosci. 2024, 61, 104784. [Google Scholar] [CrossRef]
- Zhang, M.; Fan, L.; Liu, Y.; Huang, S.; Li, J. Effects of Proteins on Emulsion Stability: The Role of Proteins at the Oil–Water Interface. Food Chem. 2022, 397, 133726. [Google Scholar] [CrossRef] [PubMed]
- van der Ark, K.C.H.; Nugroho, A.D.W.; Berton-Carabin, C.; Wang, C.; Belzer, C.; de Vos, W.M.; Schroen, K. Encapsulation of the Therapeutic Microbe Akkermansia muciniphila in a Double Emulsion Enhances Survival in Simulated Gastric Conditions. Food Res. Int. 2017, 102, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lin, J.; Zhong, Q. The Increased Viability of Probiotic Lactobacillus salivarius NRRL B-30514 Encapsulated in Emulsions with Multiple Lipid-Protein-Pectin Layers. Food Res. Int. 2015, 71, 9–15. [Google Scholar] [CrossRef]
- Corstens, M.N.; Berton-Carabin, C.C.; de Vries, R.; Troost, F.J.; Masclee, A.A.M.; Schroën, K. Food-Grade Micro-Encapsulation Systems That May Induce Satiety via Delayed Lipolysis: A Review. Crit. Rev. Food Sci. Nutr. 2017, 57, 2218–2244. [Google Scholar] [CrossRef]
- McClements, D.J. Food Emulsions, 3rd ed.; McClements, D.J., Ed.; CRC Press: Boca Raton, FL, USA, 2015; ISBN 978-1-4987-2668-9. [Google Scholar]
- Esfanjani, A.F.; Jafari, S.M.; Assadpour, E. Preparation of a Multiple Emulsion Based on Pectin-Whey Protein Complex for Encapsulation of Saffron Extract Nanodroplets. Food Chem. 2017, 221, 1962–1969. [Google Scholar] [CrossRef]
- Esfanjani, A.F.; Jafari, S.M.; Assadpoor, E.; Mohammadi, A. Nano-Encapsulation of Saffron Extract through Double-Layered Multiple Emulsions of Pectin and Whey Protein Concentrate. J. Food Eng. 2015, 165, 149–155. [Google Scholar] [CrossRef]
- Devi, N.; Sarmah, M.; Khatun, B.; Maji, T.K. Encapsulation of Active Ingredients in Polysaccharide–Protein Complex Coacervates. Adv. Colloid. Interface Sci. 2016, 239, 136–145. [Google Scholar] [CrossRef]
- Palumbo, F.S.; Federico, S.; Pitarresi, G.; Fiorica, C.; Giammona, G. Gellan Gum-Based Delivery Systems of Therapeutic Agents and Cells. Carbohydr. Polym. 2020, 229, 115430. [Google Scholar] [CrossRef]
- Paula, D.d.A.; Martins, E.M.F.; Costa, N.d.A.; de Oliveira, P.M.; de Oliveira, E.B.; Ramos, A.M. Use of Gelatin and Gum Arabic for Microencapsulation of Probiotic Cells from Lactobacillus plantarum by a Dual Process Combining Double Emulsification Followed by Complex Coacervation. Int. J. Biol. Macromol. 2019, 133, 722–731. [Google Scholar] [CrossRef]
- Beldarrain-Iznaga, T.; Villalobos-Carvajal, R.; Sevillano Armesto, E.; Leiva-Vega, J. Functional Properties of Lactobacillus casei C24 Improved by Microencapsulation Using Multilayer Double Emulsion. Food Res. Int. 2021, 141, 110136. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xia, S.; Zhang, Y.; Zhu, S.; Li, H.; Liu, X. Identification of Soybean Peptides and Their Effect on the Growth and Metabolism of Limosilactobacillus reuteri LR08. Food Chem. 2022, 369, 130923. [Google Scholar] [CrossRef] [PubMed]
- Eshrati, M.; Amadei, F.; Van De Wiele, T.; Veschgini, M.; Kaufmann, S.; Tanaka, M. Biopolymer-Based Minimal Formulations Boost Viability and Metabolic Functionality of Probiotics Lactobacillus rhamnosus GG through Gastrointestinal Passage. Langmuir 2018, 34, 11167–11175. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, Y.; Qiu, B.; Liu, Z.; Gao, X.; Zhang, N.; Liu, X.; Qi, S.; Li, L.; Liu, W. Encapsulation of Lactobacillus plantarum in W1/O/W2 Double Emulsions Stabilized with the High-Intensity Ultrasound-Treated Pea Protein and Pectin. Ultrason. Sonochem 2024, 107, 106936. [Google Scholar] [CrossRef]
- de Matos, F.E., Jr.; daSilva, M.P.; Kasemodel, M.G.C.; Santos, T.T.; Burns, P.; Reinheimer, J.; Vinderola, G.; Favaro-Trindade, C.S. Evaluation of the Viability and the Preservation of the Functionality of Microencapsulated Lactobacillus paracasei BGP1 and Lactobacillus rhamnosus 64 in Lipid Particles Coated by Polymer Electrostatic Interaction. J. Funct. Foods 2019, 54, 98–108. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST Static In Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Zhang, Z.; Gu, M.; You, X.; Sela, D.A.; Xiao, H.; McClements, D.J. Encapsulation of Bifidobacterium in Alginate Microgels Improves Viability and Targeted Gut Release. Food Hydrocoll. 2021, 116, 106634. [Google Scholar] [CrossRef]
- Yin, M.; Chen, L.; Chen, M.; Yuan, Y.; Liu, F.; Zhong, F. Encapsulation of Lactobacillus rhamnosus GG in Double Emulsions: Role of Prebiotics in Improving Probiotics Survival during Spray Drying and Storage. Food Hydrocoll. 2024, 151, 109792. [Google Scholar] [CrossRef]
- Jiang, Z.; Tian, J.; Bai, X.; McClements, D.J.; Ma, C.; Liu, X.; Liu, F. Improving Probiotic Survival Using Water-in-Oil-in-Water (W1/O/W2) Emulsions: Role of Fish Oil in Inner Phase and Sodium Alginate in Outer Phase. Food Chem. 2023, 417, 135889. [Google Scholar] [CrossRef]
- Morgan, P.E.; Treweek, T.M.; Lindner, R.A.; Price, W.E.; Carver, J.A. Casein Proteins as Molecular Chaperones. J. Agric. Food Chem. 2005, 53, 2670–2683. [Google Scholar] [CrossRef]
- McClements, D.J.; Bai, L.; Chung, C. Recent Advances in the Utilization of Natural Emulsifiers to Form and Stabilize Emulsions. Annu. Rev. Food Sci. Technol. 2017, 8, 205–236. [Google Scholar] [CrossRef]
- Song, H.; Yu, W.; Gao, M.; Liu, X.; Ma, X. Microencapsulated Probiotics Using Emulsification Technique Coupled with Internal or External Gelation Process. Carbohydr. Polym. 2013, 96, 181–189. [Google Scholar] [CrossRef]
- Liang, W.; Deng, F.; Wang, Y.; Yue, W.; Hu, D.; Rong, J.; Liu, R.; Xiong, S.; Hu, Y. Interfacial Behavior and Micro-Rheological Performance of Pickering Emulsions Co-Stabilized by β-Cyclodextrin and Xanthan Gum. Food Hydrocoll. 2024, 149, 109611. [Google Scholar] [CrossRef]
- Raddatz, G.C.; Poletto, G.; de Deus, C.; Codevilla, C.F.; Cichoski, A.J.; Jacob-Lopes, E.; Muller, E.I.; Flores, E.M.M.; Esmerino, E.A.; de Menezes, C.R. Use of Prebiotic Sources to Increase Probiotic Viability in Pectin Microparticles Obtained by Emulsification/Internal Gelation Followed by Freeze-Drying. Food Res. Int. 2020, 130, 108902. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J. Protein-Stabilized Emulsions. Curr. Opin. Colloid. Interface Sci. 2004, 9, 305–313. [Google Scholar] [CrossRef]
- Shen, J.; Chen, Y.; Li, X.; Zhou, X.; Ding, Y. Enhanced Probiotic Viability in Innovative Double-Network Emulsion Gels: Synergistic Effects of the Whey Protein Concentrate-Xanthan Gum Complex and κ-Carrageenan. Int. J. Biol. Macromol. 2024, 270, 131758. [Google Scholar] [CrossRef]
- Tarifa, M.C.; Piqueras, C.M.; Genovese, D.B.; Brugnoni, L.I. Microencapsulation of Lactobacillus casei and Lactobacillus rhamnosus in Pectin and Pectin-Inulin Microgel Particles: Effect on Bacterial Survival under Storage Conditions. Int. J. Biol. Macromol. 2021, 179, 457–465. [Google Scholar] [CrossRef]
- Mandal, S.; Puniya, A.K.; Singh, K. Effect of Alginate Concentrations on Survival of Microencapsulated Lactobacillus casei NCDC-298. Int. Dairy. J. 2006, 16, 1190–1195. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.D.; Boom, R.M.; Schutyser, M.A.I. Survival of Encapsulated Lactobacillus plantarum during Isothermal Heating and Bread Baking. LWT—Food Sci. Technol. 2018, 93, 396–404. [Google Scholar] [CrossRef]
- Ezekiel, O.O.; Okehie, I.D.; Adedeji, O.E. Viability of Lactobacillus rhamnosus GG in Simulated Gastrointestinal Conditions and After Baking White Pan Bread at Different Temperature and Time Regimes. Curr. Microbiol. 2020, 77, 3869–3877. [Google Scholar] [CrossRef]
- Parker, E.A.; Roy, T.; D’Adamo, C.R.; Wieland, L.S. Probiotics and Gastrointestinal Conditions: An Overview of Evidence from the Cochrane Collaboration. Nutrition 2018, 45, 125–134.e11. [Google Scholar] [CrossRef]
- Li, K.; Wang, B.; Wang, W.; Liu, G.; Ge, W.; Zhang, M.; Yue, B.; Kong, M. Microencapsulation of Lactobacillus casei BNCC 134415 under Lyophilization Enhances Cell Viability during Cold Storage and Pasteurization, and in Simulated Gastrointestinal Fluids. LWT—Food Sci. Technol. 2019, 116, 108521. [Google Scholar] [CrossRef]
- Jiménez-Pranteda, M.L.; Poncelet, D.; Náder-Macías, M.E.; Arcos, A.; Aguilera, M.; Monteoliva-Sánchez, M.; Ramos-Cormenzana, A. Stability of Lactobacilli Encapsulated in Various Microbial Polymers. J. Biosci. Bioeng. 2012, 113, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Livney, Y.D. Milk Proteins as Vehicles for Bioactives. Curr. Opin. Colloid. Interface Sci. 2010, 15, 73–83. [Google Scholar] [CrossRef]
- Qi, F.; Zhu, J.; Li, M.; Ren, J.; Hu, Y.; Sun, Q. Preparation of W/O/W Lactiplantibacillus plantarum L3 Microcapsules Using Modified Low Methoxy Pectin as Wall Materials and Their Application in Simulated Yoghurt Fermentation Systems. Int. J. Dairy Technol. 2024, 77, 114–131. [Google Scholar] [CrossRef]
- Rather, S.A.; Akhter, R.; Masoodi, F.A.; Gani, A.; Wani, S.M. Effect of Double Alginate Microencapsulation on In Vitro Digestibility and Thermal Tolerance of Lactobacillus plantarum NCDC201 and L. Casei NCDC297. LWT—Food Sci. Technol. 2017, 83, 50–58. [Google Scholar] [CrossRef]
- Zeeb, B.; Weiss, J.; McClements, D.J. Electrostatic Modulation and Enzymatic Cross-Linking of Interfacial Layers Impacts Gastrointestinal Fate of Multilayer Emulsions. Food Chem. 2015, 180, 257–264. [Google Scholar] [CrossRef]
Emulsion | Code |
---|---|
Simple emulsion (Limosilactobacillus reuteri/canola oil) | Lr/O |
Double emulsion (L. reuteri/canola oil/sodium caseinate) | Lr/O/Cas |
Double emulsion coated with pectin (L. reuteri/canola oil/sodium caseinate—pectin) | Lr/O/Cas-Pec |
Double emulsion coated with cross-linked pectin (L. reuteri/canola oil/sodium caseinate—cross-linked pectin) | Lr/O/Cas-PecCa+2 |
Double emulsion (L. reuteri/canola oil/whey protein isolate) | Lr/O/WPI |
Double emulsion coated with pectin (L. reuteri/canola oil/whey protein isolate—pectin) | Lr/O/WPI-Pec |
Double emulsion coated with cross-linked pectin (L. reuteri/canola oil/whey protein isolate—cross-linked pectin) | Lr/O/WPI-PecCa+2 |
Code | d43 (µm) | Span | ζ-Potential (mV) |
---|---|---|---|
Lr/O | 13.5 ± 2.9 a | 0.88 ± 0.03 d | −24.1 ± 2.0 c |
Lr/O/Cas | 38.9 ± 4.8 c | 0.69 ± 0.03 c | 23.0 ± 4.6 d |
Lr/O/Cas-Pec | 39.6 ± 4.7 c | 0.62 ± 0.02 b | −34.5 ± 2.2 a |
Lr/O/Cas-PecCa+2 | 38.0 ± 3.5 c | 0.55 ± 0.04 a | −31.3 ± 0.9 b |
Lr/O/WPI | 34.1 ± 2.2 b | 0.61 ± 0.03 b | 27.8 ± 1.6 d |
Lr/O/WPI-Pec | 35.1 ± 2.2 b | 0.58 ± 0.02 ab | −35.7 ± 1.5 a |
Lr/O/WPI-PecCa+2 | 34.1 ± 2.5 b | 0.55 ± 0.02 a | −31.7 ± 0.7 b |
Types of Emulsions | Viable Cell Count of L. reuteri (Log UFC/mL) |
---|---|
Lr | 9.5 ± 0.5 c |
Lr/O | 8.4 ± 0.6 b |
Lr/O/Cas | 7.7 ± 0.4 a |
Lr/O/Cas-Pec | 7.7 ± 0.1 a |
Lr/O/Cas-PecCa+2 | 7.6 ± 0.1 a |
Lr/O | 8.4 ± 0.6 b |
Lr/O/WPI | 7.8 ± 0.1 a |
Lr/O/WPI-Pec | 7.7 ± 0.2 a |
Lr/O/WPI-PecCa+2 | 7.5 ± 0.7 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, K.; Catalán, D.; Beldarraín-Iznaga, T.; Reyes-Parra, J.E.; Tortoló Cabañas, K.; Valdés Veliz, M.; Villalobos-Carvajal, R. Multilayer Double Emulsion Encapsulation of Limosilactobacillus reuteri Using Pectin-Protein Systems. Foods 2025, 14, 2455. https://doi.org/10.3390/foods14142455
Rodríguez K, Catalán D, Beldarraín-Iznaga T, Reyes-Parra JE, Tortoló Cabañas K, Valdés Veliz M, Villalobos-Carvajal R. Multilayer Double Emulsion Encapsulation of Limosilactobacillus reuteri Using Pectin-Protein Systems. Foods. 2025; 14(14):2455. https://doi.org/10.3390/foods14142455
Chicago/Turabian StyleRodríguez, Kattya, Diego Catalán, Tatiana Beldarraín-Iznaga, Juan Esteban Reyes-Parra, Keyla Tortoló Cabañas, Marbelis Valdés Veliz, and Ricardo Villalobos-Carvajal. 2025. "Multilayer Double Emulsion Encapsulation of Limosilactobacillus reuteri Using Pectin-Protein Systems" Foods 14, no. 14: 2455. https://doi.org/10.3390/foods14142455
APA StyleRodríguez, K., Catalán, D., Beldarraín-Iznaga, T., Reyes-Parra, J. E., Tortoló Cabañas, K., Valdés Veliz, M., & Villalobos-Carvajal, R. (2025). Multilayer Double Emulsion Encapsulation of Limosilactobacillus reuteri Using Pectin-Protein Systems. Foods, 14(14), 2455. https://doi.org/10.3390/foods14142455