Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (108)

Search Parameters:
Keywords = wet gluten

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4431 KB  
Article
Drip Irrigation Coupled with Wide-Row Precision Seeding Enhances Winter Wheat Yield and Water Use Efficiency by Optimizing Canopy Structure and Photosynthetic Performance
by Shengfeng Wang, Enlai Zhan, Zijun Long, Guowei Liang, Minjie Gao and Guangshuai Wang
Agronomy 2026, 16(2), 256; https://doi.org/10.3390/agronomy16020256 - 21 Jan 2026
Abstract
To address the bottlenecks of low water and fertilizer utilization efficiency and limited yield potential inherent in Henan Province’s traditional winter wheat cultivation model of “furrow irrigation + conventional row seeding”, this study delved into the synergistic regulatory mechanisms of drip irrigation combined [...] Read more.
To address the bottlenecks of low water and fertilizer utilization efficiency and limited yield potential inherent in Henan Province’s traditional winter wheat cultivation model of “furrow irrigation + conventional row seeding”, this study delved into the synergistic regulatory mechanisms of drip irrigation combined with wide-row precision seeding. It focused on their effects on the physiological ecology and yield-quality traits of winter wheat. A two-factor experiment, encompassing “sowing method × irrigation method” will be carried out during the 2024–2025 wheat growing season, featuring four treatments: furrow irrigation + conventional row seeding (QT), drip irrigation + conventional row seeding (DT), furrow irrigation + wide-row precision seeding (QK), and drip irrigation + wide-row precision seeding (DK). Results reveal that wide-row precision seeding optimized the canopy structure, raising the leaf area index (LAI) at the heading stage by 20.19% compared to QT, thereby enhancing ventilation and light penetration and reducing plant competition. Drip irrigation, with its precise water delivery, boosted the net photosynthetic rate of the flag leaf 35 days after flowering by 62.99% relative to QT, stabilizing root water uptake and significantly delaying leaf senescence. The combined effect of the two treatments (DK treatment) synergistically improved the canopy structure and photosynthetic performance of winter wheat, prolonging the functional period of green leaves by 29.41%. It established a highly efficient photosynthetic cycle, marked by “high stomatal conductance-low intercellular CO2 concentration-high net photosynthetic rate”. The peak net photosynthetic rate (Pn) 13 days post-flowering rose by 23.9% compared to QT. Moreover, while reducing total water consumption by 21.4%, it substantially increased water use efficiency (WUE) and irrigation water use efficiency (IWUE) by 43.2% and 14.2%, respectively, compared to the QT control. Ultimately, the DK treatment achieved a synergistic enhancement in both yield and quality: grain yield increased by 14.7% compared to QT, wet gluten content reached 35.5%, and total protein yield per unit area rose by 13.1%. This study demonstrates that coupling drip irrigation with wide-row precision seeding is an effective strategy for achieving water-saving, high-yield, and high-quality winter wheat cultivation in the Huang-Huai-Hai region. This is achieved through the synergistic optimization of canopy structure, enhanced photosynthetic efficiency, and improved WUE. These findings provide a mechanistic basis and a scalable agronomic solution for sustainable intensification of winter wheat production under water-limited conditions in major cereal-producing regions. Full article
(This article belongs to the Special Issue Water and Fertilizer Regulation Theory and Technology in Crops)
26 pages, 2818 KB  
Article
Uncovering the Genetic Basis of Grain Protein Content and Wet Gluten Content in Common Wheat (Triticum aestivum L.)
by Quanhao Song, Wenwen Cui, Zhanning Gao, Jiajing Song, Shuaishuai Wang, Hongzhen Ma, Liang Chen, Kaijie Xu and Yan Jin
Plants 2026, 15(2), 307; https://doi.org/10.3390/plants15020307 - 20 Jan 2026
Abstract
Improving wheat processing quality is a crucial objective in modern wheat breeding. Among various quality parameters, grain protein content (GPC) and wet gluten content (WGC) significantly influence the end-use quality of flour. These traits are controlled by multiple minor effect genes and highly [...] Read more.
Improving wheat processing quality is a crucial objective in modern wheat breeding. Among various quality parameters, grain protein content (GPC) and wet gluten content (WGC) significantly influence the end-use quality of flour. These traits are controlled by multiple minor effect genes and highly influenced by environmental factors. Identifying stable and major-effect genetic loci and developing breeder-friendly molecular markers are of great significance for breeding high-quality wheat varieties. In this study, we evaluated the GPC and WGC of 310 diverse wheat varieties, mainly from China and Europe, across four environments. Genotyping was performed using the wheat 100K SNP chip, and genome-wide association analysis (GWAS) was employed to identify stable loci with substantial effects. In total, four loci for GPC were identified on chromosomes 1A, 3A, 3B, and 4B, with explained phenotypic variation (PVE) ranging from 6.0 to 8.4%. In addition, three loci for WGC were identified on chromosomes 4B, 5A, and 5D, which explained 7.0–10.0% of the PVE. Among these, three loci coincided with known genes or quantitative trait loci (QTL), whereas QGPC.zaas-3AL, QGPC.zaas-4BL, QWGC.zaas-4BL, and QWGC.zaas-5A were potentially novel. Seven candidate genes were involved in various biological pathways, including growth, development, and signal transduction. Furthermore, five kompetitive allele specific PCR (KASP) markers were developed and validated in a natural population. The newly identified loci and validated KASP markers can be utilized for quality improvement. This research provides valuable germplasm, novel loci, and validated markers for high-quality wheat breeding. Full article
(This article belongs to the Special Issue Cereal Crop Breeding, 2nd Edition)
Show Figures

Figure 1

13 pages, 1468 KB  
Article
Genome-Wide Association Analysis and Candidate Gene Prediction of Wheat Wet Gluten Content
by Congcong Liu, Lei Zeng, Cong Wang, Linlin Jia, Wenxu Li, Ziju Dai, Maomao Qin, Jinna Hou, Zhensheng Lei and Zhengfu Zhou
Int. J. Mol. Sci. 2026, 27(2), 827; https://doi.org/10.3390/ijms27020827 - 14 Jan 2026
Viewed by 123
Abstract
The wet gluten content (WGC) of wheat is a key indicator of wheat-processing quality, and its genetic basis is extremely critical in breeding. This study evaluated the WGC of 207 wheat accessions under three growing seasons from a natural population. Nine quantitative trait [...] Read more.
The wet gluten content (WGC) of wheat is a key indicator of wheat-processing quality, and its genetic basis is extremely critical in breeding. This study evaluated the WGC of 207 wheat accessions under three growing seasons from a natural population. Nine quantitative trait loci (QTLs) explained 7.61–15.18% of phenotypic variation in a genome-wide association study (GWAS) using a 660K SNP array. Among them, qWGC6B.2 on chromosome 6BL was consistently detected across multiple environments, accounting for 10.08–12.27% of variation. Incorporating grain transcriptome data led to the identification of TaWGC6B.1 (TraesCS6B02G386700), which is highly expressed in developing endosperm and strongly correlated with WGC. A competitive allele specific PCR (KASP) marker development and validation indicated that the Whaas68366_GG allele significantly enhanced gene expression and WGC. This study identified key genes and molecular markers, providing theoretical and technical support for WGC genetic improvement in wheat (Triticum aestivum L.). Full article
(This article belongs to the Special Issue Molecular Research on Crop Quality)
Show Figures

Figure 1

16 pages, 1908 KB  
Article
Effects of Milling Methods on the Physicochemical Properties of Rice Flour from Indica, Japonica, and Glutinous Rice
by Chunlei Zheng, Zhenzhen Ren, Limin Li and Xueling Zheng
Foods 2026, 15(2), 275; https://doi.org/10.3390/foods15020275 - 12 Jan 2026
Viewed by 180
Abstract
This study evaluated the effects of three milling methods, which are dry, semi-dry, and wet milling, on the physicochemical, thermal, and rheological properties of three types of broken rice (indica, japonica, and glutinous rice). The aim was to evaluate how these milling methods [...] Read more.
This study evaluated the effects of three milling methods, which are dry, semi-dry, and wet milling, on the physicochemical, thermal, and rheological properties of three types of broken rice (indica, japonica, and glutinous rice). The aim was to evaluate how these milling methods affect key flour characteristics, including starch damage, particle size distribution, swelling power, solubility, and gelatinization behavior. Dry milling resulted in the highest degree of starch damage, leading to increased solubility and swelling power, but also a reduction in gelatinization temperature and paste viscosity. Semi-dry milling exhibited moderate starch damage, enhanced thermal stability, and superior functional properties in comparison to dry milling. Wet milling, while minimizing starch damage, produced finer particles but resulted in lower swelling power and solubility. The results also indicated that Japonica rice exhibited the least starch damage, followed by Indica and Glutinous rice. These findings provide important insights into optimizing milling techniques for high-quality rice flour production, particularly for gluten-free food products. Overall, milling method substantially modulates structure and function relations in rice flour, and semi-dry and wet milling preserve starch integrity better than dry milling. These results provide practical guidance for selecting milling strategies to tailor flour functionality for specific rice-based products. Full article
(This article belongs to the Section Grain)
Show Figures

Graphical abstract

13 pages, 503 KB  
Article
Rapid Evaluation of Wet Gluten Content in Wheat Using Hyperspectral Technology Combined with Machine Learning Algorithms
by Yan Lai, Yan-Yan Li, Min Sha, Peng Li and Zheng-Yong Zhang
Foods 2026, 15(1), 41; https://doi.org/10.3390/foods15010041 - 23 Dec 2025
Viewed by 359
Abstract
The development of rapid and intelligent methods is urgently needed for wheat quality evaluation. Using the prediction of wet gluten content as a case study, this work systematically investigated the performance of various machine learning algorithms and their optimization for content prediction, based [...] Read more.
The development of rapid and intelligent methods is urgently needed for wheat quality evaluation. Using the prediction of wet gluten content as a case study, this work systematically investigated the performance of various machine learning algorithms and their optimization for content prediction, based on hyperspectral data from the visible and near-infrared ranges of wheat grains and flour. The results revealed that the random forest regression (RFR) algorithm delivered the best predictive performance under two conditions: first, when applied directly to visible spectra; and second, when applied to fused visible and near-infrared spectral data. This held true for both grains and flour. Conversely, its direct application to NIR spectra alone yielded relatively worse performance. Following data optimization, the first-derivative (FD) visible spectra of wheat grains were smoothed using a Savitzky–Golay (SG) filter and subsequently used as input for the RFR model. This optimized approach achieved a coefficient of determination (r2) of 0.8579, a root mean square error (RMSE) of 0.0216, and a relative percent deviation (RPD) of 2.6978. Under the same conditions, for wheat flour, the corresponding values were 0.8383, 0.0231, and 2.5293, respectively. Similarly, for wheat flour, the RFR model was applied to the SG-filtered FD spectra derived from the fused visible and near-infrared data, yielding an r2 of 0.8474, an RMSE of 0.0224, and an RPD of 2.6034. Under the same conditions, wheat grains yielded an r2 of 0.8494, an RMSE of 0.0223, and an RPD of 2.6208. This efficient and rapid intelligent prediction scheme demonstrates considerable potential for the quality assessment and control of relevant food products. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

28 pages, 2478 KB  
Article
A High-Efficiency Cultivation Pattern of Strong-Gluten Wheat in Huang-Huai-Hai Plain of China
by Weiwei Guo, Nan Niu, Junwei Xin, Jiafei Yu, Zihan He, Junrong Li, Yuxin Xie, Shengjing Chen, Luhua Wang, Xueqing Shi, Zubaidai Abudukerimu, Huifang Wang, Ximei Li, Nataliia Golub and Yumei Zhang
Agronomy 2026, 16(1), 28; https://doi.org/10.3390/agronomy16010028 - 22 Dec 2025
Viewed by 338
Abstract
Different cultivation methods significantly affect wheat quality. However, the optimal cultivation pattern for strong-gluten wheat in Shandong province remains unclear. Through field experiments conducted over three consecutive wheat-growing seasons, wheat-quality-related traits under traditional cultivation practices (TC) and different cultivation patterns for Jimai44 (a [...] Read more.
Different cultivation methods significantly affect wheat quality. However, the optimal cultivation pattern for strong-gluten wheat in Shandong province remains unclear. Through field experiments conducted over three consecutive wheat-growing seasons, wheat-quality-related traits under traditional cultivation practices (TC) and different cultivation patterns for Jimai44 (a strong-gluten wheat variety) were investigated. Plowing, delayed sowing date and increasing seeding rate could enhance grain protein content, SDS sedimentation value, wet and dry gluten content, and also had a clear positive effect on thousand-kernel weight and test weight. Employing a protocol of increased basal nitrogen (300 kg/ha) and topdressing water and fertilizer twice significantly increased wheat grain protein and nitrogen content, flour yield, gluten index, SDS sedimentation value, dough stability time, and extensibility. On the basis of the two wheat seasons experiments, we developed an optimized cultivation practice (Opt, that is, combined with plowing, delayed sowing date, seeding rate of 3.15 million or 3.60 million, basal nitrogen fertilizer application of 300 kg/ha, topdressing fertilizer twice, topdressing water twice or three times). Compared with TC treatment, the optimized cultivation demonstrated superior performance in grain protein content, flour yield, SDS sedimentation value, wet and dry gluten content, stability time, formation time, extension area, extension, and maximum retensibility with high grain yield. Meanwhile, we found that the expression of TaGlu1 was significantly increased under the optimized cultivation practice. In summary, the optimized cultivation practice might be a promising approach for improving strong-gluten wheat quality in the Huang-Huai-Hai Plain. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

24 pages, 3342 KB  
Article
Effects of Grass Carp Antifreeze Peptide on Freeze-Thaw Characteristics and Structure of Wet Gluten Protein
by Meizhu Dang, Bing Huang, Yangyang Jia, Yuanyuan Shao, Xingxing Mei and Chunmei Li
Foods 2025, 14(24), 4336; https://doi.org/10.3390/foods14244336 - 16 Dec 2025
Viewed by 397
Abstract
This study uniquely explores the impact of a novel natural antifreeze peptide derived from grass carp (GCAFP) on the freeze–thaw characteristics and structural stability of wet gluten protein, providing new insights into the development of natural cryoprotectants for frozen foods. The effects of [...] Read more.
This study uniquely explores the impact of a novel natural antifreeze peptide derived from grass carp (GCAFP) on the freeze–thaw characteristics and structural stability of wet gluten protein, providing new insights into the development of natural cryoprotectants for frozen foods. The effects of GCAFP on the physicochemical and structural properties of gluten protein were investigated using differential scanning calorimetry (DSC), nuclear magnetic resonance imaging (NMR), rheology, and scanning electron microscopy (SEM). The results showed that the addition of 0.5% GCAFP significantly reduced the freezing temperature (Tf, from −8.50 ± 1.31 °C to −10.75 ± 2.49 °C) and expanded the melting temperature range (Tm,δ, from 3.60 ± 1.40 °C to 5.65 ± 0.12 °C), indicating improved freezing stability. After five weeks of frozen storage, the ice crystal melting enthalpy (ΔHm) of gluten protein in the GCAFP group increased by only 20.17 J/g, compared with 27.23 J/g in the control, representing a 6.35% reduction (p < 0.05). Similarly, after five freeze–thaw cycles, the freezable water fraction (Fw) and ΔHm were reduced by 5.19% and 1.55%, respectively, demonstrating that GCAFP inhibited water migration and ice recrystallization. Low-field NMR revealed that GCAFP maintained a higher proportion of bound water (T21) and decreased free water (T23), confirming its role in restricting water mobility. Rheological analysis showed that GCAFP preserved the viscoelasticity of gluten protein, maintaining higher storage (G′) and loss (G″) moduli than the control after five freeze–thaw cycles, thus mitigating the decline in network elasticity. Structural characterization indicated that GCAFP stabilized the α-helix and β-sheet contents, reduced glutenin macropolymer depolymerization from 24.85% to 18.95%, and strengthened hydrogen bonding within the protein matrix. Overall, GCAFP effectively protected wet gluten protein against ice crystal damage by maintaining water distribution, viscoelasticity, and secondary structure integrity, highlighting its potential as a natural antifreeze ingredient for frozen food applications. Full article
Show Figures

Figure 1

16 pages, 574 KB  
Article
Relationships Between Fiber in Feedlot Diets and Growth Performance of Beef Cattle
by Michael L. Galyean
Animals 2025, 15(22), 3266; https://doi.org/10.3390/ani15223266 - 11 Nov 2025
Viewed by 617
Abstract
A database (110 treatment means from 23 studies) was derived from the peer-reviewed literature to evaluate the effects of various measures of dietary fiber on growth performance of feedlot cattle. The measures of diet fibrousness were the percentage of traditional roughage sources in [...] Read more.
A database (110 treatment means from 23 studies) was derived from the peer-reviewed literature to evaluate the effects of various measures of dietary fiber on growth performance of feedlot cattle. The measures of diet fibrousness were the percentage of traditional roughage sources in the diet, the percentage of neutral detergent fiber (NDF) supplied by traditional roughages, and the total dietary concentration of NDF. The growth performance variables evaluated were dry matter intake, average daily gain, gain–feed ratio, and hot carcass weight. Mixed-model regression methods were used to adjust for random slope and intercept effects associated with studies, and study-adjusted data were evaluated to assess the effects of each of the measures of fibrousness on each of the measures of growth performance. The quality of the regression relationships was assessed by determining the significance of slope and intercept estimates, the root mean square error and the associated coefficient of variation, and the coefficient of determination (r2). In contrast to a previous analysis of literature data, 60% of the studies in the present database included fibrous byproducts (primarily wet corn gluten feed and wet or dry distillers grains plus solubles). Among the growth performance variables, measures of fibrousness were most highly correlated with dry matter intake (total consumed per day or percentage of average body weight), and among the measures of fibrousness, total dietary NDF concentration consistently accounted for the largest percentage of variation in growth performance variables. For dry matter intake as a percentage of body weight, total dietary NDF concentration accounted for 63.3% of the variation in dry matter intake, compared with 19.6% and 29.9% for NDF from roughage and percentage of roughage in the diet, respectively. Similarly, total dietary NDF concentration accounted for 58.1% of the variation in total dry matter consumed per day, compared with NDF from roughage (18.3%) and the dietary percentage of roughage (25.9%). For each 1% increase in total dietary NDF, dry matter intake increased by approximately 0.023% of body weight or 0.11 kg/d. Average daily gain and hot carcass weight were not strongly associated with measures of fibrousness (r2 values ranged from 0.001 to 0.122), reflecting the ability of feedlot cattle to compensate for lower dietary energy concentrations as NDF increased in the diet, at least within the ranges of NDF evaluated in the current database. As expected, with increased dry matter intake and little change in average daily gain, the gain–feed ratio was negatively associated with measures of fibrousness, with an r2 value of 0.296 for the total dietary NDF concentration. Although more research is needed on the role of physically effective NDF in feedlot diets, present data confirm previous observations about the relationship between the total dietary NDF concentration and dry matter intake, extending this relationship to feedlot diets that contain substantial proportions of fibrous byproducts. The total dietary NDF concentration in feedlot diets should be an effective basis for exchanging dietary ingredients to maintain a similar growth performance of feedlot cattle. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

25 pages, 1888 KB  
Article
Linking Yield, Baking Quality, and Rheological Properties to Guide Sustainable Improvement of Rwandan Wheat Varieties
by Yves Theoneste Murindangabo, Trong Nghia Hoang, Innocent Habarurema, Petr Konvalina, Marguerite Niyibituronsa, Protegene Byukusenge, Protogene Mbasabire, Josine Uwihanganye, Roger Bwimba, Marie Grace Ntezimana and Dang Khoa Tran
Agriculture 2025, 15(20), 2160; https://doi.org/10.3390/agriculture15202160 - 17 Oct 2025
Viewed by 938
Abstract
Wheat is an important crop in Rwanda; however, rapid population growth, urbanization, and shifting dietary preferences have driven demand far beyond domestic production capacity, resulting in a steady increase in imports. Closing this gap requires a variety of management strategies that jointly optimise [...] Read more.
Wheat is an important crop in Rwanda; however, rapid population growth, urbanization, and shifting dietary preferences have driven demand far beyond domestic production capacity, resulting in a steady increase in imports. Closing this gap requires a variety of management strategies that jointly optimise yield, processing quality, and sustainability. This study evaluated ten widely cultivated wheat (Triticum aestivum L.) varieties in Rwanda through an integrated assessment of grain yield, quality traits, and rheological properties. Yields ranged from 4.3 to 6.3 t ha−1, with Nyaruka and Gihundo achieving the highest productivity. Quality attributes, including protein content (PC), wet gluten (WG), gluten index (GI), falling number (FN), and Zeleny sedimentation value (ZSV), varied significantly, with Cyumba and Reberaho showing superior protein levels. Mixolab-based rheological analyses revealed marked diversity in dough development time, torque, and water absorption, with Keza and Nyangufi exhibiting favorable baking profiles. Statistical analyses highlighted trade-offs between yield and quality, as high-yielding varieties such as Nyaruka showed weaker baking characteristics. These findings demonstrate that linking agronomic performance with grain and dough quality traits provides a pathway towards targeted breeding, sustainable intensification, and enhanced food security. Integrating genetic selection with tailored management and processing strategies can improve both productivity and product value, strengthening the resilience and economic viability of Rwanda’s wheat sector. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

22 pages, 4888 KB  
Article
The Combined Effects of Irrigation, Tillage and N Management on Wheat Grain Yield and Quality in a Drought-Prone Region of China
by Ming Huang, Ninglu Xu, Kainan Zhao, Xiuli Huang, Kaiming Ren, Yulin Jia, Shanwei Wu, Chunxia Li, Hezheng Wang, Guozhan Fu, Youjun Li, Jinzhi Wu and Guoqiang Li
Agronomy 2025, 15(7), 1727; https://doi.org/10.3390/agronomy15071727 - 17 Jul 2025
Viewed by 834
Abstract
With the swift progression of the High-Standard Farmland Construction Program in China and worldwide, many dryland wheat fields can be irrigated once during the wheat growth stage (one-off irrigation). However, the combined strategies of one-off irrigation, tillage, and N management for augmenting wheat [...] Read more.
With the swift progression of the High-Standard Farmland Construction Program in China and worldwide, many dryland wheat fields can be irrigated once during the wheat growth stage (one-off irrigation). However, the combined strategies of one-off irrigation, tillage, and N management for augmenting wheat grain yield and quality are still undeveloped in drought regions. Two-site split–split field experiments were conducted to study the impacts of irrigation, tillage, and N management and their combined effects on grain yield; the contents of protein and protein components; processing quality; and the characteristics of N accumulation and translocation in wheat from a typical dryland wheat production area in China from 2020 to 2022. The irrigation practices (I0, zero irrigation and I1, one-off irrigation), tillage methods (RT, rotary tillage; PT, plowing; and SS, subsoiling) and N management (N0, N120, N180, and N240) were applied to the main plots, subplots and sub-subplots, respectively. The experimental sites, experimental years, irrigation practices, tillage methods, and N management methods and their interaction significantly affected the yield, quality, and plant N characteristics of wheat in most cases. Compared to zero irrigation, one-off irrigation significantly increased the plant N accumulation, enhancing grain yield by 33.7% while decreasing the contents of total protein, albumin, globulin, gliadin, and glutenin by 4.4%, 6.4%, 8.0%, 12.2%, and 10.0%, respectively. It also decreased the wet gluten content, stability time, sedimentation value, extensibility by 4.1%, 10.7%, 9.7%, and 5.5%, respectively, averaged across sites and years. Subsoiling simultaneously enhanced the aforementioned indicators compared to rotary tillage and plowing in most sites and years. With the increase in N rates, wheat yield firstly increased and then decreased under zero irrigation combined with rotary tillage, while it gradually increased when one-off irrigation was combined with subsoiling; however, the contents of total protein and protein components and the quality tended to increase firstly and then stabilize regardless of irrigation practices and tillage methods. The correlations of yield and quality indicators with plant N characteristics were negative when using distinct irrigation practices and tillage methods, while they were positive under varying N management. The decrease in wheat quality induced by one-off irrigation could be alleviated by optimizing N management. I1STN180 exhibited higher yield, plant N accumulation and translocation, and better quality in most cases; thus, all metrics of wheat quality were significantly increased, with a yield enhancement of 50.3% compared to I0RTN180. Therefore, one-off irrigation with subsoiling and an N rate of 180 kg ha−1 is an optimal strategy for high yield, high protein, and high quality in dryland wheat production systems where one-off irrigation is assured. Full article
Show Figures

Figure 1

17 pages, 2449 KB  
Article
Miniaturized NIRS Coupled with Machine Learning Algorithm for Noninvasively Quantifying Gluten Quality in Wheat Flour
by Yuling Wang, Chen Zhang, Xinhua Li, Longzhu Xing, Mengchao Lv, Hongju He, Leiqing Pan and Xingqi Ou
Foods 2025, 14(13), 2393; https://doi.org/10.3390/foods14132393 - 7 Jul 2025
Cited by 1 | Viewed by 982
Abstract
This research implemented a miniaturized near-infrared spectroscopy (NIRS) system integrated with machine learning approaches for the quantitative evaluation of dry gluten content (DGC), wet gluten content (WGC), and the gluten index (GI) in wheat flour in a noninvasive manner. Five different algorithms were [...] Read more.
This research implemented a miniaturized near-infrared spectroscopy (NIRS) system integrated with machine learning approaches for the quantitative evaluation of dry gluten content (DGC), wet gluten content (WGC), and the gluten index (GI) in wheat flour in a noninvasive manner. Five different algorithms were employed to mine the relationship between the full-range spectra (900–1700 nm) and three parameters, with support vector regression (SVR) demonstrating the best prediction performance for all gluten parameters (RP = 0.9370–0.9430, RMSEP = 0.3450–0.4043%, and RPD = 3.1348–3.4998). Through a comparative evaluation of five wavelength selection techniques, 25–30 optimal wavelengths were identified, enabling the development of optimized SVR models. The improved whale optimization algorithm iWOA-based SVR (iWOA-SVR) model exhibited the strongest predictive capability among the five optimal wavelengths-based models, achieving comparable accuracy to the full-range spectra SVR for all gluten parameters (RP = 0.9190–0.9385, RMSEP = 0.3927–0.5743%, and RPD = 3.0424–3.2509). The model’s robustness was confirmed through external validation and statistical analyses (p > 0.05 for F-test and t-test). The results highlight the effectiveness of micro-NIRS combined with iWOA-SVR for the nondestructive gluten quality assessment of wheat flour, providing a more valuable reference for expanding the use of NIRS technology and developing portable specialized NIRS equipment for industrial-level applications in the future. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

15 pages, 1317 KB  
Article
Investigation of the Effect of a New Type of Copper–Sucrose Complex Compound on the Yield and Quality Parameters of Winter Wheat (Triticum aestivum L.)
by Renátó Kalocsai, Zsolt Giczi, Dávid Vasas, Judit Molnár, Pál Szakál, Zoltán Varga, Eduárd Gubó, Pál Szakál, Viktória Margit Vona, Erika Krániczné Mayer, Balázs Ásványi and Tamás Szakál
Agronomy 2025, 15(7), 1506; https://doi.org/10.3390/agronomy15071506 - 21 Jun 2025
Viewed by 1240
Abstract
We conducted experiments on winter wheat grown in copper-deficient soil, where soil tests revealed a more pronounced deficiency in the deeper layers. As climate change reduces precipitation, plants increasingly rely on nutrients from these deeper layers. A copper–sucrose complex—previously unused in agriculture—was applied [...] Read more.
We conducted experiments on winter wheat grown in copper-deficient soil, where soil tests revealed a more pronounced deficiency in the deeper layers. As climate change reduces precipitation, plants increasingly rely on nutrients from these deeper layers. A copper–sucrose complex—previously unused in agriculture—was applied as a foliar spray during the tillering and flowering stages. Across the three-year average, significant increases were observed starting from the 1 kg ha−1 copper dose in yield, from 0.3 kg ha−1 in crude protein content, and from 0.5 kg ha−1 in wet gluten content compared to the untreated control. For all three parameters, the highest values were achieved with the 2 kg ha−1 dose. Yield increased by 1.03 t ha−1, crude protein by 0.9%, and wet gluten by 2.3% relative to the control. In 2019, high humidity and favorable temperatures during flowering led to fungal infections in control plots, with DON toxin concentrations exceeding the regulatory safety threshold. Following copper–sucrose complex application, DON levels dropped below this threshold, demonstrating a measurable protective effect. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

13 pages, 892 KB  
Article
Optimized Water Management Strategies: Evaluating Limited-Irrigation Effects on Spring Wheat Productivity and Grain Nutritional Composition in Arid Agroecosystems
by Zhiwei Zhao, Qi Li, Fan Xia, Peng Zhang, Shuiyuan Hao, Shijun Sun, Chao Cui and Yongping Zhang
Agriculture 2025, 15(10), 1038; https://doi.org/10.3390/agriculture15101038 - 11 May 2025
Cited by 1 | Viewed by 977
Abstract
The Hetao Plain Irrigation District of Inner Mongolia faces critical agricultural sustainability challenges due to its arid climate, exacerbated by tightening Yellow River water allocations and pervasive water inefficiencies in the current wheat cultivation practices. This study addresses water scarcity by evaluating the [...] Read more.
The Hetao Plain Irrigation District of Inner Mongolia faces critical agricultural sustainability challenges due to its arid climate, exacerbated by tightening Yellow River water allocations and pervasive water inefficiencies in the current wheat cultivation practices. This study addresses water scarcity by evaluating the impact of regulated deficit irrigation strategies on spring wheat production, with the dual objectives of enhancing water conservation and optimizing yield–quality synergies. Through a two-year field experiment (2020~2021), four irrigation regimes were implemented: rain-fed control (W0), single irrigation at the tillering–jointing stage (W1), dual irrigation at the tillering–jointing and heading–flowering stages (W2), and triple irrigation incorporating the grain-filling stage (W3). A comprehensive analysis revealed that an incremental irrigation frequency progressively enhanced plant morphological traits (height, upper three-leaf area), population dynamics (leaf area index, dry matter accumulation), and physiological performance (flag leaf SPAD, net photosynthetic rate), all peaking under the W2 and W3 treatments. While yield components and total water consumption exhibited linear increases with irrigation inputs, grain yield demonstrated a parabolic response, reaching maxima under W2 (29.3% increase over W0) and W3 (29.1%), whereas water use efficiency (WUE) displayed a distinct inverse trend, with W2 achieving the optimal balance (4.6% reduction vs. W0). The grain quality parameters exhibited divergent responses: the starch content increased proportionally with irrigation, while protein-associated indices (wet gluten, sedimentation value) and dough rheological properties (stability time, extensibility) peaked under W2. Notably, protein content and its subcomponents followed a unimodal pattern, with the W0, W1, and W2 treatments surpassing W3 by 3.4, 11.6, and 11.3%, respectively. Strong correlations emerged between protein composition and processing quality, while regression modeling identified an optimal water consumption threshold (3250~3500 m3 ha−1) that concurrently maximized grain yield, protein output, and WUE. The W2 regime achieved the synchronization of water conservation, yield preservation, and quality enhancement through strategic irrigation timing during critical growth phases. These findings establish a scientifically validated framework for sustainable, intensive wheat production in arid irrigation districts, resolving the tripartite challenge of water scarcity mitigation, food security assurance, and processing quality optimization through precision water management. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

14 pages, 2668 KB  
Article
Effects of LMW-GS Allelic Variations at the Glu-A3 Locus on Fresh Wet Noodle and Frozen Cooked Noodle Quality
by Xiaohong Chen, Hongwei Zhou, Yufei Zou, Jinfu Ban, Huizhi Zhang, Xiaoke Zhang, Boli Guo and Yingquan Zhang
Foods 2025, 14(9), 1546; https://doi.org/10.3390/foods14091546 - 28 Apr 2025
Viewed by 685
Abstract
Low molecular weight glutenin subunits (LMW-GSs) in wheat are critical functional proteins that regulate the processing quality of flour-based products. This study utilized two sets of near-isogenic lines (NILs) derived from the wheat cultivars Zhoumai 22 and Zhoumai 23 to investigate the effects [...] Read more.
Low molecular weight glutenin subunits (LMW-GSs) in wheat are critical functional proteins that regulate the processing quality of flour-based products. This study utilized two sets of near-isogenic lines (NILs) derived from the wheat cultivars Zhoumai 22 and Zhoumai 23 to investigate the effects of allelic variations at the Glu-A3 locus—specifically Glu-A3a, Glu-A3b, Glu-A3c, Glu-A3d, Glu-A3e, Glu-A3f, and Glu-A3g—on protein content, gluten properties, dough farinograph properties, cooking properties of fresh wet noodles (FWNs), and textural properties of FWNs and frozen cooked noodles (FZNs). The results demonstrated that Glu-A3f exhibited superior grain protein content. Glu-A3e negatively impacted the gluten index, and Glu-A3g showed favorable dry gluten content. Glu-A3b displayed enhanced dough mixing tolerance. Importantly, Glu-A3b was associated with improved hardness in FWNs, while Glu-A3g contributed to higher hardness and chewiness in FZNs. These findings provide critical insights for breeding elite wheat cultivars tailored for noodle production and optimizing specialty flour development. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

16 pages, 3504 KB  
Article
Comparative Proteome and Weighted Gene Co-Expression Network Analyses Uncover the Mechanism of Wheat Grain Protein Accumulation in Response to Nitrogen Fertilizer Application
by Beiming Xu, Yuku Jia, Jianchao Feng, Yang Yang, Geng Ma, Yanfei Zhang, Yingxin Xie and Dongyun Ma
Foods 2025, 14(9), 1481; https://doi.org/10.3390/foods14091481 - 24 Apr 2025
Cited by 1 | Viewed by 853
Abstract
This study uses proteomic technology to identify differentially expressed proteins (DEPs) under varying nitrogen fertilizer levels. Additionally, it utilizes weighted gene co-expression network analysis (WGCNA) based on expression data of DEP-coding genes to explore the mechanism by which nitrogen promotes grain protein accumulation. [...] Read more.
This study uses proteomic technology to identify differentially expressed proteins (DEPs) under varying nitrogen fertilizer levels. Additionally, it utilizes weighted gene co-expression network analysis (WGCNA) based on expression data of DEP-coding genes to explore the mechanism by which nitrogen promotes grain protein accumulation. The results indicate that high-nitrogen treatment leads to an increased grain protein content, wet gluten content, stability time, and energy area. In addition, the β-sheet content of the protein secondary structure increased, while the irregular curl content decreased. A total of 285 DEPs were identified under different nitrogen levels, with 172 upregulated proteins in grains under high-nitrogen treatment including storage proteins (8.14%) and proteins involved in nitrogen metabolism (8.72%), defense/stress (11.04%), regulation (26.16%), and transport (5.23%). This suggests that both storage proteins and certain metabolic proteins contribute to dough network formation. WGCNA revealed a strong correlation between the blue module and grain samples, and Gene Ontology analysis indicated that most genes were enriched in response to abscisic acid (ABA) in the “biological process” category. Furthermore, 18 core genes were identified, with most containing ABA response elements, light response elements, and motifs related to storage protein regulation in their promoter regions. Expression analysis of 10 genes and their predicted transcription factors during the grain-filling stage demonstrated higher expression levels under high-nitrogen conditions. This study provides valuable insights into the promotion of grain protein accumulation and dough quality by nitrogen fertilizer application. Full article
(This article belongs to the Section Foodomics)
Show Figures

Figure 1

Back to TopTop