Optimized Water Management Strategies: Evaluating Limited-Irrigation Effects on Spring Wheat Productivity and Grain Nutritional Composition in Arid Agroecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Site
2.2. Experiment Design
2.3. Sampling and Measurements
2.3.1. Flowering Stage Agronomic Trait
2.3.2. Grain Yield and Its Components
2.3.3. Grain Processing Quality and Protein Component Content
2.3.4. Total Water Consumption and Water Use Efficiency
2.4. Data Analysis
3. Results
3.1. Wheat Agronomic Traits at the Flowering Stage
3.2. Grain Yield, Total Water Consumption, and Water Use Efficiency
3.3. Grain Processing Quality
3.4. Grain Protein and Its Components’ Content
3.5. Relationship Between Water Consumption and Grain Yield, Protein Yield, and WUE
4. Discussion
4.1. Optimizing Water-Limited Irrigation to Enhance Grain Yield and WUE
4.2. Water-Limited Irrigation Improves Grain Quality
4.3. Synergistic Improvement of Wheat Yield and Quality and Water Efficiency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Z.W.; Gao, F.Y.; Luo, J.; Sheng, Y.Y.; Han, L.; Zhang, Y.P. Effects of different nitrogen and phosphorus fertilizer application on grain yield, quality and nutrient use efficiency of spring wheat in Hetao irrigation district. Soil Fertil. Sci. China 2022, 11, 1–9. [Google Scholar]
- Yu, Z.T.; She, M.Y.; Zheng, T.; Diepeveen, D.; Islam, S.; Zhao, Y.; Zhang, Y.Q.; Tang, G.X.; Zhang, Y.J.; Zhang, J.J.; et al. Impact and mechanism of Sulphur-deficiency on modern wheat farming nitrogen-related sustainability and gliadin content. Commun. Biol. 2021, 4, 945. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.N.; Wu, J.Z.; Huang, M.; Li, Y.J.; Wang, H.T.; Huang, X.L.; Wu, S.W.; Zhang, J.; Zhao, Z.M.; Zhao, W.X.; et al. Effects of Supplemental Irrigation After Regreening and Nitrogen Fertilizer Application Rates on Wheat Yield, Water and Nitrogen Use Efficiency in Dryland. Sci. Agric. Sin. 2021, 4, 945. [Google Scholar]
- Dong, Z.Q.; Lv, L.H.; Yao, Y.R.; Zhang, J.T.; Zhang, L.H.; Yao, H.B.; Shen, H.P.; Jia, X.L. Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction. Acta Agron. Sin. 2023, 49, 1942–1953. [Google Scholar]
- Katerjia, N.; Mastrorillib, M.; Hoorn, J.W.; Lahmer, F.Z.; Hamdy, A.; Oweis, T. Durum wheat and barley productivity in saline-drought environments. Eur. J. Agron. 2009, 31, 1–9. [Google Scholar] [CrossRef]
- Ali, S.; Xu, Y.Y.; Jia, Q.M.; Ahmad, I.; Wei, T.; Ren, X.L.; Zhang, P.; Din, R.X.; Cai, T.; Jia, Z.L. Cultivation techniques combined with deficit irrigation improves winter wheat photosynthetic characteristics, dry matter translocation and water use efficiency under simulated rainfall conditions. Agric. Water Manag. 2018, 201, 207–218. [Google Scholar] [CrossRef]
- Liu, E.K.; Mei, X.R.; Yan, C.R.; Gong, D.Z.; Zhang, Y.Q. Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes. Agric. Water Manag. 2016, 167, 75–85. [Google Scholar] [CrossRef]
- Yang, C.W.; Zhao, L.; Zhang, H.K.; Yang, Z.Z.; Wang, H.; Wen, S.S.; Zhang, C.Y.; Rustgi, S.; Van, W.D.; Liu, B. Evolution of physiological responses to salt stress in hexaploid wheat. Proc. Natl. Acad. Sci. USA 2014, 111, 11882–11887. [Google Scholar] [CrossRef]
- Zhao, W.H.; Liu, L.Z.; Shen, Q.; Yang, J.H.; Han, X.Y.; Tian, F.; Wu, J.J. Effects of water stress on photosynthesis, yield, and water use efficiency in winter wheat. Water 2020, 12, 2127. [Google Scholar] [CrossRef]
- Samarah, N.H.; Alqudah, A.M.; Amayreh, J.A.; Mcandrews, G.M. The effect of late-terminal drought stress on yield components of four barley cultivars. J. Agron. Crop Sci. 2009, 195, 427–441. [Google Scholar] [CrossRef]
- Zhang, J.; Sui, X.; Li, B.; Su, B.; Li, J.; Zhou, D. An improved water-use efficiency for winter wheat grown under reduced irrigation. Field Crops Res. 1998, 59, 91–98. [Google Scholar] [CrossRef]
- Schahram, B.; Sharyar, B.; Perter, W.; Konrad, M. Improvement of water use and N fertilizer efficiency by subsoil irrigation of winter wheat. Eur. J. Agron. 2008, 28, 1–7. [Google Scholar]
- Wang, L.Q.; Jin, Z.Z.; Cao, J.S.; Wang, Z.Y. Effect of water and fertilizer factors on grain quality and bread baking quality of wheat. Sci. Agric. Sin. 1997, 03, 67–73. [Google Scholar]
- Mary, J.G.; Jeffrey, C.S.; Katherine, O.B.; Edward, S. Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Crop Sci. 2001, 41, 327–335. [Google Scholar]
- Zhou, J.; Liu, D.; Deng, X.; Zhen, S.; Wang, Z.; Yan, Y. Effects of water deficit on breadmaking quality and storage protein compositions in bread wheat (Triticum aestivum L.). J. Sci. Food Agric. 2018, 98, 4357–4368. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.J.; Yu, Z.W.; Wang, D.; Zhang, Y.L. Effect of Irrigation Conditions on Protein Composition Accumulation of Grain and Its Quality in Winter Wheat. Acta Agron. Sin. 2003, 29, 682–687. [Google Scholar]
- Torrion, J.A.; Stougaard, R.N. Impacts and limits of irrigation water management on wheat yield and quality. Crop Sci. 2017, 57, 3239–3251. [Google Scholar] [CrossRef]
- Tari, A.F. The effects of different deficit irrigation strategies on yield, quality, and water-use efficiencies of wheat under semi-arid conditions. Agric. Water Manag. 2016, 167, 1–10. [Google Scholar] [CrossRef]
- Izanloo, A.; Condon, A.G.; Langridge, P.; Tester, M.; Schnurbusch, T. Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars. J. Exp. Bot. 2008, 59, 3327–3346. [Google Scholar] [CrossRef]
- Alghory, A.; Yazar, A. Evaluation of crop water stress index and leaf water potential for deficit irrigation management of sprinkler-irrigated wheat. Irrig. Sci. 2019, 37, 61–77. [Google Scholar] [CrossRef]
- Pardo, J.J.; Martínez-Romero, A.; Léllis, B.C.; Tarjuelo, J.M.; Domínguez, A. Effect of the optimized regulated deficit irrigation methodology on water use in barley under semiarid conditions. Agric. Water Manag. 2020, 228, 105925. [Google Scholar] [CrossRef]
- Lao, W.H.; Shi, Z.J.; Wang, X.M.; Li, J.; Wang, R. Effects of water saving and nitrogen reduction on soil nitrate nitrogen distribution, water and nitrogen use efficiencies of winter wheat. Acta Agron. Sin. 2020, 46, 924–936. [Google Scholar]
- Jin, X.K.; Mao, M.T.; Zhao, T.K.; An, Z.Z.; Jiang, L.L. Effects of Nitrogen Application on Yield, Water and Nitrogen Use Efficiency of Winter Wheat under Supplemental Irrigation Based on Measured Soil Moisture Content. Sci. Agric. Sin. 2018, 51, 1334–1344. [Google Scholar]
- Zhang, B.; Li, F.M.; Huang, G.; Cheng, Z.Y.; Zhang, Y. Yield performance of spring wheat improved by regulated deficit irrigation in an arid area. Agric. Water Manag. 2006, 79, 28–42. [Google Scholar] [CrossRef]
- Li, X.J.; Guan, W.W.; Zhang, Y.P.; Wang, L.X. Optimized agronomic measures for water-saving and high-yielding of spring wheat in Hetao irrigation district. Agric. Res. Arid. Areas 2015, 33, 134–140. [Google Scholar]
- Zhang, Y.P.; Xie, M.; Jing, T.; Zhang, Y.Q. Study on the Irrigation Schedule for High-yield and Water-saving Production of Spring Wheat in Hetao Irrigation District if Inner Mongolia. J. Triticeae Crops 2013, 33, 96–102. [Google Scholar]
- Dong, W.J.; Zhang, Y.P.; Xie, M.; Hai, K.M.; Fu, X.J. Efficient utilization of water and nitrogen for spring wheat high-yield in Hetao Irrigation Region. J. Arid. Land Resour. Environ. 2011, 25, 127–131. [Google Scholar]
- Han, K.M.; Zhang, Y.P.; Guan, W.W.; Li, Y.Q. A Comparative Study on Selection Index for Drought Resistance and Water Saving Varieties of Spring Wheat. J. Triticeae Crops 2011, 31, 927–934. [Google Scholar]
- He, Z.F. Grain and Oil Seed Quality and Its Analysis Technology; China Agriculture Press: Beijing, China, 1985; pp. 87–92. [Google Scholar]
- Fleury, D.; Jefferies, S.; Kuchel, H.; Langridge, P. Genetic and genomic tools to improve drought tolerance in wheat. J. Exp. Bot. 2010, 61, 3211–3222. [Google Scholar] [CrossRef]
- Xue, Q.; Zhu, Z.; Musick, J.T.; Stewart, B.A.; Dusek, D.A. Root growth and water uptake in winter wheat under deficit irrigation. Plant Soil 2003, 257, 151–161. [Google Scholar] [CrossRef]
- Foulkes, M.J.; Sylvester, B.R.; Weightman, R.; Snape, J.W. Identifying physiological traits associated with improved drought resistance in winter wheat. Field Crops Res. 2007, 103, 11–24. [Google Scholar] [CrossRef]
- No’am, G.S.; Sinclair, T.R. Global environment change and simulated forage quality of wheat II. Water and nitrogen stress. Field Crops Res. 1995, 40, 29–37. [Google Scholar]
- Wang, C.Y.; Guo, T.C.; Peng, Y.; Zhu, Y.J.; Ma, D.Y.; Zhang, C.J. Effects of post-anthesis irrigation on grain quality indices and yield in winter wheat (Triticum aestivum L.). Acta Agron. Sin. 2004, 1031–1035. [Google Scholar]
- Chu, P.F.; Wang, D.; Zhang, Y.L.; Wang, X.Y.; Wang, X.Z.; Yu, Z.W. Effects of Irrigation Stage and Amount on Water Consumption Characteristics, Grain Yield and Content of Protein Components of Wheat. Sci. Agric. Sin. 2009, 42, 1306–1315. [Google Scholar]
- Foulkes, M.J.; Scott, R.K.; Sylvester, B.R. The ability of wheat cultivars to withstand drought in UK conditions: Formation of grain yield. J. Agric. Sci. 2002, 138, 153–169. [Google Scholar] [CrossRef]
- Palta, J.A.; Kobata, T.; Turner, N.C.; Fillery, I.R. Remobilization of carbon and nitrogen in wheat as influenced by postanthesis water deficits. Crop Sci. 1994, 34, 118–124. [Google Scholar] [CrossRef]
- Kumutha, D.; Sairam, R.K.; Ezhilmathi, K.; Chinnusamy, V.; Meena, R.C. Effect of waterlogging on carbohydrate metabolism in pigeon pea (Cajanus cajan L.): Upregulation of sucrose synthase and alcohol dehydrogenase. Plant Sci. 2008, 175, 706–716. [Google Scholar] [CrossRef]
- Zhang, J.; Van, T.T.; Huynh, L.; Preiszner, J.J. Development of flooding-tolerant Arabidopsis thaliana by autoregulated cytokinin production. Mol. Breed. 2000, 6, 135–144. [Google Scholar] [CrossRef]
- Plaut, Z.; Butow, B.J.; Blumenthal, C.S.; Wrigley, C.W. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crops Res. 2004, 86, 185–198. [Google Scholar] [CrossRef]
- Zhao, G.C.; Chang, X.H.; Liu, L.H.; Yang, Y.S.; Li, Z.H.; Zhou, S.Y.; Guo, Q.X.; Liu, Y.J. Grain yield and protein components responses to irrigation in strong gluten wheat. Acta Agron. Sin. 2007, 33, 1828–1833. [Google Scholar]
- Cooper, M.; Woodruff, D.R.; Phillips, I.G.; Basford, K.E.; Gilmour, A.R. Genotype-by-management interactions for grain yield and grain protein concentration of wheat. Field Crops Res. 2001, 69, 47–67. [Google Scholar] [CrossRef]
Year | Site | Organic Matter (g kg−1) | Alkali N (mg kg−1) | Alkali P (mg kg−1) | Alkali K (mg kg−1) | pH |
---|---|---|---|---|---|---|
2020 | Xingongzhong | 19.63 ± 1.12 | 53.74 ± 3.65 | 25.86 ± 1.48 | 147.98 ± 6.84 | 7.67 ± 0.33 |
2021 | Longxingchang | 17.65 ± 0.88 | 57.45 ± 4.42 | 26.83 ± 1.99 | 152.42 ± 8.36 | 7.32 ± 0.21 |
Years | Treatment | PH | SD | TLA | SPAD | Pn | LAI | Biomass | LT |
---|---|---|---|---|---|---|---|---|---|
2020 | W0 | 65.7 b | 0.30 a | 61.3 b | 43.76 c | 19.4 b | 2.91 c | 8043.9 b | 21.61 a |
W1 | 74.0 a | 0.31 a | 65.6 b | 48.28 b | 24.8 a | 4.55 ab | 9240.9 a | 20.11 ab | |
W2 | 79.3 a | 0.33 a | 74.7 a | 51.96 ab | 26.7 a | 4.69 a | 9697.8 a | 18.09 c | |
W3 | 78.7 a | 0.34 a | 75.4 a | 53.71 a | 26.3 a | 4.36 b | 9612.2 a | 18.33 bc | |
2021 | W0 | 67.4 b | 0.30 a | 60.4 b | 40.26 c | 20.6 c | 2.84 c | 8436.7 b | 20.43 a |
W1 | 76.2 a | 0.32 a | 67.9 a | 49.21 b | 23.5 b | 4.42 b | 9171.5 a | 19.27 a | |
W2 | 80.3 a | 0.34 a | 74.2 a | 52.86 a | 25.9 a | 4.71 a | 9536.7 a | 16.12 b | |
W3 | 81.5 a | 0.34 a | 73.7 a | 48.25 b | 26.2 a | 4.72 a | 9498.7 a | 15.87 b | |
r1 | 0.979 ** | 0.970 ** | 0.968 ** | 0.868 ** | 0.961 ** | 0.887 ** | 0.957 ** | −0.916 ** | |
r2 | 0.899 ** | 0.812 * | 0.863 ** | 0.893 ** | 0.910 ** | 0.918 ** | 0.932 ** | −0.763 * |
Year | Treatment | Grain Yield (kg ha−1) | Spike (104 ha−1) | Grains per Spike | 1000-Grain Weight (g) | Total Water Consumption (m3 ha−1) | Water Use Efficiency (kg m−3) |
---|---|---|---|---|---|---|---|
2020 | W0 | 5044.2 c | 625.5 c | 28.9 b | 36.9 b | 2296.5 c | 2.20 a |
W1 | 5957.0 b | 714.5 b | 31.4 a | 37.7 b | 2914.5 b | 2.04 a | |
W2 | 6579.9 a | 727.5 b | 28.2 b | 40.1 a | 3163.5 b | 2.07 a | |
W3 | 6704.1 a | 772.5 a | 27.2 b | 40.8 a | 3829.5 a | 1.75 b | |
2021 | W0 | 5352.3 c | 604.5 c | 30.4 a | 37.2 b | 2530.4 c | 2.12 a |
W1 | 6009.2 b | 669.0 b | 31.6 a | 39.5 ab | 3115.4 b | 1.92 a | |
W2 | 6860.7 a | 715.5 a | 32.1 a | 40.9 ab | 3349.4 b | 2.05 a | |
W3 | 6722.6 a | 721.5 a | 31.3 a | 41.3 a | 3926.4 a | 1.71 b |
Treatment | STA (%) | WGC (%) | SV (mL) | TW (g L−1) | FE (%) | WA (%) | DST (min) | DDT (min) | EA (cm2) | DM (mm) | MR (E.U.) |
---|---|---|---|---|---|---|---|---|---|---|---|
2020 | |||||||||||
W0 | 54.81 c | 32.7 ab | 42.2 bc | 836.5 a | 74.1 a | 60.9 a | 8.8 b | 4.5 a | 97.2 d | 166.0 c | 406.8 c |
W1 | 58.04 b | 38.8 a | 48.1 a | 838.4 a | 75.2 a | 62.5 a | 10.5 a | 4.7 a | 101.6 c | 175.0 b | 425.3 b |
W2 | 60.26 ab | 35.5 a | 45.3 ab | 845.3 a | 74.0 a | 64.2 a | 11.1 a | 5.1 a | 117.3 a | 186.0 a | 468.1 a |
W3 | 62.43 a | 30.6 b | 39.3 c | 840.1 a | 73.0 a | 62.6 a | 10.6 a | 4.8 a | 108.3 b | 174.3 b | 455.1 a |
2021 | |||||||||||
W0 | 57.01 c | 32.0 bc | 39.4 b | 815.3 a | 73.2 a | 61.3 a | 7.1 b | 4.4 a | 101.5 b | 163.5 b | 433.2 b |
W1 | 60.02 b | 37.5 a | 48.3 a | 819.2 a | 73.1 a | 62.7 a | 9.8 a | 4.5 a | 112.3 a | 171.2 a | 456.8 a |
W2 | 63.30 a | 34.7 ab | 46.4 a | 824.6 a | 74.3 a | 63.7 a | 10.4 a | 4.9 a | 115.6 a | 175.4 a | 461.2 a |
W3 | 64.76 a | 30.0 c | 37.9 b | 822.7 a | 74.4 a | 64.6 a | 9.1 a | 4.7 a | 114.8 a | 172.3 a | 459.4 a |
r | 0.938 ** | −0.093 | 0.023 | 0.162 | 0.086 | 0.887 | 0.671 | −0.129 | 0.737 * | 0.717 * | 0.571 |
Year | Treatment | Protein Content (%) | Protein Yield (kg ha−1) | Albumin (%) | Globulin (%) | Gliadin (%) | Glutenin (%) | Glutenin /Gliadin |
---|---|---|---|---|---|---|---|---|
2020 | W0 | 13.92 b | 702.2 c | 1.95 ab | 1.24 b | 3.19 b | 3.85 b | 1.21 b |
W1 | 15.01 a | 894.1 b | 2.13 a | 1.43 a | 3.42 a | 4.36 a | 1.27 b | |
W2 | 15.02 a | 988.3 a | 2.07 a | 1.45 a | 3.28 ab | 4.52 a | 1.38 a | |
W3 | 13.64 b | 914.4 b | 1.85 b | 1.16 b | 3.05 c | 3.89 b | 1.28 b | |
2021 | W0 | 13.84 ab | 740.8 c | 1.90 a | 1.20 b | 3.02 a | 3.68 b | 1.22 c |
W1 | 14.95 a | 898.4 b | 2.04 a | 1.40 a | 3.25 a | 4.25 a | 1.31 b | |
W2 | 14.87 a | 1020.2 a | 1.99 a | 1.35 a | 3.16 a | 4.41 a | 1.40 a | |
W3 | 13.21 b | 888.1 b | 1.69 b | 1.13 b | 2.99 a | 3.31 c | 1.11 d | |
r1 | 0.081 | 0.904 ** | −0.198 | 0.053 | −0.131 | 0.187 | 0.343 | |
r2 | / | 0.498 | 0.933 ** | 0.981 ** | 0.851 ** | 0.954 ** | 0.812 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Li, Q.; Xia, F.; Zhang, P.; Hao, S.; Sun, S.; Cui, C.; Zhang, Y. Optimized Water Management Strategies: Evaluating Limited-Irrigation Effects on Spring Wheat Productivity and Grain Nutritional Composition in Arid Agroecosystems. Agriculture 2025, 15, 1038. https://doi.org/10.3390/agriculture15101038
Zhao Z, Li Q, Xia F, Zhang P, Hao S, Sun S, Cui C, Zhang Y. Optimized Water Management Strategies: Evaluating Limited-Irrigation Effects on Spring Wheat Productivity and Grain Nutritional Composition in Arid Agroecosystems. Agriculture. 2025; 15(10):1038. https://doi.org/10.3390/agriculture15101038
Chicago/Turabian StyleZhao, Zhiwei, Qi Li, Fan Xia, Peng Zhang, Shuiyuan Hao, Shijun Sun, Chao Cui, and Yongping Zhang. 2025. "Optimized Water Management Strategies: Evaluating Limited-Irrigation Effects on Spring Wheat Productivity and Grain Nutritional Composition in Arid Agroecosystems" Agriculture 15, no. 10: 1038. https://doi.org/10.3390/agriculture15101038
APA StyleZhao, Z., Li, Q., Xia, F., Zhang, P., Hao, S., Sun, S., Cui, C., & Zhang, Y. (2025). Optimized Water Management Strategies: Evaluating Limited-Irrigation Effects on Spring Wheat Productivity and Grain Nutritional Composition in Arid Agroecosystems. Agriculture, 15(10), 1038. https://doi.org/10.3390/agriculture15101038