Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (562)

Search Parameters:
Keywords = wet food

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3924 KiB  
Article
Effects of Zinc-Layered Filler Incorporation Routes on the Antimicrobial, Mechanical, and Physical Properties of Calcium Caseinate Biopolymeric Films
by Maria E. Becerra, Reynell Pérez-Blanco, Oscar Giraldo, Lucia Medina-Pimentel and Christhy V. Ruiz
Molecules 2025, 30(15), 3307; https://doi.org/10.3390/molecules30153307 (registering DOI) - 7 Aug 2025
Abstract
As the demand for sustainable materials continues to grow, calcium caseinate (Cas) biopolymer films have emerged as promising alternatives to fossil-based plastics. However, their mechanical fragility and high-water sensitivity limit their application in packaging. In this study, we reinforced Cas films with zinc [...] Read more.
As the demand for sustainable materials continues to grow, calcium caseinate (Cas) biopolymer films have emerged as promising alternatives to fossil-based plastics. However, their mechanical fragility and high-water sensitivity limit their application in packaging. In this study, we reinforced Cas films with zinc hydroxide nitrate (ZHN) using two incorporation methods: wet (ZHN-w) and dry (ZHN-d). We evaluated how each method affected the dispersion of the filler and, consequently, the functional properties of the films. To our knowledge, this is the first report of ZHN being used in biopolymeric films. Structural and morphological analyses showed better dispersion of ZHN in the wet-incorporated films. These samples exhibited a substantial increase in tensile strength, from 0.75 ± 0.00 MPa to 9.62 ± 2.45 MPa, along with a marked improvement in Young’s modulus. The films also became less soluble in water, more resistant to swelling, and structurally more cohesive. In antimicrobial tests, the ZHN-w films showed stronger inhibition against E. coli and S. aureus. Overall, this approach offers a simple and effective way to enhance protein-based films using food-safe materials, making them suitable for active and bio-based packaging applications. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

30 pages, 4804 KiB  
Article
Deep Storage Irrigation Enhances Grain Yield of Winter Wheat by Improving Plant Growth and Grain-Filling Process in Northwest China
by Xiaodong Fan, Dianyu Chen, Haitao Che, Yakun Wang, Yadan Du and Xiaotao Hu
Agronomy 2025, 15(8), 1852; https://doi.org/10.3390/agronomy15081852 - 31 Jul 2025
Viewed by 246
Abstract
In the irrigation districts of Northern China, the flood resources utilization for deep storage irrigation, which is essentially characterized by active excessive irrigation, aims to have the potential to mitigate freshwater shortages, and long-term groundwater overexploitation. It is crucial to detect the effects [...] Read more.
In the irrigation districts of Northern China, the flood resources utilization for deep storage irrigation, which is essentially characterized by active excessive irrigation, aims to have the potential to mitigate freshwater shortages, and long-term groundwater overexploitation. It is crucial to detect the effects of irrigation amounts on agricultural yield and the mechanisms under deep storage irrigation. A three-year field experiment (2020–2023) was conducted in the Guanzhong Plain, according to five soil wetting layer depths (RF: 0 cm; W1: control, 120 cm; W2: 140 cm; W3: 160 cm; W4: 180 cm) with soil saturation water content as the irrigation upper limit. Results exhibited that, compared to W1, the W2, W3, and W4 treatments led to the increased plant height, leaf area index, and dry matter accumulation. Meanwhile, the W2, W3, and W4 treatments improved kernel weight increment achieving maximum grain-filling rate (Wmax), maximum grain-filling rate (Gmax), and average grain-filling rate (Gave), thereby enhancing the effective spikes (ES) and grain number per spike (GS), and thus increased wheat grain yield (GY). In relative to W1, the W2, W3, and W4 treatments increased the ES, GS, and GY by 11.89–19.81%, 8.61–14.36%, and 8.17–13.62% across the three years. Notably, no significant difference was observed in GS and GY between W3 and W4 treatments, but W4 treatment displayed significant decreases in ES by 3.04%, 3.06%, and 2.98% in the respective years. The application of a structural equation modeling (SEM) revealed that deep storage irrigation improved ES and GS by positively regulating Wmax, Gmax, and Gave, thus significantly increasing GY. Overall, this study identified the optimal threshold (W3 treatment) to maximize wheat yields by optimizing both the vegetative growth and grain-filling dynamics. This study provides essential support for the feasibility assessment of deep storage irrigation before flood seasons, which is vital for the balance and coordination of food security and water security. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

12 pages, 828 KiB  
Communication
Enhanced Protein Extraction from Auxenochlorella protothecoides Through Synergistic Mechanical Cell Disruption and Alkaline Solubilization
by Jun Wei Ng, Sze Ying Lee, Tong Mei Teh, Melanie Weingarten and Md. Mahabubur Rahman Talukder
Foods 2025, 14(15), 2597; https://doi.org/10.3390/foods14152597 - 24 Jul 2025
Viewed by 242
Abstract
Microalgae proteins are increasingly recognized in the food and nutraceutical industries for their functional versatility and high nutritional value. Mild alkaline treatment is commonly used for cell wall degradation and intracellular protein solubilization, consequently enhancing the protein extraction yield. The findings of this [...] Read more.
Microalgae proteins are increasingly recognized in the food and nutraceutical industries for their functional versatility and high nutritional value. Mild alkaline treatment is commonly used for cell wall degradation and intracellular protein solubilization, consequently enhancing the protein extraction yield. The findings of this study reveal that alkaline treatment alone, even at higher NaOH concentration (up to 0.3 M) and treatment time (up to 90 min), was ineffective (max. 2.4% yield) for the extraction of protein from Auxenochlorella protothecoides biomass. This challenge was significantly reduced through synergistic application of mechanical cell disruption using high-pressure homogenization (HPH) and alkaline solubilization. Single-pass HPH (35 k psi) alone without alkaline treatment led to 52.3% protein solubilization from wet biomass directly harvested from culture broth, while it was only 18.5% for spray-dried biomass. The combined effect of HPH and alkaline (0.1 M NaOH) treatment significantly increased protein extraction yield to 68.0% for a spray-dried biomass loading of 50 g L−1. Through replacing spray-dried biomass with wet biomass, the requirement of NaOH was reduced by 5-fold to 0.02 M to achieve a similar yield of 68.1%. The process integration of HPH with the mild alkaline solubilization and utilization of wet biomass from culture broth showed high potential for industrialization of microalgae protein extraction. This method achieves high extraction yield while reducing alkaline waste and eliminating the need for energy-consuming drying of biomass, thereby minimizing the environmental impact. Full article
Show Figures

Figure 1

19 pages, 3806 KiB  
Article
Farmdee-Mesook: An Intuitive GHG Awareness Smart Agriculture Platform
by Mongkol Raksapatcharawong and Watcharee Veerakachen
Agronomy 2025, 15(8), 1772; https://doi.org/10.3390/agronomy15081772 - 24 Jul 2025
Viewed by 357
Abstract
Climate change presents urgent and complex challenges to agricultural sustainability and food security, particularly in regions reliant on resource-intensive staple crops. Smart agriculture—through the integration of crop modeling, satellite remote sensing, and artificial intelligence (AI)—offers data-driven strategies to enhance productivity, optimize input use, [...] Read more.
Climate change presents urgent and complex challenges to agricultural sustainability and food security, particularly in regions reliant on resource-intensive staple crops. Smart agriculture—through the integration of crop modeling, satellite remote sensing, and artificial intelligence (AI)—offers data-driven strategies to enhance productivity, optimize input use, and mitigate greenhouse gas (GHG) emissions. This study introduces Farmdee-Mesook, a mobile-first smart agriculture platform designed specifically for Thai rice farmers. The platform leverages AquaCrop simulation, open-access satellite data, and localized agronomic models to deliver real-time, field-specific recommendations. Usability-focused design and no-cost access facilitate its widespread adoption, particularly among smallholders. Empirical results show that platform users achieved yield increases of up to 37%, reduced agrochemical costs by 59%, and improved water productivity by 44% under alternate wetting and drying (AWD) irrigation schemes. These outcomes underscore the platform’s role as a scalable, cost-effective solution for operationalizing climate-smart agriculture. Farmdee-Mesook demonstrates that digital technologies, when contextually tailored and institutionally supported, can serve as critical enablers of climate adaptation and sustainable agricultural transformation. Full article
(This article belongs to the Special Issue Smart Farming Technologies for Sustainable Agriculture—2nd Edition)
Show Figures

Figure 1

12 pages, 249 KiB  
Data Descriptor
Time Series Dataset of Phenology, Biomass, and Chemical Composition of Cassava (Manihot esculenta Crantz) as Affected by Time of Planting and Variety Interactions in Field Trials at Koronivia, Fiji
by Poasa Nauluvula, Bruce L. Webber, Roslyn M. Gleadow, William Aalbersberg, John N. G. Hargreaves, Bianca T. Das, Diogenes L. Antille and Steven J. Crimp
Data 2025, 10(8), 120; https://doi.org/10.3390/data10080120 - 23 Jul 2025
Viewed by 610
Abstract
Cassava is the sixth most important food crop and is cultivated in more than 100 countries. The crop tolerates low soil fertility and drought, enabling it to play a role in climate adaptation strategies. Cassava generally requires careful preparation to remove toxic hydrogen [...] Read more.
Cassava is the sixth most important food crop and is cultivated in more than 100 countries. The crop tolerates low soil fertility and drought, enabling it to play a role in climate adaptation strategies. Cassava generally requires careful preparation to remove toxic hydrogen cyanide (HCN) before its consumption, but HCN concentrations can vary considerably between varieties. Climate change and low inputs, particularly carbon and nutrients, affect agriculture in Pacific Island countries where cassava is commonly grown alongside traditional crops (e.g., taro). Despite increasing popularity in this region, there is limited experimental data about cassava crop management for different local varieties, their relative toxicity and nutritional value for human consumption, and their interaction with changing climate conditions. To help address this knowledge gap, three field experiments were conducted at the Koronivia Research Station of the Fiji Ministry of Agriculture. Two varieties of cassava with contrasting HCN content were planted at three different times coinciding with the start of the wet (September-October) or dry (April) seasons. A time series of measurements was conducted during the full 18-month or differing 6-month durations of each crop, based on destructive harvests and phenological observations. The former included determination of total biomass, HCN potential, carbon isotopes (δ13C), and elemental composition. Yield and nutritional value were significantly affected by variety and time of planting, and there were interactions between the two factors. Findings from this work will improve cassava management locally and will provide a valuable dataset for agronomic and biophysical model testing. Full article
16 pages, 3380 KiB  
Article
Native Fungi as a Nature-Based Solution to Mitigate Toxic Metal(loid) Accumulation in Rice
by Laura Canonica, Michele Pesenti, Fabrizio Araniti, Jens Laurids Sørensen, Jens Muff, Grazia Cecchi, Simone Di Piazza, Fabio Francesco Nocito and Mirca Zotti
Microorganisms 2025, 13(7), 1667; https://doi.org/10.3390/microorganisms13071667 - 16 Jul 2025
Viewed by 330
Abstract
Heavy metal contamination in paddy fields poses serious risks to food safety and crop productivity. This study evaluated the potential of native soil fungi as bioinoculants to reduce metal uptake in rice cultivated under contaminated conditions. Eight fungal strains—four indigenous and four allochthonous—were [...] Read more.
Heavy metal contamination in paddy fields poses serious risks to food safety and crop productivity. This study evaluated the potential of native soil fungi as bioinoculants to reduce metal uptake in rice cultivated under contaminated conditions. Eight fungal strains—four indigenous and four allochthonous—were selected based on their plant growth-promoting traits, including siderophore production and phosphate solubilization. Additional metabolic analysis confirmed the production of bioactive secondary metabolites. In a greenhouse experiment, three rice cultivars were grown under permanent flooding (PF) and alternate wetting and drying (AWD) in soil enriched with arsenic, cadmium, chromium, and copper. Inoculation with indigenous fungi under AWD significantly reduced the arsenic accumulation in rice shoots by up to 75%. While AWD increased cadmium uptake across all cultivars, fungal inoculation led to a moderate reduction in cadmium accumulation—ranging from 15% to 25%—in some varieties. These effects were not observed under PF conditions. The results demonstrate the potential of native fungi as a nature-based solution to mitigate heavy metal stress in rice cultivation, supporting both environmental remediation and sustainable agriculture. Full article
(This article belongs to the Special Issue Plant and Microbial Interactions in Soil Remediation)
Show Figures

Figure 1

22 pages, 826 KiB  
Review
Inactivation of Emerging Opportunistic Foodborne Pathogens Cronobacter spp. and Arcobacter spp. on Fresh Fruit and Vegetable Products: Effects of Emerging Chemical and Physical Methods in Model and Real Food Systems—A Review
by Junior Bernardo Molina-Hernandez, Beatrice Cellini, Fatemeh Shanbeh Zadeh, Lucia Vannini, Pietro Rocculi and Silvia Tappi
Foods 2025, 14(14), 2463; https://doi.org/10.3390/foods14142463 - 14 Jul 2025
Viewed by 711
Abstract
The consumption of fresh fruit and vegetables is essential for a healthy diet as they contain a diverse composition of vitamins, minerals, fibre, and bioactive compounds. However, cross-contamination during harvest and post-harvest poses a high risk of microbial contamination. Therefore, handling fruit and [...] Read more.
The consumption of fresh fruit and vegetables is essential for a healthy diet as they contain a diverse composition of vitamins, minerals, fibre, and bioactive compounds. However, cross-contamination during harvest and post-harvest poses a high risk of microbial contamination. Therefore, handling fruit and vegetables during processing and contact with wet equipment and utensil surfaces is an ideal environment for microbial contamination and foodborne illness. Nevertheless, less attention has been paid to some emerging pathogens that are now increasingly recognised as transmissible to humans through contaminated fruit and vegetables, such as Arcobacter and Cronobacter species in various products, which are the main risk in fruit and vegetables. Cronobacter and Arcobacter spp. are recognised food-safety hazards because they pose a risk of foodborne disease, especially in vulnerable groups such as newborns and immunocompromised individuals. Cronobacter spp. have been linked to severe infant conditions—notably meningitis and sepsis—most often traced to contaminated powdered infant formula. Although Arcobacter spp. have been less extensively studied, they have also been associated with foodborne disease, chiefly from dairy products and meat. With this in mind, this review provides an overview of the main chemical and physical sanitisation methods in terms of their ability to reduce the contamination of fresh fruit and vegetable products caused by two emerging pathogens: Arcobacter and Cronobacter. Emerging chemical (organic acid compounds, extracts, and essential oils) and physical methods (combination of UV-C with electrolysed water, ultrasound, and cold atmospheric plasma) offer innovative and environmentally friendly alternatives to traditional approaches. These methods often utilise natural materials, less toxic solvents, and novel techniques, resulting in more sustainable processes compared with traditional methods that may use harsh chemicals and environmentally harmful processes. This review provides the fruit and vegetable industry with a general overview of possible decontamination alternatives to develop optimal and efficient processes that ensure food safety. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

18 pages, 22954 KiB  
Article
Spatiotemporal Analysis of Drought Variation from 2001 to 2023 in the China–Mongolia–Russia Transboundary Heilongjiang River Basin Based on ITVDI
by Weihao Zou, Juanle Wang, Congrong Li, Keming Yang, Denis Fetisov, Jiawei Jiang, Meng Liu and Yaping Liu
Remote Sens. 2025, 17(14), 2366; https://doi.org/10.3390/rs17142366 - 9 Jul 2025
Viewed by 374
Abstract
Drought impacts agricultural production and regional sustainable development. Accordingly, timely and accurate drought monitoring is essential for ensuring food security in rain-fed agricultural regions. Alternating drought and flood events frequently occur in the Heilongjiang River Basin, the largest grain-producing area in Far East [...] Read more.
Drought impacts agricultural production and regional sustainable development. Accordingly, timely and accurate drought monitoring is essential for ensuring food security in rain-fed agricultural regions. Alternating drought and flood events frequently occur in the Heilongjiang River Basin, the largest grain-producing area in Far East Asia. However, spatiotemporal variability in drought is not well understood, in part owing to the limitations of the traditional Temperature Vegetation Dryness Index (TVDI). In this study, an Improved Temperature Vegetation Dryness Index (ITVDI) was developed by incorporating Digital Elevation Model data to correct land surface temperatures and introducing a constraint line method to replace the traditional linear regression for fitting dry–wet boundaries. Based on MODIS (Moderate-resolution Imaging Spectroradiometer) normalized vegetation index and land surface temperature products, the Heilongjiang River Basin, a cross-border basin between China, Mongolia, and Russia, exhibited pronounced spatiotemporal variability in drought conditions of the growing season from 2001 to 2023. Drought severity demonstrated clear geographical zonation, with a higher intensity in the western region and lower intensity in the eastern region. The Mongolian Plateau and grasslands were identified as drought hotspots. The Far East Asia forest belt was relatively humid, with an overall lower drought risk. The central region exhibited variation in drought characteristics. From the perspective of cross-national differences, the drought severity distribution in Northeast China and Inner Mongolia exhibits marked spatial heterogeneity. In Mongolia, regional drought levels exhibited a notable trend toward homogenization, with a higher proportion of extreme drought than in other areas. The overall drought risk in the Russian part of the basin was relatively low. A trend analysis indicated a general pattern of drought alleviation in western regions and intensification in eastern areas. Most regions showed relatively stable patterns, with few areas exhibiting significant changes, mainly surrounding cities such as Qiqihar, Daqing, Harbin, Changchun, and Amur Oblast. Regions with aggravation accounted for 52.29% of the total study area, while regions showing slight alleviation account for 35.58%. This study provides a scientific basis and data infrastructure for drought monitoring in transboundary watersheds and for ensuring agricultural production security. Full article
Show Figures

Figure 1

19 pages, 2055 KiB  
Article
Extract of Tangerine Peel as a Botanical Insecticide Candidate for Smallholder Potato Cultivation
by José-Manuel Pais-Chanfrau, Lisbeth J. Quiñonez-Montaño, Jimmy Núñez-Pérez, Julia K. Prado-Beltrán, Magali Cañarejo-Antamba, Jhomaira L. Burbano-García, Andrea J. Chiliquinga-Quispe and Hortensia M. Rodríguez Cabrera
Insects 2025, 16(7), 680; https://doi.org/10.3390/insects16070680 - 29 Jun 2025
Viewed by 857
Abstract
Background: Contemporary agriculture heavily relies on synthetic chemicals to ensure high yields and food security; however, their overuse has led to health issues and the development of pesticide resistance in pests. Researchers are now exploring natural, eco-friendly alternatives for pest control. Methods: This [...] Read more.
Background: Contemporary agriculture heavily relies on synthetic chemicals to ensure high yields and food security; however, their overuse has led to health issues and the development of pesticide resistance in pests. Researchers are now exploring natural, eco-friendly alternatives for pest control. Methods: This study evaluated two ethanol-based formulations (1.25% and 2.50%, v/v) derived from the tangerine peel (Citrus reticulata L. var. Clementina) against conventional chemical treatments and an untreated control group in the cultivation of potatoes (Solanum tuberosum L. var. Capiro). A randomised block design was used, with three blocks per treatment containing 45 plants. The experiment was conducted during the wet season (February–April 2023). Results: According to visual inspections and yellow traps, following weekly application from days 30 to 105 post-planting to monitor pest (e.g., Frankliniella occidentalis, Aphididae) and beneficial insect (e.g., Coccinellidae, Apis mellifera) populations, the 2.50% formulation performed similarly to chemical treatments against pests, whilst being harmless to beneficial insects. Post-harvest analysis showed that the formulations achieved 73% of conventional yields, with comparable tuber damage and levels of Premnotrypes vorax larvae. Conclusions: Toxicological tests confirmed the eco-friendliness of the formulations, making them suitable for small-scale Andean ‘chakras’ in organic farming and honey production, without the use of chemicals. Full article
Show Figures

Graphical abstract

18 pages, 1217 KiB  
Article
Nutritional Profiling and Labeling Practices of Plant-Based, Hybrid, and Animal-Based Dog Foods: A Study of European Pack Labels (2020–2024)
by Fatma Boukid and Kurt A. Rosentrater
Animals 2025, 15(13), 1883; https://doi.org/10.3390/ani15131883 - 26 Jun 2025
Viewed by 679
Abstract
As pet owners become increasingly mindful of pet health and sustainability, labeling plays a crucial role in shaping informed purchasing decisions for pet food. This study evaluated the nutritional adequacy and pricing of plant-based, hybrid, and animal-based dog foods. Using the Mintel database, [...] Read more.
As pet owners become increasingly mindful of pet health and sustainability, labeling plays a crucial role in shaping informed purchasing decisions for pet food. This study evaluated the nutritional adequacy and pricing of plant-based, hybrid, and animal-based dog foods. Using the Mintel database, we analyzed product labels, ingredient compositions, and marketing claims for various dog food categories. The findings revealed notable differences in key nutrients, such as protein, fiber, fat, ash, and moisture content. Plant-based dog foods generally offer higher fiber and ash content but often fall short in protein and fat levels, particularly in snacks and treats, which may impact their suitability for meeting the dietary needs of canines. Hybrid dog foods, which blend plant and animal ingredients, show greater variability, with some achieving balanced protein and fat content, while fiber levels depend on the plant-based proportion. Animal-based foods tend to excel in protein and fat content, particularly in wet and dry formats, while being lower in fiber and ash content. A key concern is the reliance on additives, particularly in plant-based and hybrid options, which raises questions about the long-term health impacts on pets. Pricing trends indicate that plant-based dog foods are generally more expensive than hybrid and animal-based options, although the cost varies widely across all categories. Full article
(This article belongs to the Special Issue Advancements in Nutritional Management of Companion Animals)
Show Figures

Figure 1

19 pages, 1954 KiB  
Article
Biochar Makes Soil Organic Carbon More Labile, but Its Carbon Sequestration Potential Remains Large in an Alternate Wetting and Drying Paddy Ecosystem
by Wanning Dai, Zhengrong Bao, Jun Meng, Taotao Chen and Xiao Liang
Agronomy 2025, 15(7), 1547; https://doi.org/10.3390/agronomy15071547 - 25 Jun 2025
Cited by 1 | Viewed by 422
Abstract
Given the worsening global climate change that drives drought frequency and irrigation water shortages, implementing water-conserving practices like alternate wetting and drying (AWD) is now critically urgent. Biochar is widely used for soil carbon sequestration. However, there is limited information on the effects [...] Read more.
Given the worsening global climate change that drives drought frequency and irrigation water shortages, implementing water-conserving practices like alternate wetting and drying (AWD) is now critically urgent. Biochar is widely used for soil carbon sequestration. However, there is limited information on the effects of biochar on soil organic carbon (SOC) and its labile fractions in paddy fields, especially under AWD. A two-year field experiment was conducted with two irrigation regimes (CF: continuous flooding irrigation; AWD) as the main plots and 0 (B0) and 20 t ha−1 (B1) biochar as sub-plots. AWD had no effect on the SOC and particulate organic carbon (POC) content, but increased the dissolved organic carbon (DOC), microbial biomass carbon (MBC), easily oxidizable organic carbon (EOC), light fraction organic carbon (LFOC), and carbon pool management index (CPMI) at 0–10 cm depths, by 24.4–56.4%, 12.6–17.7%, 9.2–16.8%, 25.6–28.1%, and 11.3–18.6%, respectively. Biochar increased SOC while also increasing DOC, MBC, EOC, LFOC, POC, and CPMI at 0–20 cm depths, by 18.4–53.3%, 14.7–70.2%, 17.4–22.3%, 10.2–27.6%, 95.2–188.3%, 46.6–224%, and 5.6–27.2, respectively, making SOC more labile under AWD. Our results highlight that biochar still holds great potential for improving soil quality and carbon sequestration under AWD, and the combination of biochar and AWD can achieve the synergistic optimization of the food–water–carbon sequestration trade-off, which is beneficial to sustainable agricultural production. Full article
(This article belongs to the Special Issue Biochar’s Role in the Sustainability of Agriculture)
Show Figures

Figure 1

21 pages, 6399 KiB  
Article
An Upscaling-Based Strategy to Improve the Ephemeral Gully Mapping Accuracy
by Solmaz Fathololoumi, Daniel D. Saurette, Harnoordeep Singh Mann, Naoya Kadota, Hiteshkumar B. Vasava, Mojtaba Naeimi, Prasad Daggupati and Asim Biswas
Land 2025, 14(7), 1344; https://doi.org/10.3390/land14071344 - 24 Jun 2025
Viewed by 394
Abstract
Understanding and mapping ephemeral gullies (EGs) are vital for enhancing agricultural productivity and achieving food security. This study proposes an upscaling-based strategy to refine the predictive mapping of EGs, utilizing high-resolution Pléiades Neo (0.6 m) and medium-resolution Sentinel-2 (10 m) satellite imagery, alongside [...] Read more.
Understanding and mapping ephemeral gullies (EGs) are vital for enhancing agricultural productivity and achieving food security. This study proposes an upscaling-based strategy to refine the predictive mapping of EGs, utilizing high-resolution Pléiades Neo (0.6 m) and medium-resolution Sentinel-2 (10 m) satellite imagery, alongside ground-truth EGs mapping in Niagara Region, Canada. The research involved generating spectral feature maps using Blue, Green, Red, and Near-infrared spectral bands, complemented by indices indicative of surface wetness, vegetation, color, and soil texture. Employing the Random Forest (RF) algorithm, this study executed three distinct strategies for EGs identification. The first strategy involved direct calibration using Sentinel-2 spectral features for 10 m resolution mapping. The second strategy utilized high-resolution Pléiades Neo data for model calibration, enabling EGs mapping at resolutions of 0.6, 2, 4, 6, and 8 m. The third, or upscaling strategy, applied the high-resolution calibrated model to medium-resolution Sentinel-2 imagery, producing 10 m resolution EGs maps. The accuracy of these maps was evaluated against actual data and compared across strategies. The findings highlight the Variable Importance Measure (VIM) of different spectral features in EGs identification, with normalized near-infrared (Norm NIR) and normalized red reflectance (Norm Red) exhibiting the highest and lowest VIM, respectively. Vegetation-related indices demonstrated a higher VIM compared to surface wetness indices. The overall classification error of the upscaling strategy at spatial resolutions of 0.6, 2, 4, 6, 8, and 10 m (Upscaled), as well as that of the direct Sentinel-2 model, were 7.9%, 8.2%, 9.1%, 10.3%, 11.2%, 12.5%, and 14.5%, respectively. The errors for EGs maps at various resolutions revealed an increase in identification error with higher spatial resolution. However, the upscaling strategy significantly improved the accuracy of EGs identification in medium spatial resolution scenarios. This study not only advances the methodology for EGs mapping but also contributes to the broader field of precision agriculture and environmental management. By providing a scalable and accessible approach to EGs mapping, this research supports enhanced soil conservation practices and sustainable land management, addressing key challenges in agricultural sustainability and environmental stewardship. Full article
Show Figures

Figure 1

19 pages, 931 KiB  
Article
Widespread Contamination by Anticoagulant Rodenticides in Insectivorous Wildlife from the Canary Islands: Exploring Alternative Routes of Exposure
by Beatriz Martín Cruz, Andrea Acosta Dacal, Ana Macías-Montes, Cristian Rial-Berriel, Manuel Zumbado, Luis Alberto Henríquez-Hernández, Ramón Gallo-Barneto, Miguel Ángel Cabrera-Pérez and Octavio P. Luzardo
Toxics 2025, 13(6), 505; https://doi.org/10.3390/toxics13060505 - 15 Jun 2025
Viewed by 532
Abstract
Research on anticoagulant rodenticides (ARs) in wildlife has primarily focused on apex predators, with less attention given to their potential integration into lower trophic levels and the associated exposure pathways. At the base of the terrestrial food web, invertebrates have been suggested as [...] Read more.
Research on anticoagulant rodenticides (ARs) in wildlife has primarily focused on apex predators, with less attention given to their potential integration into lower trophic levels and the associated exposure pathways. At the base of the terrestrial food web, invertebrates have been suggested as potential vectors of ARs to insectivorous species such as small mammals, reptiles, and birds. To explore this hypothesis, we analyzed the presence of nine anticoagulant rodenticides—including both first-generation (FGARs) and second-generation (SGARs) rodenticides—in 36 liver samples from Yemen chameleons (Chamaeleo calyptratus) and 98 liver samples from six non-raptorial, predominantly insectivorous bird species from the Canary Islands. Through HPLC-MS/MS analysis, only SGARs were detected in both animal groups collected between 2021 and 2024. Approximately 80% of reptiles and 40% of birds tested positive for at least one SGAR, with brodifacoum being the most frequently detected compound. In more than 90% of positive cases, it was found as the sole contaminant, while co-occurrence with other SGARs was uncommon. Additionally, most concentrations were below 50 ng/g wet weight, except for two bird specimens, suggesting heterogeneous exposure scenarios and potential variability in contamination sources across individuals. These findings provide evidence of AR integration at the base of the terrestrial food web in the Canary Islands and suggest secondary exposure via invertebrates as a plausible route of contamination. Further research directly analyzing invertebrate samples is needed to confirm their role as vectors of ARs to insectivorous wildlife in insular ecosystems. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Graphical abstract

17 pages, 1053 KiB  
Review
Exploring the Roles of Plant Growth-Promoting Rhizobacteria (PGPR) and Alternate Wetting and Drying (AWD) in Sustainable Rice Cultivation
by Chesly Kit Kobua, Yu-Min Wang and Ying-Tzy Jou
Soil Syst. 2025, 9(2), 61; https://doi.org/10.3390/soilsystems9020061 - 11 Jun 2025
Viewed by 808
Abstract
Rice sustains a large global population, making its sustainable production vital for food security. Alternate wetting-and-drying (AWD) irrigation offers a promising approach to reducing water use in rice paddies but can impact grain yields. Plant growth-promoting rhizobacteria (PGPR) can enhance rice productivity under [...] Read more.
Rice sustains a large global population, making its sustainable production vital for food security. Alternate wetting-and-drying (AWD) irrigation offers a promising approach to reducing water use in rice paddies but can impact grain yields. Plant growth-promoting rhizobacteria (PGPR) can enhance rice productivity under AWD cultivation conditions. This review explores integrating PGPR into AWD systems, focusing on their mechanisms for promoting growth and water stress resilience. It examines diverse microbial communities, particularly bacteria, and their contributions to nutrient acquisition, root development, and other beneficial processes in rice under fluctuating moisture, as well as the influence of AWD on rice’s structural and physiological development. The challenges and opportunities of AWD are also addressed, along with the importance of bacterial selection and interactions with the native soil microbiome. This synthesizes current research to provide an overview of PGPR’s potential to improve sustainable and productive rice cultivation under AWD. Future studies can leverage powerful tools such as e-DNA and NGS for a deeper understanding of these complex interactions. Full article
(This article belongs to the Special Issue Microbial Community Structure and Function in Soils)
Show Figures

Figure 1

21 pages, 8188 KiB  
Article
Spatio-Temporal Trends in Wildlife-Vehicle Collisions: Implications for Socio-Ecological Sustainability
by Manju Shree Thakur, Prakash Chandra Aryal, Hari Prasad Pandey and Tek Narayan Maraseni
Animals 2025, 15(10), 1478; https://doi.org/10.3390/ani15101478 - 20 May 2025
Viewed by 1789
Abstract
The conservation of biodiversity and the balance between ecological and societal needs are critical but often contested global issues. Wildlife-vehicle collision (WVC) on vital infrastructure, especially linear infrastructure, remains a persistent challenge from policy to practice and poses a serious life-threatening implication to [...] Read more.
The conservation of biodiversity and the balance between ecological and societal needs are critical but often contested global issues. Wildlife-vehicle collision (WVC) on vital infrastructure, especially linear infrastructure, remains a persistent challenge from policy to practice and poses a serious life-threatening implication to humans and other non-human lives. Addressing this issue effectively requires solutions that provide win-win outcomes from both ecological and societal perspectives. This study critically analyzes a decade of roadkill incidents along Nepal’s longest East-West national highway, which passes through a biologically diverse national park in the western Terai Arc Landscape Area (TAL). Findings are drawn from field-based primary data collection of the period 2012–2022, secondary literature review, key informant interviews, and spatial analysis. The study reveals significant variations in roadkill incidence across areas and years. Despite Bardia National Park being larger and having a higher wildlife density, Banke National Park recorded higher roadkill rates. This is attributed to insufficient mitigation measures and law enforcement, more straight highway segments, and the absence of buffer zones between the core park and adjacent forest areas—only a road separates them. Wild boars (Sus scrofa) and spotted deer (Axis axis), the primary prey of Bengal tigers (Panthera tigris tigris), were the most frequently road-killed species. This may contribute to human-tiger conflicts, as observed in the study areas. Seasonal trends showed that reptiles were at higher risk during the wet season and mammals during winter. Hotspots were often located near checkpoints and water bodies, highlighting the need for targeted mitigation efforts such as wildlife crossings and provisioning wildlife requirements such as water, grassland, and shelter away from the regular traffic roads. Roadkill frequency was also influenced by forest cover and time of day, with more incidents occurring at dawn and dusk when most of the herbivores become more active in search of food, shelter, water, and their herds. The findings underscore the importance of road characteristics, animal behavior, and landscape features in roadkill occurrences. Effective mitigation strategies include wildlife crossings, speed limits, warning signs, and public education campaigns. Further research is needed to understand the factors in driving variations between parks and to assess the effectiveness of mitigation measures. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

Back to TopTop