Time Series Dataset of Phenology, Biomass, and Chemical Composition of Cassava (Manihot esculenta Crantz) as Affected by Time of Planting and Variety Interactions in Field Trials at Koronivia, Fiji
Abstract
1. Introduction
2. Data Description
2.1. Overview of Experiments and Experimental Site
2.2. Cassava Crop Data
2.2.1. Phenology
2.2.2. Biomass
2.2.3. Chemical Composition
3. Methods
3.1. Field Experiments
3.1.1. Weather
3.1.2. Soil
3.1.3. Experiment Layout
3.1.4. Crop Management
Field Operation | Main Experiment | First 6-Month Experiment | Second 6-Month Experiment |
---|---|---|---|
Planting | 24/10/2010 | 11/4/2011 | 22/9/2011 |
Harvest 1 | 24/11/2010 | 11/10/2011 * | 23/3/2012 * |
Harvest 2 | 20/12/2010 | ||
Harvest 3 | 17/1/2011 | ||
Harvest 4 | 15/2/2011 | ||
Harvest 5 | 11/4/2011 * | ||
Harvest 6 | 6/6/2011 | ||
Harvest 7 | 1/8/2011 | ||
Harvest 8 | 26/9/2011 * | ||
Harvest 9 | 13/12/2011 | ||
Harvest 10 | 19/3/2012 * |
3.2. Crop Measurements
3.2.1. Phenology Observations
3.2.2. Biomass Measurements and Subsampling for Chemical Analyses
3.2.3. Analysis for Cyanogenic Glucoside Concentrations in Leaf and Tuber
3.2.4. Nutrient Analyses in Leaf and Tuber
3.2.5. 13C Analysis in Leaf and Tuber
4. User Notes
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Authors’ Disclaimer
References
- Brown, A.L.; Cavagnaro, T.R.; Gleadow, R.; Miller, R.E. Interactive effects of temperature and drought on cassava growth and toxicity: Implications for food security? Glob. Chang. Biol. 2016, 22, 3461–3473. [Google Scholar] [CrossRef] [PubMed]
- Gleadow, R.M.; Maher, K.; Cliff, J. Cassava. Curr. Biol. 2023, 33, R384–R386. [Google Scholar] [CrossRef] [PubMed]
- El-Sharkawy, M.A. Drought-tolerant cassava for Africa, Asia, and Latin America. Bioscience 1993, 43, 441–451. [Google Scholar] [CrossRef]
- Burns, A.; Gleadow, R.; Cliff, J.; Zacarias, A.; Cavagnaro, T. Cassava: The drought, war and famine crop in a changing world. Sustainability 2010, 2, 3572–3607. [Google Scholar] [CrossRef]
- Hillocks, R.J.; Thresh, J.M.; Bellotti, A.C. Cassava: Biology, Production and Utilization; CABI Publishing: Oxford, UK, 2002; p. 332. ISBN 978-0-85199-524-3. [Google Scholar]
- Lebot, V. Tropical Root and Tuber Crops: Cassava, Sweet Potato, Yams and Aroids, 2nd ed.; CABI Publishing: Oxford, UK, 2020; p. 515. ISBN 978-1-78924-336-9. [Google Scholar]
- McKey, D.; Cavagnaro, T.R.; Cliff, J.; Gleadow, R.M. Chemical ecology in coupled human and natural systems: People, manioc, multitrophic interactions and global change. Chemoecology 2010, 20, 109–133. [Google Scholar] [CrossRef]
- FAO; IFAD. The World Cassava Economy: Facts, Trends and Outlooks; Food and Agriculture Organisation of the United Nations and International Fund for Agricultural Development: Rome, Italy, 2000; ISBN 92-5-104399-X. Available online: https://www.fao.org/4/x4007e/X4007E00.htm (accessed on 17 May 2025).
- FAOSTAT. FAOSTAT Database. 2016. Available online: http://www.fao.org/faostat/ (accessed on 6 November 2018).
- Jarvis, A.; Ramirez-Villegas, J.; Herrera Campo, B.V.; Navarro-Racines, C. Is cassava the answer to African climate change adaptation? Trop. Plant Biol. 2012, 5, 9–29. [Google Scholar] [CrossRef]
- Taylor, M.; McGregor, A.; Dawson, B. Vulnerability of Pacific Island Agriculture and Forestry to Climate Change; Pacific Community (SPC): Suva, Fiji, 2016; Available online: https://www.spc.int/sites/default/files/wordpresscontent/wp-content/uploads/2016/12/Vulnerability-of-Pacific-Island-agriculture-and-forestry-to-climate-change.pdf (accessed on 14 December 2024).
- Meier, E.A.; Antille, D.L.; Mahimairaja, S. Priorities for narrowing the yield gap and increasing farming systems resilience in the Fiji sugar industry. Farming Syst. 2023, 1, 100048. [Google Scholar] [CrossRef]
- Antille, D.L.; Macdonald, B.C.T.; Uelese, A.; Webb, M.J.; Kelly, J.; Tauati, S.; Stockmann, U.; Palmer, J.; Barringer, J.R.F. Toward soil nutrient security for improved agronomic performance and increased resilience of taro production systems in Samoa. Soil Syst. 2023, 7, 21. [Google Scholar] [CrossRef]
- Antille, D.L.; Field, D.J.; Halavatau, S.M.; Iramu, E.T.; Macdonald, B.C.T.; Singh, K.; Webb, M.J. Regional soil priorities creating partnerships with Australia and New Zealand across the Pacific. Geoderma Reg. 2022, 29, e00517. [Google Scholar] [CrossRef]
- Susumu, G.; Sharma, A.; Halavatau, S.; Antille, D.L.; Webb, M.J.; Barringer, J.; Kelly, J.; Macdonald, B. Declining soil nutrient status can constrain agricultural productivity and food security in Pacific Island countries: A country-scale assessment. Pac. Sci. 2023, 76, 337–348. [Google Scholar] [CrossRef]
- Jansen, A.A.J.; Parkinson, S.; Robertson, A.F.S. (Eds.) Food and Nutrition in Fiji: A Historical Review. In Nutrition-Related Diseases and Their Prevention; The Department of Nutrition and Dietetics, Fiji School of Medicine, and The Institute of Pacific Studies of The University of the South Pacific, School of Medicine and Institute of Pacific Studies: Suva, Fiji, 1991; Volume 2, p. 719. ISBN 9-8202-0061-X. [Google Scholar]
- Hone, P. An investigation of determinants of food choice in Fiji: Their role in demand for nutritionally dense food and nutrition security (ADP/1998/095). In Adoption of ACIAR Project Outputs—Studies of Projects Completed in 2003–2004; Pearce, D., Davis, J., Eds.; Australian Centre for International Agricultural Research (Australian Government): Canberra, Australia, 2008; pp. 19–22. [Google Scholar]
- CSIRO; Australian Bureau of Meteorology; SPREP. Climate in the Pacific: A summary of new science management tools. In Change Science and Adaptation Planning Program Summary Report; Commonwealth Scientific and Industrial Research Organisation (CSIRO): Melbourne, Australia, 2015; p. 48. [Google Scholar] [CrossRef]
- Cardoso, A.P.; Ernesto, M.; Nicala, D.; Mirione, E.; Chavane, L.; N’Zwalo, H.; Chikumba, S.; Cliff, J.; Mabota, A.P.; Haque, M.R.; et al. Combination of cassava flour cyanide and urinary thiocyanate measurements of school children in Mozambique. Int. J. Food Sci. Nutr. 2004, 55, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Gleadow, R.M.; Møller, B. Cyanogenic glycosides: Synthesis, physiology, and phenotypic plasticity. Annu. Rev. Plant Biol. 2014, 65, 155–185. [Google Scholar] [CrossRef] [PubMed]
- Gleadow, R.M.; McKinley, B.; Blomstedt, C.; Lamb, A.; Møller, B.L.; Mullet, J.E. Regulation of dhurrin pathway gene expression during sorghum development. Planta 2021, 254, 119. [Google Scholar] [CrossRef] [PubMed]
- Forbes, S.; Cernusa, L.; Northfield, T.; Gleadow, M.R.; Lambert, S.; Cheeseman, A. Elevated temperature and carbon dioxide alter resource allocation to growth, storage and defence in cassava (Manihot esculenta). Environ. Exp. Bot. 2020, 173, 103997. [Google Scholar] [CrossRef]
- King, N.L.; Bradbury, J.H. Bitterness of cassava: Identification of a new apiosyl glucoside and other compounds that affect its bitter taste. J. Sci. Food Agric. 1995, 68, 223–230. [Google Scholar] [CrossRef]
- Bolhuis, G.G. The toxicity of cassava roots. Neth. J. Agric. Sci. 1954, 2, 176–185. [Google Scholar] [CrossRef]
- FAO; WHO. Codex Alimentarius—International Food Standards. General Standard for Contaminants and Toxins in Food and Feed (Codex Stan 193–1995). 2016. p. 77. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/fr/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B193-1995%252FCXS_193e.pdf (accessed on 17 May 2025).
- Ernesto, M.; Cardoso, A.P.; Cliff, J.; Bradbury, J.H. Cyanogens in cassava flour and roots and urinary thiocyanate concentration in Mozambique. J. Food Compos. Anal. 2002, 13, 1–12. [Google Scholar] [CrossRef]
- Vandegeer, R.; Miller, R.E.; Bain, M.; Gleadow, R.M.; Cavagnaro, T.R. Drought adversely affects tuber development and nutritional quality of the staple crop cassava (Manihot esculenta Crantz). Funct. Plant Biol. 2013, 40, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Gleadow, R.; Pegg, A.; Blomstedt, C. Resilience of cassava (Manihot esculenta Crantz) to salinity: Implications for food security in low-lying regions. J. Exp. Bot. 2016, 67, 5403–5413. [Google Scholar] [CrossRef] [PubMed]
- Myrans, H.; Xu, S.; Mahani, M.; Crimp, S.; Torres, J.F.; Gleadow, R.M. Irrigation using slightly saline water from emerging desalination technologies as a solution to short-term drought. Plants People Planet 2024. [Google Scholar] [CrossRef]
- Gleadow, R.M.; Woodrow, I.E. Constraints on effectiveness of cyanogenic glycosides in herbivore defense. J. Chem. Ecol. 2002, 28, 1301–1313. [Google Scholar] [CrossRef] [PubMed]
- Sardos, J.; McKey, D.; Duval, M.-F.; Malapa, R.; Noyer, J.-L.; Lebot, V. Evolution of cassava (Manihot esculenta Crantz) after recent introduction into a South Pacific Island system: The contribution of sex to the diversification of a clonally propagated crop. Genome 2008, 51, 912–921. [Google Scholar] [CrossRef] [PubMed]
- Nyaika, J.; Abayomi, L.; Parmar, A.; Coast, O. Cyanide in cassava: Understanding the drivers, impacts of climate variability, and strategies for food security. Food Energy Security 2024, 13, e573. [Google Scholar] [CrossRef]
- Moreno-Cadena, P.; Hoogenboom, G.; Cock, J.H.; Ramirez-Villegas, J.; Pypers, P.; Kreye, C.; Tariku, M.; Ezui, K.S.; Lopez-Lavalle, L.A.B.; Asseng, S. Modeling growth, development and yield of cassava: A review. Field Crops Res. 2021, 267, 108140. [Google Scholar] [CrossRef] [PubMed]
- Nauluvula, P. Growth, Physiology and Nutritional Value of Cassava in Fiji for Adaptation Solutions to Changes in Climate. Ph.D Thesis, The University of the South Pacific, Suva, Fiji, 2019; p. 215. [Google Scholar]
- Crimp, S.; Lisson, S.; Gleadow, R.M.; Hargreaves, J.; Gabriel, E.; Meier, E.; Nishi, M.; Nauluvula, P.; Melteras, M.; Leo, P. Understanding the Response of Taro and Cassava to Climate Change; ACIAR Project Number: PC-2012-011. Final Report; Australian Centre for International Agricultural Research: Canberra, Australia, 2017; p. 140. Available online: https://www.aciar.gov.au/sites/default/files/project-page-docs/final_report_hort.2012.011.pdf (accessed on 1 May 2025).
- Nauluvula, P.; Webber, B.; Crimp, S.; Gleadow, R.M. Growth, physiology and nutritional value of cassava in Fiji for adaptation solutions to changes in climate. Cyanide Cassava Dis. Netw. (CCDN) News 2023, 39, 9–10. [Google Scholar]
- Holzworth, D.P.; Huth, N.I.; deVoil, P.G.; Zurcher, E.J.; Herrmann, N.I.; McLean, G.; Chenu, K.; van Oosterom, E.J.; Snow, V.; Murphy, C.; et al. APSIM—Evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 2014, 62, 327–350. [Google Scholar] [CrossRef]
- Bredeson, J.V.; Lyons, J.B.; Prochnik, S.E.; Wu, G.A.; Ha, C.M.; Edsinger, E.; Grimwood, J.; Schmutz, J.; Rabbi, I.Y.; Egesi, C.; et al. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat. Biotechnol. 2016, 34, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Paydar, Z.; Cresswell, H.P. Water retention in Australian soils. II. Prediction using particle size, bulk density, and other properties. Aust. J. Soil Res. 1996, 34, 679–693. [Google Scholar] [CrossRef]
- Ngo-Cong, D.; Antille, D.L.; van Genuchten, M.T.; Nguyen, H.Q.; Tekeste, M.Z.; Baillie, C.P.; Godwin, R.J. A modeling framework to quantify the effects of compaction on soil water retention and infiltration. Soil Sci. Soc. Am. J. 2021, 85, 1931–1945. [Google Scholar] [CrossRef]
- Burk, L.; Dalgliesh, N. Estimating Plant Available Water Capacity; Grains Research and Development Corporation: Canberra, Australia, 2013; p. 24. Available online: https://grdc.com.au/__data/assets/pdf_file/0029/208379/grdc-plant-available-water-capacity.pdf.pdf?utm_source=website&utm_medium=download_button&utm_campaign=pdf_download&utm_term=National;%20North;%20South;%20West&utm_content=Estimating%20Plant%20Available%20Water%20Capacity (accessed on 21 May 2025).
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Gleadow, R.M.; Bjarnholt, N.; Jørgensen, K.; Fox, J.; Miller, R.E. Chapter 12: Detection, identification and quantitative measurement of cyanogenic glycosides. In Research Methods in Plant Science, Vol. 1: Soil Allelochemicals; Narwal, S.S., Szajdak, L., Sampietro, D.A., Eds.; International Allelopathy Foundation: Haryana, India; Studium Press: New York, NY, USA, 2012; pp. 283–310. ISBN 1-933699-64-7/1-933699-65-5. [Google Scholar]
- Brinker, A.M.; Seigler, D.S. Methods for the detection and quantitative determination of cyanide in plant materials. Phytochem. Bull. 1989, 21, 24–31. [Google Scholar]
- Woodrow, I.E.; Slocum, D.J.; Gleadow, R.M. Influence of water stress on cyanogenic capacity in Eucalyptus cladocalyx. Funct. Plant Biol. 2002, 29, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Kowalenko, C.G. Assessment of LECO CNS-2000 analyzer for simultaneously measuring total carbon, nitrogen, and sulphur in soil. Commun. Soil Sci. Plant Anal. 2001, 32, 2065–2078. [Google Scholar] [CrossRef]
- Krul, E.S. Calculation of nitrogen-to-protein conversion factors: A review with a focus on soy protein. J. Am. Oil Chem. Soc. 2019, 96, 339–364. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Richards, R.A. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Funct. Plant Biol. 1984, 11, 539–552. [Google Scholar] [CrossRef]
- Burns, A.E.; Gleadow, R.M.; Zacarias, A.M.; Cuambe, C.E.; Miller, R.E.; Cavagnaro, T.R. Variations in the chemical composition of cassava (Manihot esculenta Crantz) leaves and roots as affected by genotypic and environmental variation. J. Agric. Food Chem. 2012, 60, 4946–4956. [Google Scholar] [CrossRef] [PubMed]
Data | Description | Units |
---|---|---|
Rainfall | Cumulative rainfall | mm |
Temperature | Minimum and maximum temperatures occurring in the 24 h period | °C |
Solar radiation | Cumulative solar radiation | MJ m−2 |
Depth Interval | SBD | Org-C | NO3-N | NH4-N | AD | LL15 | DUL | SAT | CLL |
---|---|---|---|---|---|---|---|---|---|
m | g cm−3 | %, w/w | kg ha−1 | kg ha−1 | mm mm−1 | mm mm−1 | mm mm−1 | mm mm−1 | mm mm−1 |
0.00–0.15 | 0.92 | 1.0 | 21.4 | 7.0 | 0.217 | 0.362 | 0.462 | 0.624 | 0.362 |
0.15–0.30 | 0.81 | 0.9 | 6.0 | 2.0 | 0.340 | 0.454 | 0.554 | 0.663 | 0.504 |
0.30–0.60 | 0.77 | 0.9 | 4.4 | 1.0 | 0.444 | 0.444 | 0.544 | 0.678 | 0.520 |
0.60–0.90 | 0.76 | 0.9 | 2.5 | 0.5 | 0.451 | 0.451 | 0.551 | 0.684 | 0.551 |
0.90–1.20 | 0.79 | 0.8 | 5.0 | 0.8 | 0.470 | 0.470 | 0.570 | 0.670 | 0.570 |
1.20–1.50 | 1.03 | 0.5 | 2.2 | 0.3 | 0.412 | 0.412 | 0.512 | 0.582 | 0.512 |
1.50–1.80 | 0.98 | 0.4 | 0.9 | 0.1 | 0.377 | 0.377 | 0.477 | 0.598 | 0.477 |
Phenological Data | Description | Units |
---|---|---|
Plant height | Vertical distance, soil surface to top of tallest stem | cm |
Stem length | Length from basal branching point to shoot tip | cm |
Expanded leaves | Fully expanded mature leaves | Count, cm2 |
Expanding leaves | Not fully expanded young leaves (less than 15 days old) | Count, cm2 |
Senesced leaves | Leaves with ≥50% yellowing or brown leaf area | Count, cm2 |
Petiole scars | Nodes | Count |
Canopy diameter | Horizontal distance, edges of the canopy irrespective of height from ground | cm |
Biomass Data | Description |
---|---|
Shoot (above-ground) biomass material above the cutting stock | |
Reproductive tissue | Flowers, fruits |
Mature stems | Hard, woody stems |
Young stems | Soft, green stems |
Expanding leaves | Not fully expanded young leaves (less than 15 days old) |
Fully expanded leaves | Fully expanded mature leaves |
Senesced leaves | Leaves with ≥50% yellowing or brown leaf area |
Root (below-ground) biomass material below the cutting stock | |
Cutting stock | Cutting stock used as planting material |
Fine absorbent roots | Roots < 3 mm diameter |
Thick roots | Roots ≥ 3 mm diameter |
Outer tuber | Tuber periderm (peel) |
Inner tuber | Tuber flesh |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nauluvula, P.; Webber, B.L.; Gleadow, R.M.; Aalbersberg, W.; Hargreaves, J.N.G.; Das, B.T.; Antille, D.L.; Crimp, S.J. Time Series Dataset of Phenology, Biomass, and Chemical Composition of Cassava (Manihot esculenta Crantz) as Affected by Time of Planting and Variety Interactions in Field Trials at Koronivia, Fiji. Data 2025, 10, 120. https://doi.org/10.3390/data10080120
Nauluvula P, Webber BL, Gleadow RM, Aalbersberg W, Hargreaves JNG, Das BT, Antille DL, Crimp SJ. Time Series Dataset of Phenology, Biomass, and Chemical Composition of Cassava (Manihot esculenta Crantz) as Affected by Time of Planting and Variety Interactions in Field Trials at Koronivia, Fiji. Data. 2025; 10(8):120. https://doi.org/10.3390/data10080120
Chicago/Turabian StyleNauluvula, Poasa, Bruce L. Webber, Roslyn M. Gleadow, William Aalbersberg, John N. G. Hargreaves, Bianca T. Das, Diogenes L. Antille, and Steven J. Crimp. 2025. "Time Series Dataset of Phenology, Biomass, and Chemical Composition of Cassava (Manihot esculenta Crantz) as Affected by Time of Planting and Variety Interactions in Field Trials at Koronivia, Fiji" Data 10, no. 8: 120. https://doi.org/10.3390/data10080120
APA StyleNauluvula, P., Webber, B. L., Gleadow, R. M., Aalbersberg, W., Hargreaves, J. N. G., Das, B. T., Antille, D. L., & Crimp, S. J. (2025). Time Series Dataset of Phenology, Biomass, and Chemical Composition of Cassava (Manihot esculenta Crantz) as Affected by Time of Planting and Variety Interactions in Field Trials at Koronivia, Fiji. Data, 10(8), 120. https://doi.org/10.3390/data10080120