Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (255)

Search Parameters:
Keywords = weld thermal simulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5346 KiB  
Article
Numerical Study of Stud Welding Temperature Fields on Steel–Concrete Composite Bridges
by Sicong Wei, Han Su, Xu Han, Heyuan Zhou and Sen Liu
Materials 2025, 18(15), 3491; https://doi.org/10.3390/ma18153491 - 25 Jul 2025
Viewed by 302
Abstract
Non-uniform temperature fields are developed during the welding of studs in steel–concrete composite bridges. Due to uneven thermal expansion and reversible solid-state phase transformations between ferrite/martensite and austenite structures within the materials, residual stresses are induced, which ultimately degrades the mechanical performance of [...] Read more.
Non-uniform temperature fields are developed during the welding of studs in steel–concrete composite bridges. Due to uneven thermal expansion and reversible solid-state phase transformations between ferrite/martensite and austenite structures within the materials, residual stresses are induced, which ultimately degrades the mechanical performance of the structure. For a better understanding of the influence on steel–concrete composite bridges’ structural behavior by residual stress, accurate simulation of the spatio-temporal temperature distribution during stud welding under practical engineering conditions is critical. This study introduces a precise simulation method for temperature evolution during stud welding, in which the Gaussian heat source model was applied. The simulated results were validated by real welding temperature fields measured by the infrared thermography technique. The maximum error between the measured and simulated peak temperatures was 5%, demonstrating good agreement between the measured and simulated temperature distributions. Sensitivity analyses on input current and plate thickness were conducted. The results showed a positive correlation between peak temperature and input current. With lower input current, flatter temperature gradients were observed in both the transverse and thickness directions of the steel plate. Additionally, plate thickness exhibited minimal influence on radial peak temperature, with a maximum observed difference of 130 °C. However, its effect on peak temperature in the thickness direction was significant, yielding a maximum difference of approximately 1000 °C. The thermal influence of group studs was also investigated in this study. The results demonstrated that welding a new stud adjacent to existing ones introduced only minor disturbances to the established temperature field. The maximum peak temperature difference before and after welding was approximately 100 °C. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 28281 KiB  
Article
Infrared-Guided Thermal Cycles in FEM Simulation of Laser Welding of Thin Aluminium Alloy Sheets
by Pasquale Russo Spena, Manuela De Maddis, Valentino Razza, Luca Santoro, Husniddin Mamarayimov and Dario Basile
Metals 2025, 15(8), 830; https://doi.org/10.3390/met15080830 - 24 Jul 2025
Viewed by 278
Abstract
Climate concerns are driving the automotive industry to adopt advanced manufacturing technologies that aim to improve energy efficiency and reduce vehicle weight. In this context, lightweight structural materials such as aluminium alloys have gained significant attention due to their favorable strength-to-weight ratio. Laser [...] Read more.
Climate concerns are driving the automotive industry to adopt advanced manufacturing technologies that aim to improve energy efficiency and reduce vehicle weight. In this context, lightweight structural materials such as aluminium alloys have gained significant attention due to their favorable strength-to-weight ratio. Laser welding plays a crucial role in assembling such materials, offering high flexibility and fast joining capabilities for thin aluminium sheets. However, welding these materials presents specific challenges, particularly in controlling heat input to minimize distortions and ensure consistent weld quality. As a result, numerical simulations based on the Finite Element Method (FEM) are essential for predicting weld-induced phenomena and optimizing process performance. This study investigates welding-induced distortions in laser butt welding of 1.5 mm-thick Al 6061 samples through FEM simulations performed in the SYSWELD 2024.0 environment. The methodology provided by the software is based on the Moving Heat Source (MHS) model, which simulates the physical movement of the heat source and typically requires extensive calibration through destructive metallographic testing. This transient approach enables the detailed prediction of thermal, metallurgical, and mechanical behavior, but it is computationally demanding. To improve efficiency, the Imposed Thermal Cycle (ITC) model is often used. In this technique, a thermal cycle, extracted from an MHS simulation or experimental data, is imposed on predefined subregions of the model, allowing only mechanical behavior to be simulated while reducing computation time. To avoid MHS-based calibration, this work proposes using thermal cycles acquired in-line during welding via infrared thermography as direct input for the ITC model. The method was validated experimentally and numerically, showing good agreement in the prediction of distortions and a significant reduction in workflow time. The distortion values from simulations differ from the real experiment by less than 0.3%. Our method exhibits a slight decrease in performance, resulting in an increase in estimation error of 0.03% compared to classic approaches, but more than 85% saving in computation time. The integration of real process data into the simulation enables a virtual representation of the process, supporting future developments toward Digital Twin applications. Full article
(This article belongs to the Special Issue Manufacturing Processes of Metallic Materials)
Show Figures

Figure 1

29 pages, 4788 KiB  
Article
Statistical and Machine Learning Classification Approaches to Predicting and Controlling Peak Temperatures During Friction Stir Welding (FSW) of Al-6061-T6 Alloys
by Assad Anis, Muhammad Shakaib and Muhammad Sohail Hanif
J. Manuf. Mater. Process. 2025, 9(7), 246; https://doi.org/10.3390/jmmp9070246 - 21 Jul 2025
Viewed by 286
Abstract
This paper presents optimization of peak temperatures achieved during friction stir welding (FSW) of Al-6061-T6 alloys. This research work employed a novel approach by investigating the effect of FSW welding process parameters on peak temperatures through the implementation of finite element analysis (FEA), [...] Read more.
This paper presents optimization of peak temperatures achieved during friction stir welding (FSW) of Al-6061-T6 alloys. This research work employed a novel approach by investigating the effect of FSW welding process parameters on peak temperatures through the implementation of finite element analysis (FEA), the Taguchi method, analysis of variance (ANOVA), and machine learning (ML) algorithms. COMSOL 6.0 Multiphysics was used to perform FEA to predict peak temperatures, incorporating seven distinctive welding parameters: tool material, pin diameter, shoulder diameter, tool rotational speed, welding speed, axial force, and coefficient of friction. The influence of these parameters was investigated using an L32 Taguchi array and analysis of variance (ANOVA), revealing that axial force and tool rotational speed were the most significant parameters affecting peak temperatures. Some simulations showed temperatures exceeding the material’s melting point, indicating the need for improved thermal control. This was achieved by using three machine learning (ML) algorithms, i.e., Logistic Regression, k-Nearest Neighbors (k-NN), and Naive Bayes. A dataset of 324 data points was prepared using a factorial design to implement these algorithms. These algorithms predicted the welding conditions where the temperature exceeded the melting temperature of Al-6061-T6. It was found that the Logistic Regression classifier demonstrated the highest performance, achieving an accuracy of 98.14% as compared to Naive Bayes and k-NN classifiers. These findings contribute to sustainable welding practices by minimizing excessive heat generation, preserving material properties, and enhancing weld quality. Full article
Show Figures

Figure 1

20 pages, 54673 KiB  
Article
Mechanical Properties of Repaired Welded Pipe Joints Made of Heat-Resistant Steel P92
by Filip Vučetić, Branislav Đorđević, Dorin Radu, Stefan Dikić, Lazar Jeremić, Nikola Milovanović and Aleksandar Sedmak
Materials 2025, 18(12), 2908; https://doi.org/10.3390/ma18122908 - 19 Jun 2025
Viewed by 362
Abstract
This research provides a detailed investigation into the mechanical properties and microstructural evolution of heat-resistant steel P92 subjected to both initial (i) welding procedures and simulated (ii) repair welding. The study addresses the influence of critical welding parameters, including preheating temperature, heat input, [...] Read more.
This research provides a detailed investigation into the mechanical properties and microstructural evolution of heat-resistant steel P92 subjected to both initial (i) welding procedures and simulated (ii) repair welding. The study addresses the influence of critical welding parameters, including preheating temperature, heat input, and post-weld heat treatment (PWHT), with a particular emphasis on the metallurgical consequences arising from the application of repair welding thermal cycles. Through the analysis of three welding probes—initially welded pipes using the PF (vertical upwards) and PC (horizontal–vertical) welding positions, and a PF-welded pipe undergoing a simulated repair welding (also in the PF position)—the research compares microstructure in the parent material (PM), weld metal (WM), and heat-affected zone (HAZ). Recognizing the practical limitations and challenges associated with achieving complete removal of the original WM under the limited (in-field) repair welding, this study provides a comprehensive comparative analysis of uniaxial tensile properties, impact toughness evaluated via Charpy V-notch testing, and microhardness measurements conducted at room temperature. Furthermore, the research critically analyzes the influence of the complex thermal cycles experienced during both the initial welding and repair welding procedures to elucidate the practical application limits of this high-alloyed, heat-resistant P92 steel in demanding service conditions. Full article
Show Figures

Figure 1

23 pages, 4322 KiB  
Article
Thermal, Metallurgical, and Mechanical Analysis of Single-Pass INC 738 Welded Parts
by Cherif Saib, Salah Amroune, Mohamed-Saïd Chebbah, Ahmed Belaadi, Said Zergane and Barhm Mohamad
Metals 2025, 15(6), 679; https://doi.org/10.3390/met15060679 - 18 Jun 2025
Viewed by 379
Abstract
This study presents numerical analyses of the thermal, metallurgical, and mechanical processes involved in welding. The temperature fields were computed by solving the transient heat transfer equation using the ABAQUS/Standard 2024 finite element solver. Two types of moving heat sources were applied: a [...] Read more.
This study presents numerical analyses of the thermal, metallurgical, and mechanical processes involved in welding. The temperature fields were computed by solving the transient heat transfer equation using the ABAQUS/Standard 2024 finite element solver. Two types of moving heat sources were applied: a surface Gaussian distribution and a volumetric model, both implemented via DFLUX subroutines to simulate welding on butt-jointed plates. The simulation accounted for key welding parameters, including current, voltage, welding speed, and plate dimensions. The thermophysical properties of the INC 738 LC nickel superalloy were used in the model. Solidification characteristics, such as dendritic arm spacing, were estimated based on cooling rates around the weld pool. The model also calculated transverse residual stresses and applied a hot cracking criterion to identify regions vulnerable to cracking. The peak transverse stress, recorded in the heat-affected zone (HAZ), reached 1.1 GPa under Goldak’s heat input model. Additionally, distortions in the welded plates were evaluated for both heat source configurations. Full article
Show Figures

Figure 1

55 pages, 20925 KiB  
Review
Current Trends and Emerging Strategies in Friction Stir Spot Welding for Lightweight Structures: Innovations in Tool Design, Robotics, and Composite Reinforcement—A Review
by Suresh Subramanian, Elango Natarajan, Ali Khalfallah, Gopal Pudhupalayam Muthukutti, Reza Beygi, Borhen Louhichi, Ramesh Sengottuvel and Chun Kit Ang
Crystals 2025, 15(6), 556; https://doi.org/10.3390/cryst15060556 - 11 Jun 2025
Cited by 1 | Viewed by 1882
Abstract
Friction stir spot welding (FSSW) is a solid-state joining technique increasingly favored in industries requiring high-quality, defect-free welds in lightweight and durable structures, such as the automotive, aerospace, and marine industries. This review examines the current advancements in FSSW, focusing on the relationships [...] Read more.
Friction stir spot welding (FSSW) is a solid-state joining technique increasingly favored in industries requiring high-quality, defect-free welds in lightweight and durable structures, such as the automotive, aerospace, and marine industries. This review examines the current advancements in FSSW, focusing on the relationships between microstructure, properties, and performance under load. FSSW offers numerous benefits over traditional welding, particularly for joining both similar and dissimilar materials. Key process parameters, including tool design, rotational speed, axial force, and dwell time, are discussed for their impact on weld quality. Innovations in robotics are enhancing FSSW’s accuracy and efficiency, while numerical simulations aid in optimizing process parameters and predicting material behavior. The addition of nano/microparticles, such as carbon nanotubes and graphene, has further improved weld strength and thermal stability. This review identifies areas for future research, including refining robotic programming, using artificial intelligence for autonomous welding, and exploring nano/microparticle reinforcement in FSSW composites. FSSW continues to advance solid-state joining technologies, providing critical insights for optimizing weld quality in sheet material applications. Full article
Show Figures

Figure 1

22 pages, 3432 KiB  
Article
The Formation Mechanism of Residual Stress in Friction Stir Welding Based on Thermo-Mechanical Coupled Simulation
by Tianlei Yang, Xiao Wei, Jiangfan Zhou, Hao Jiang, Xinyu Liu and Zongzhe Man
Symmetry 2025, 17(6), 917; https://doi.org/10.3390/sym17060917 - 10 Jun 2025
Viewed by 416
Abstract
Friction Stir Welding (FSW) is widely used for high-strength aluminum alloys due to its solid-state bonding, which ensures superior weld quality and service stability. However, thermo-mechanical interactions during welding can induce complex residual stress distributions, compromising joint integrity. Previous studies have primarily focused [...] Read more.
Friction Stir Welding (FSW) is widely used for high-strength aluminum alloys due to its solid-state bonding, which ensures superior weld quality and service stability. However, thermo-mechanical interactions during welding can induce complex residual stress distributions, compromising joint integrity. Previous studies have primarily focused on thermal load-driven stress evolution, often neglecting mechanical factors such as the shear force generated by the stirring pin. This study develops a three-dimensional thermo-mechanical coupled finite element model based on a moving heat source. The model incorporates axial pressure from the tool shoulder and torque-derived shear force from the stirring pin. A hybrid surface–volumetric heat source is applied to represent frictional heating, and realistic mechanical boundary conditions are introduced to reflect actual welding conditions. Simulations on AA6061-T6 aluminum alloy show that under stable welding, the peak temperature in the weld zone reaches approximately 453 °C. Residual stress analysis indicates a longitudinal tensile peak of ~170 MPa under thermal loading alone, which reduces to ~150 MPa when mechanical loads are included, forming a characteristic M-shaped distribution. Further comparison with a Coupled Eulerian–Lagrangian (CEL) model reveals stress asymmetry, with higher tensile stress on the advancing side. This is primarily attributed to the directional shear force, which promotes greater plastic deformation on the advancing side than on the retreating side. The consistency between the proposed model and CEL results confirms its validity. This study provides a reliable framework for residual stress prediction in FSW and supports process parameter optimization. Full article
(This article belongs to the Special Issue Symmetry in Impact Mechanics of Materials and Structures)
Show Figures

Figure 1

18 pages, 2800 KiB  
Article
Mechanisms of Spatter Formation and Suppression in Aluminum Alloy via Hybrid Fiber–Semiconductor Laser System
by Jingwen Chen, Di Wu, Xiaoting Li, Fangyi Yang, Peilei Zhang, Haichuan Shi and Zhishui Yu
Coatings 2025, 15(6), 691; https://doi.org/10.3390/coatings15060691 - 7 Jun 2025
Viewed by 706
Abstract
This study investigates the spatter suppression mechanism in aluminum alloy welding using a hybrid fiber–semiconductor laser system. By integrating high-speed photography and three-dimensional thermal-fluid coupling numerical simulations, the spatter formation process and its suppression mechanisms were systematically analyzed. The results indicate that spatter [...] Read more.
This study investigates the spatter suppression mechanism in aluminum alloy welding using a hybrid fiber–semiconductor laser system. By integrating high-speed photography and three-dimensional thermal-fluid coupling numerical simulations, the spatter formation process and its suppression mechanisms were systematically analyzed. The results indicate that spatter formation is primarily governed by surface tension and recoil pressure. In single fiber laser welding, concentrated laser energy induces a steep temperature gradient on the molten pool surface, triggering a strong Marangoni effect and subsequent spatter generation. In contrast, the hybrid laser system optimizes energy distribution, reducing the temperature gradient and weakening the Marangoni effect, thereby suppressing spatter. Additionally, the hybrid laser stabilizes molten pool flow through uniform recoil pressure distribution, further inhibiting spatter formation. Experimental results demonstrate that the hybrid fiber–semiconductor laser system significantly reduces spatter, improving welding quality and stability. This study provides theoretical and technical support for optimizing aluminum alloy laser welding. Full article
Show Figures

Figure 1

18 pages, 7058 KiB  
Article
In-Depth Thermal Analysis of Different Pin Configurations in Friction Stir Spot Welding of Similar and Dissimilar Alloys
by Sajad N. Alasdi and Raheem Al-Sabur
J. Manuf. Mater. Process. 2025, 9(6), 184; https://doi.org/10.3390/jmmp9060184 - 1 Jun 2025
Viewed by 632
Abstract
Over the past decade, friction stir spot welding (FSSW) has gained increasing attention, making it a competitor to conventional welding methods such as resistance welding, rivets, and screws. This type of welding is environmentally friendly because it does not require welding tools and [...] Read more.
Over the past decade, friction stir spot welding (FSSW) has gained increasing attention, making it a competitor to conventional welding methods such as resistance welding, rivets, and screws. This type of welding is environmentally friendly because it does not require welding tools and is solid-state welding. This study attempts to demonstrate the importance of pin geometry on temperature distribution and joint quality by using threaded and non-threaded pins for similar and dissimilar alloys. To this end, thermal analysis of the welded joints was conducted using real-time monitoring from a thermal camera and an infrared thermometer, in addition to finite element method (FEM) simulations. The thermal analysis showed that the generated temperatures were higher in dissimilar alloys (Al-Cu) than in similar ones (Al-Al), reaching about 350 °C. In addition, dissimilar alloys show more pronounced FSSW stages through extended periods for each plunging, dwelling, and drawing-out time. The FEM simulation results are consistent with those obtained from thermal imaging cameras and infrared thermometers. The dwelling time was influential, as the higher it was, the more heat was generated, which could be close to the melting point, especially in aluminum alloys. This study provides an in-depth experimental and numerical investigation of temperature distribution throughout the welding cycle, utilizing different pin geometries for both similar and dissimilar non-ferrous alloy joints, offering valuable insights for advanced industrial welding applications. Full article
Show Figures

Figure 1

26 pages, 85427 KiB  
Article
Analysis of the Effects of Tandem Welding (Fronius TPS/i - TWIN) of S1100QL and S1300QL Steels
by Mateusz Karczewski, Krzysztof Mroczka, Sławomir Parzych, Piotr Bała, Grzegorz Cios, Janusz Mikuła and Grzegorz Jeż
Materials 2025, 18(11), 2577; https://doi.org/10.3390/ma18112577 - 31 May 2025
Viewed by 541
Abstract
S1100QL and S1300QL steels are classified as fine-grained steels with a low-carbon martensitic structure. Tandem welding is a method of creating a joint by melting two electrode wires in a one-behind-the-other configuration. This article presents the effects of creating dissimilar joints, elements of [...] Read more.
S1100QL and S1300QL steels are classified as fine-grained steels with a low-carbon martensitic structure. Tandem welding is a method of creating a joint by melting two electrode wires in a one-behind-the-other configuration. This article presents the effects of creating dissimilar joints, elements of varying thicknesses made from S1100QL and S1300QL steels. The analysis focused on temperature changes in the heat-affected zone (HAZ) during welding, as well as the macro and microstructure, and the properties of the joints created at welding speeds of 80, 90, and 100 cm/min. The shortest cooling time (t8/5) in the HAZ for S1300QL steel was 9.4 s, while the longest was 12.4 s. Thermal cycle simulations were performed for the analyzed materials, with a cooling time of 5 s. The test results demonstrated that TWIN welding was stable, and an optimum welding speed is 80 cm/min. The HAZ microstructure for the highest cooling speed (t8/5 = 5 s) of S1100QL steel contains, in addition to martensite, lower bainite, while S1300QL steel consists of martensite. Tempered martensite was also detected at slower cooling rates. For all speed variants, the impact energy is above 27 J at a test temperature of −40 °C. In turn, hardness tests showed that the base material for both steels has the highest hardness. However, the lowest hardness was found for the weld. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

23 pages, 7506 KiB  
Article
Numerical Modeling of Electromagnetic Field Influences on Fluid Thermodynamic Behavior and Grain Growth During Solidification of 316L Stainless Steel Laser-Welded Plates
by Zhengwei Zhang, Xinyuan Xu, Peng Ge and Kai Li
Metals 2025, 15(6), 609; https://doi.org/10.3390/met15060609 - 28 May 2025
Viewed by 301
Abstract
In the present study, a thermal–electromagnetic hydrodynamics model has been used to study welding temperature and melt flow characteristics during the laser welding of 316L steel. This welding was performed using an assisted electromagnetic field. In addition, a Monte Carlo model was used [...] Read more.
In the present study, a thermal–electromagnetic hydrodynamics model has been used to study welding temperature and melt flow characteristics during the laser welding of 316L steel. This welding was performed using an assisted electromagnetic field. In addition, a Monte Carlo model was used to study grain growth during solidification with the purpose of achieving a better understanding of the control of the microstructure. Based on the numerical model, which has been validated by experimental data, the effects of the current intensity of the electromagnetic field on the temperature distribution, melt flow characteristics, and grain growth are discussed here in detail. The simulation results showed that both Marangoni convection and welding temperature could be controlled by the magnetic damping effect, and that they increased due to the electromagnetic heating effect when using an electromagnetic field. Furthermore, when controlling the temperature distribution and melt flow velocity in the laminar flow of the melt pool, which was assisted by a 30 A current intensity of the electromagnetic field, the temperature gradient decreased by 13.5%. This decrease could be even larger than 50% when a turbulent flow was formed in the melt pool, which has here been demonstrated for a current intensity of 100 A. In addition, undercooling was found to decrease because of the increase in the melt flow velocity when using an assistive electromagnetic field. This led to a longer nucleation time in the melt pool. Furthermore, more and larger directional columnar grains, grown by the driving force of the temperature gradient, could be formed after the consumption of the small, nucleated grains near the solid–liquid interface. In short, by controlling the temperature distribution and melt flow velocity, the required grain morphology (equiaxed or columnar) and dimension (radius, length, or width) can be controlled by coarsening and epitaxial growth. Full article
Show Figures

Figure 1

20 pages, 5317 KiB  
Article
Numerical Analysis and Optimization of Residual Stress Distribution in Lined Pipe Overlay Welding
by Yuwei Sun, Sirong Yu, Bingying Wang and Tianping Gu
Processes 2025, 13(5), 1548; https://doi.org/10.3390/pr13051548 - 17 May 2025
Cited by 1 | Viewed by 443
Abstract
This study investigates the thermal and residual stress development in multi-layer lined pipe welding through numerical simulation and experimental validation. The focus is on the weld overlay/liner transition region, a critical area prone to stress concentrations and fatigue crack initiation. Using finite element [...] Read more.
This study investigates the thermal and residual stress development in multi-layer lined pipe welding through numerical simulation and experimental validation. The focus is on the weld overlay/liner transition region, a critical area prone to stress concentrations and fatigue crack initiation. Using finite element analysis (FEA) with the Goldak double-ellipsoidal heat source model, the research examines the temperature evolution, residual stress distribution, and deformation characteristics during the welding process. Key findings reveal that the peak temperature in the weld overlay region reaches 3045.2 °C, ensuring complete metallurgical bonding. Residual stresses are predominantly tensile near the three-phase boundary, with maximum von Mises stress observed in the base pipe at 359.30 MPa. This study also employs Response Surface Methodology (RSM) to optimize welding parameters, achieving a 20.5% reduction in residual axial stress and a 58.1% reduction in residual circumferential stress. These results provide valuable insights for optimizing welding processes, improving quality control, and enhancing the long-term reliability of bimetallic composite pipelines. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

21 pages, 7528 KiB  
Article
Thermal–Electrical Optimization of Lithium-Ion Battery Conductor Structures Under Extreme High Amperage Current
by Jingdi Guo, Yiran Wang, He Liu, Yahui Liu and Xiaokang Yang
Appl. Sci. 2025, 15(10), 5338; https://doi.org/10.3390/app15105338 - 10 May 2025
Viewed by 615
Abstract
This study addresses the critical challenges of conductor structure fusing, thermal management failure, and thermal runaway risks in lithium-ion batteries under extreme high-amperage discharge conditions. By integrating theoretical analysis, multiphysics coupling simulations, and experimental validation, the research systematically investigates the overcurrent capability of [...] Read more.
This study addresses the critical challenges of conductor structure fusing, thermal management failure, and thermal runaway risks in lithium-ion batteries under extreme high-amperage discharge conditions. By integrating theoretical analysis, multiphysics coupling simulations, and experimental validation, the research systematically investigates the overcurrent capability of lithium battery conductor structures. A novel current–thermal structure coupled finite element model was developed to analyze the dynamic relationship between key parameters, specifically overcurrent cross-sectional area and contact area, and their influence on temperature gradient distribution. Experimental results confirm the model’s accuracy, revealing that under extreme high-amperage conditions, increasing the conductor cross-sectional area by 50% only marginally extends the battery’s current-carrying duration from 0.75 s to 0.8 s. This limited enhancement is attributed to rapid heat generation, which restricts the effectiveness of increasing the cross-sectional area alone. Instead, optimizing the conductor structure by modifying the heat conduction path, which involves a similar increase in the cross-sectional area and an additional 60% increase in contact area through the addition of a welding reinforcement structure, achieves thermal equilibrium. The optimized design achieves a current-carrying duration of 1.73 s, which is 230% of the duration of the traditional configuration. This work establishes a scalable framework for enhancing the thermal–electrical performance of lithium-ion batteries, providing a theoretical foundation for structural optimization and offering significant methodological support for advancing research in high-power battery design, with potential applications in electric vehicles, renewable energy systems, and industrial robotics. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

18 pages, 3769 KiB  
Article
Effect of Inter-Pass Temperature and Time on Martensite Formation in the Heat-Affected Zone During Multi-Pass Welding of P91 Steel
by Druce Dunne, Huijun Li and Elena Pereloma
Metals 2025, 15(5), 501; https://doi.org/10.3390/met15050501 - 30 Apr 2025
Viewed by 552
Abstract
Dilatometry was used to simulate and analyze martensite formation in the grain-coarsened heat-affected zone (GCHAZ) of P91 steel for high inter-pass temperatures during multi-pass welding. The inter-pass temperature of 360 °C was within the dual-phase temperature range (~400 °C to 240 °C), but [...] Read more.
Dilatometry was used to simulate and analyze martensite formation in the grain-coarsened heat-affected zone (GCHAZ) of P91 steel for high inter-pass temperatures during multi-pass welding. The inter-pass temperature of 360 °C was within the dual-phase temperature range (~400 °C to 240 °C), but because of the unexpected formation of isothermal martensite, the microstructure at the inter-pass temperature was substantially martensitic and similar in microstructure and hardness to those obtained using lower, conventional inter-pass temperatures (about 250 °C). The results for martensite formation indicate that kinetic classifications for transformation in carbon and alloyed steels should take into account the overlapping effects of the diffusionless transformation and thermally activated processes associated with dislocation motion and the diffusion of interstitial elements. Furthermore, the MS temperature was found to be highly sensitive to the microstructural state of the austenite and the availability of nucleating sites for martensite formation. The data for the kinetics of martensite formation were inconsistent with the widely used Koistinen and Marburger (KM) equation for predicting the volume fraction of martensite as a function of quench temperature. It is concluded that the KM equation has limited applicability Full article
Show Figures

Figure 1

14 pages, 9327 KiB  
Article
Evaluation of Crack Formation in Heat Pipe-Welded Joints
by Min Ji Song, Keun Hyung Lee, Jun-Seob Lee, Heesan Kim, Woo Cheol Kim and Soo Yeol Lee
Materials 2025, 18(9), 2028; https://doi.org/10.3390/ma18092028 - 29 Apr 2025
Viewed by 455
Abstract
This study investigates the failure of a 750A dual-insulated pipeline, where cracks developed along the weld joints during heat supply resumption at the district heating facility. A comprehensive analysis was conducted through visual inspection, mechanical testing, microstructural characterization, finite element analysis (FEA), and [...] Read more.
This study investigates the failure of a 750A dual-insulated pipeline, where cracks developed along the weld joints during heat supply resumption at the district heating facility. A comprehensive analysis was conducted through visual inspection, mechanical testing, microstructural characterization, finite element analysis (FEA), and electrochemical corrosion testing. The results indicate that cracks were generated in the heat-affected zone (HAZ), primarily caused by galvanic corrosion and thermal expansion-induced stress accumulation. Open circuit potential (OCP) measurements in a 3 M NaCl solution confirmed that the HAZ was anodic, leading to the most vulnerable position to corrosion. Furthermore, localized electrochemical tests were conducted for respective microstructural regions within the HAZ. The results reveal that coarse-grained HAZ exhibited the lowest corrosion potential, giving rise to preferential corrosion, promoting pit formation, and serving as initiation sites for stress concentration and crack propagation. FEA simulations demonstrate that pre-existing microvoids in the HAZ act as stress concentration sites, undergoing a localized stress exceeding 475 MPa. These findings emphasize the importance of controlling microstructural stability and mechanical integrity in welded pipelines, particularly in corrosive environments subjected to thermal stresses. Full article
Show Figures

Figure 1

Back to TopTop