The Formation Mechanism of Residual Stress in Friction Stir Welding Based on Thermo-Mechanical Coupled Simulation
Abstract
1. Introduction
2. Model Description
3. Finite Element Analysis
3.1. Moving Heat Source Model of Friction Stir Welding
3.2. Mechanical Modeling
Mechanical Load Analysis
3.3. CEL Model
3.4. Future Research Outlook
4. Results and Discussion
4.1. Temperature Distribution Analysis
4.2. Influence of Process Parameters on Residual Stress
4.3. Effect of Different Mechanical Load Combinations on Residual Stress
- (1)
- Using only a moving heat source.
- (2)
- Combining the heat source with axial–shear forces from the tool.
- (3)
- Adopting the CEL method with material flow considered.
4.4. Analysis of Error Sources and Model Limitations
5. Conclusions
- The temperature distribution in the weld zone shows distinct symmetry when friction stir welding is used. The tool’s peak temperature in the steady-state phase is 453 °C, and heat builds up progressively toward the back.
- The temperature gradient is closely correlated with the longitudinal residual tension that is generated during welding. The weld center exhibits a pronounced tensile stress, whereas compressive stress is observed in regions that are further from the weld area.
- Compared to the pure thermal load case, the residual stress distribution under thermal-mechanical coupling has undergone significant changes. Especially on the advancing side, under the effect of shear force, the material undergoes more intense plastic deformation, leading to more pronounced stress peaks.
- The maximal temperature in friction stir welding is between 80% and 90% of its melting point, as indicated by the numerical simulation results.
- Building upon conventional thermo-mechanical coupling models, this study further attempts to incorporate the mechanical effect of shear force generated by the stir pin, with the aim of providing a more comprehensive description of the evolution of residual stress during the FSW process. The simulation results indicate that this method offers valuable insights into the asymmetry of residual stress distribution in the weld region, which may contribute to a deeper theoretical basis for residual stress control.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmed, M.M.Z.; El-Sayed Seleman, M.M.; Fydrych, D.; Çam, G. Friction Stir Welding of Aluminum in the Aerospace Industry: The Current Progress and State-of-the-Art Review. Materials 2023, 16, 2971. [Google Scholar] [CrossRef]
- Gangwar, K.; Ramulu, M. Friction stir welding of titanium alloys: A review. Mater. Des. 2018, 141, 230–255. [Google Scholar] [CrossRef]
- Hewidy, A.M.; Sabry, I. Mechanical and tribological characteristics of stir-casting Al2O3-SiC-Gr/Al6063 hybrid composite. J. Egypt. Soc. Tribol. 2024, 21, 24–38. [Google Scholar] [CrossRef]
- Rajendran, C.; Srinivasan, K.; Balasubramanian, V.; Balaji, H.; Selvaraj, P. Effect of tool tilt angle on strength and microstructural characteristics of friction stir welded lap joints of AA2014-T6 aluminum alloy. Trans. Nonferrous Met. Soc. China 2019, 29, 1824–1835. [Google Scholar] [CrossRef]
- Riahi, M.; Nazari, H. Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation. Int. J. Adv. Manuf. Technol. 2011, 55, 143–152. [Google Scholar] [CrossRef]
- Zhang, T.; Ji, H.; Xu, D.; Yin, X.; Wei, H.; Sun, Z.; Liu, C. A hybrid shoulder to achieve a significant improvement in tensile strength and fatigue performance of friction stir welded joints for Al–Mg–Si alloy. J. Mater. Res. Technol. 2023, 27, 2280–2291. [Google Scholar] [CrossRef]
- Pouget, G.; Reynolds, A.P. Residual stress and microstructure effects on fatigue crack growth in AA2050 friction stir welds. Int. J. Fatigue 2008, 30, 463–472. [Google Scholar] [CrossRef]
- Sabry, N.; Stroh, J.; Sediako, D. Characterization of microstructure and residual stress following the friction stir welding of dissimilar aluminum alloys. CIRP J. Manuf. Sci. Technol. 2023, 41, 365–379. [Google Scholar] [CrossRef]
- Lim, Y.S.; Kim, S.H.; Lee, K.J. Effect of residual stress on the mechanical properties of FSW joints with SUS409L. Adv. Mater. Sci. Eng. 2018, 2018, 9890234. [Google Scholar] [CrossRef]
- Hattel, J.H.; Sonne, M.R.; Tutum, C.C. Modelling residual stresses in friction stir welding of Al alloys—A review of possibilities and future trends. Int. J. Adv. Manuf. Technol. 2015, 76, 1793–1805. [Google Scholar] [CrossRef]
- He, J.; Ling, Z.; Li, H. Effect of tool rotational speed on residual stress, microstructure, and tensile properties of friction stir welded 6061-T6 aluminum alloy thick plate. Int. J. Adv. Manuf. Technol. 2016, 84, 1953–1961. [Google Scholar] [CrossRef]
- Peel, M.; Steuwer, A.; Preuss, M.; Withers, P.J. Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds. Acta Mater. 2003, 51, 4791–4801. [Google Scholar] [CrossRef]
- Campanelli, S.; Casalino, G.; Casavola, C.; Moramarco, V. Analysis and comparison of friction stir welding and laser assisted friction stir welding of aluminum alloy. Materials 2013, 6, 5923–5941. [Google Scholar] [CrossRef]
- Richter-Trummer, V.; Suzano, E.; Beltrão, M.; Roos, A.; Dos Santos, J.F.; De Castro, P.M.S.T. Influence of the FSW clamping force on the final distortion and residual stress field. Mater. Sci. Eng. A 2012, 538, 81–88. [Google Scholar] [CrossRef]
- Nie, L.; Wu, Y.X.; Gong, H. Prediction of temperature and residual stress distributions in friction stir welding of aluminum alloy. Int. J. Adv. Manuf. Technol. 2020, 106, 3301–3310. [Google Scholar] [CrossRef]
- Sabry, I. Exploring the effect of friction stir welding parameters on the strength of AA2024 and A356-T6 aluminum alloys. J. Alloys Metall. Syst. 2024, 8, 100124. [Google Scholar] [CrossRef]
- Buglioni, L.; Tufaro, L.N.; Svoboda, H.G. Thermal cycles and residual stresses in FSW of aluminum alloys: Experimental measurements and numerical models. Procedia Mater. Sci. 2015, 9, 87–96. [Google Scholar] [CrossRef]
- Zina, N.; Zahaf, S.; Bouaziz, S.A.; Brahami, A.; Kaid, M.; Chetti, B.; Najafi Vafa, Z. Numerical simulation on the effect of friction stir welding parameters on the peak temperature, Von Mises stress, and residual stresses of 6061-T6 aluminum alloy. J. Fail. Anal. Prev. 2019, 19, 1698–1719. [Google Scholar] [CrossRef]
- Salih, O.S.; Ou, H.; Sun, W. Heat generation, plastic deformation and residual stresses in friction stir welding of aluminium alloy. Int. J. Mech. Sci. 2023, 238, 107827. [Google Scholar] [CrossRef]
- Geng, P.; Morimura, M.; Wu, S.; Liu, Y.; Ma, Y.; Ma, N.; Aoki, Y.; Fujii, H.; Ma, H.; Qin, G. Prediction of residual stresses within dissimilar Al/steel friction stir lap welds using an Eulerian-based modeling approach. J. Manuf. Process. 2022, 79, 340–355. [Google Scholar] [CrossRef]
- Salloomi, K.N.; Al-Sumaidae, S. Coupled Eulerian–Lagrangian prediction of thermal and residual stress environments in dissimilar friction stir welding of aluminum alloys. J. Adv. Joining Process. 2021, 3, 100052. [Google Scholar] [CrossRef]
- Meyghani, B.; Awang, M.; Wu, C.S. Finite element modeling of friction stir welding (FSW) on a complex curved plate. J. Adv. Joining Process. 2020, 1, 100007. [Google Scholar] [CrossRef]
- Myung, D.; Noh, W.; Kim, J.H.; Kong, J.; Hong, S.T.; Lee, M.G. Probing the mechanism of friction stir welding with ALE based finite element simulations and its application to strength prediction of welded aluminum. Met. Mater. Int. 2021, 27, 650–666. [Google Scholar] [CrossRef]
- Meyghani, B. A modified friction model and its application in finite-element analysis of friction stir welding process. J. Manuf. Process. 2021, 72, 29–47. [Google Scholar] [CrossRef]
- Akbari, M.; Asiabaraki, H.R.; Aliha, M. Investigation of the effect of welding and rotational speed on strain and temperature during friction stir welding of AA5083 and AA7075 using the CEL approach. Eng. Res. Express 2023, 5, 025012. [Google Scholar] [CrossRef]
- Hosseini, A.; Arezoudar, A.F. Modified CEL method for determination of defect formation mechanism in underwater stationary shoulder FSW based on softened pressure-overclosure contact relationship. Forces Mech. 2024, 17, 100296. [Google Scholar] [CrossRef]
- Eivani, A.R.; Vafaeenezhad, H.; Jafarian, H.R.; Zhou, J. A novel approach to determine residual stress field during FSW of AZ91 Mg alloy using combined smoothed particle hydrodynamics/neuro-fuzzy computations and ultrasonic testing. J. Magnes. Alloy. 2021, 9, 1304–1328. [Google Scholar] [CrossRef]
- Pan, W.; Li, D.; Tartakovsky, A.M.; Ahzi, S.; Khraisheh, M.; Khaleel, M. A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: Process modeling and simulation of microstructure evolution in a magnesium alloy. Int. J. Plast. 2013, 48, 189–204. [Google Scholar] [CrossRef]
- Bagheri, B.; Abdollahzadeh, A.; Abbasi, M.; Kokabi, A.H. Numerical analysis of vibration effect on friction stir welding by smoothed particle hydrodynamics (SPH). Int. J. Adv. Manuf. Technol. 2020, 110, 209–228. [Google Scholar] [CrossRef]
- Frigaard, Ø.; Grong, Ø.; Midling, O.T. A process model for friction stir welding of age hardening aluminum alloys. Metall. Mater. Trans. A 2001, 32, 1189–1200. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Y.; Domblesky, J.P.; Li, W.; Han, J. Development of a heat source model for friction stir welding tools considering probe geometry and tool/workpiece interface conditions. Int. J. Adv. Manuf. Technol. 2021, 114, 1787–1802. [Google Scholar] [CrossRef]
- Su, H.; Chen, J.; Wu, C. A heat source model for dissimilar Al/Cu friction stir welding process based on tool torque measurement. Int. J. Adv. Manuf. Technol. 2024, 130, 4621–4634. [Google Scholar] [CrossRef]
- Alhourani, A.; Sheikh-Ahmad, J.; Almaskari, F.; Khan, K.; Deveci, S.; Barsoum, I. Thermal modeling of friction stir welding of thick high-density polyethylene plates. J. Mater. Res. Technol. 2024, 28, 4186–4198. [Google Scholar] [CrossRef]
- Yan, F.; Zhang, Y.; Mi, S. A dynamic prediction method of transient temperature in friction stir welding process. Measurement 2022, 200, 111632. [Google Scholar] [CrossRef]
- Liu, X.; Yu, Y.; Yang, S.; Liu, H. A Modified Analytical Heat Source Model for Numerical Simulation of Temperature Field in Friction Stir Welding. Adv. Mater. Sci. Eng. 2020, 2020, 4639382. [Google Scholar] [CrossRef]
- Feng, S.; Liu, Z.; Xin, R. Simulation of Friction Stir Welding of AZ31 Mg Alloys. Materials 2024, 17, 4974. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhu, P.; Cao, Y.; Zhou, L.; Xue, P.; Wu, L. Effects of different friction stir welding processes on residual stress and deformation of Ti62A alloy joints. J. Mater. Res. Technol. 2023, 26, 6096–6107. [Google Scholar] [CrossRef]
- Jin, T.; Miao, P.; Cui, X.; Wang, J. Intelligent optimization of non-rigidly supported stationary shoulder friction stir welding parameters. Adv. Mech. Eng. 2024, 16, 16878132241235519. [Google Scholar] [CrossRef]
- Li, T.; Shi, Q.Y.; Li, H.K. Residual stresses simulation for friction stir welded joint. Sci. Technol. Weld. Join. 2007, 12, 664–670. [Google Scholar] [CrossRef]
- Chauhan, P.; Jain, R.; Pal, S.K.; Singh, S.B. Modeling of defects in friction stir welding using coupled Eulerian and Lagrangian method. J. Manuf. Process. 2018, 34, 158–166. [Google Scholar] [CrossRef]
- Jiang, H.; Man, Z.; Guo, Z.; Feng, W.; Yang, Z.; Lei, Z.; Bai, R.; Yan, S.; Cheng, B. Determination of residual stress field in laser cladding using finite element updating method driven by contour deformation. Opt. Laser Technol. 2024, 179, 111371. [Google Scholar] [CrossRef]
- Akbari, M.; Aliha, M.R.M.; Berto, F. Investigating the role of different components of friction stir welding tools on the generated heat and strain. Forces Mech. 2023, 10, 100166. [Google Scholar] [CrossRef]
- Selvaraj, M.; Murali, V.; Koteswara Rao, S.R. Thermal model for friction stir welding of mild steel. Multidiscip. Model. Mater. Struct. 2013, 9, 49–61. [Google Scholar] [CrossRef]
- Khalaf, H.I.; Al-Sabur, R.; Abdullah, M.E.; Kubit, A.; Derazkola, H.A. Effects of underwater friction stir welding heat generation on residual stress of AA6068-T6 aluminum alloy. Materials 2022, 15, 2223. [Google Scholar] [CrossRef]
- Darvazi, A.R.; Iranmanesh, M. Prediction of asymmetric transient temperature and longitudinal residual stress in friction stir welding of 304L stainless steel. Mater. Des. 2014, 55, 812–820. [Google Scholar] [CrossRef]
- Yan, D.Y.; Wu, A.P.; Silvanus, J.; Shi, Q.Y. Predicting residual distortion of aluminum alloy stiffened sheet after friction stir welding by numerical simulation. Mater. Des. 2011, 32, 2284–2291. [Google Scholar] [CrossRef]
- Lu, X.; Li, X.; Teng, L.; Luan, Y.; Zhang, H.; Zhang, Y.; Liang, S.Y. Simulation of temperature field and optimization of welding parameters in friction stir welding thick large circular storage tank. Int. J. Adv. Manuf. Technol. 2024, 132, 2807–2821. [Google Scholar] [CrossRef]
- Choudhary, A.K.; Jain, R. Development of numerical model to investigate the process mechanics of eccentric square pin during friction stir welding. CIRP J. Manuf. Sci. Technol. 2025, 60, 206–221. [Google Scholar] [CrossRef]
- Yang, X.; Meng, T.; Su, Y.; Qi, Z.; Wu, D.; Vairis, A.; Li, W. Study on relieving residual stress of friction stir welded joint of 2219 aluminum alloy using cold spraying. Mater. Charact. 2023, 206, 113417. [Google Scholar] [CrossRef]
- Khedr, M.; Hamzawy, N.; Hamada, A.; Jaskari, M.; Mahmoud, T.S.; El-Mahallawi, I.; Khalifa, T. Improved mechanical behavior of friction stir drilled 6082 aluminum alloy via T6 treatment. J. Mater. Res. Technol. 2024, 31, 2774–2785. [Google Scholar] [CrossRef]
- Khedr, M.; Li, W.; Min, N.; Liu, W.; Jin, X. Effects of increasing the strain rate on mechanical twinning and dynamic strain aging in Fe-12.5Mn-1.1C and Fe–24Mn-0.45C–2Al austenitic steels. Mater. Sci. Eng. A 2022, 842, 143024. [Google Scholar] [CrossRef]
- Zhan, Y.; Li, Y.; Zhang, E.; Ge, Y.; Liu, C. Laser ultrasonic technology for residual stress measurement of 7075 aluminum alloy friction stir welding. Appl. Acoust. 2019, 145, 52–59.6. [Google Scholar] [CrossRef]
- Sun, T.; Roy, M.J.; Strong, D.; Withers, P.J.; Prangnell, P.B. Comparison of residual stress distributions in conventional and stationary shoulder high-strength aluminum alloy friction stir welds. J. Mater. Process. Technol. 2017, 242, 92–100. [Google Scholar] [CrossRef]
- Zhang, X.X.; Ni, D.R.; Xiao, B.L.; Andrä, H.; Gan, W.M.; Hofmann, M.; Ma, Z.Y. Determination of macroscopic and microscopic residual stresses in friction stir welded metal matrix composites via neutron diffraction. Acta Mater. 2015, 87, 161–173. [Google Scholar] [CrossRef]
- Sonne, M.R.; Tutum, C.C.; Hattel, J.H.; Simar, A.; De Meester, B. The effect of hardening laws and thermal softening on modeling residual stresses in FSW of aluminum alloy 2024-T3. J. Mater. Process. Technol. 2013, 213, 477–486. [Google Scholar] [CrossRef]
- Liu, C.; Yi, X. Residual stress measurement on AA6061-T6 aluminum alloy friction stir butt welds using contour method. Mater. Des. 2013, 46, 366–371. [Google Scholar] [CrossRef]
- He, W.; Liu, J.; Hu, W.; Wang, G.; Chen, W. Controlling residual stress and distortion of friction stir welding joint by external stationary shoulder. High Temp. Mater. Process. 2019, 38, 662–671. [Google Scholar] [CrossRef]
Temperature (°C) | Density (kg/m3) | Specific Heat (J/kg/°C) | Young’s Modulus (GPa) | Poisson’s Ratio | Thermal Conductivity (W/m/°C) |
---|---|---|---|---|---|
25 | 2690 | 945 | 66.94 | 0.33 | 162 |
100 | 2690 | 978 | 63.21 | 0.334 | 177 |
149 | 2670 | 1000 | 61.32 | 0.335 | 184 |
204 | 2660 | 1030 | 56.8 | 0.336 | 192 |
260 | 2660 | 1052 | 51.15 | 0.338 | 201 |
316 | 2630 | 1080 | 47.17 | 0.36 | 207 |
371 | 2630 | 1100 | 43.51 | 0.4 | 217 |
427 | 2600 | 1130 | 28.77 | 0.41 | 229 |
482 | 2600 | 1276 | 20.2 | 0.42 | 243 |
Method Type | Application Scope and Basic Principle | Advantages |
---|---|---|
Arbitrary Lagrangian–Eulerian | The mesh can move, and the material can slide relative to the mesh; | Effectively alleviates mesh distortion; suitable for coupled temperature–stress field analysis. |
Coupled Eulerian–Lagrangian | The Eulerian mesh is used to describe large deformation flow, while the tool is embedded as a Lagrangian body; | Avoids mesh distortion; considers material flow; more realistic in physical modeling. |
Smoothed Particle Hydrodynamics | A meshless particle method based on the Lagrangian concept; physical quantities are calculated by interpolating between particles | Capable of handling complex interfaces and material failure problems; no mesh distortion. |
Moving Heat Source | Heat input is applied to the workpiece via a function-defined heat source, which moves along the tool path. | Simple modeling, flexible heat source control; high computational efficiency. |
Modeling Method | Feature Description | Residual Stress Performance |
---|---|---|
Thermo-mechanical Coupled Model | Incorporates axial pressure and shear force from the shoulder/pin | Residual stress distribution closely matches that of the CEL model |
CEL | Simulates material flow in real time and considers actual tool geometry | Residual stress is higher on the advancing side |
Thermal Load Model | Simple model structure with high computational efficiency | Residual stress is symmetric, with the highest peak value |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Wei, X.; Zhou, J.; Jiang, H.; Liu, X.; Man, Z. The Formation Mechanism of Residual Stress in Friction Stir Welding Based on Thermo-Mechanical Coupled Simulation. Symmetry 2025, 17, 917. https://doi.org/10.3390/sym17060917
Yang T, Wei X, Zhou J, Jiang H, Liu X, Man Z. The Formation Mechanism of Residual Stress in Friction Stir Welding Based on Thermo-Mechanical Coupled Simulation. Symmetry. 2025; 17(6):917. https://doi.org/10.3390/sym17060917
Chicago/Turabian StyleYang, Tianlei, Xiao Wei, Jiangfan Zhou, Hao Jiang, Xinyu Liu, and Zongzhe Man. 2025. "The Formation Mechanism of Residual Stress in Friction Stir Welding Based on Thermo-Mechanical Coupled Simulation" Symmetry 17, no. 6: 917. https://doi.org/10.3390/sym17060917
APA StyleYang, T., Wei, X., Zhou, J., Jiang, H., Liu, X., & Man, Z. (2025). The Formation Mechanism of Residual Stress in Friction Stir Welding Based on Thermo-Mechanical Coupled Simulation. Symmetry, 17(6), 917. https://doi.org/10.3390/sym17060917