Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (147)

Search Parameters:
Keywords = wax coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7201 KiB  
Article
Carnauba Wax Coatings Enriched with Essential Oils or Fruit By-Products Reduce Decay and Preserve Postharvest Quality in Organic Citrus
by Lorena Martínez-Zamora, Rosa Zapata, Marina Cano-Lamadrid and Francisco Artés-Hernández
Foods 2025, 14(15), 2616; https://doi.org/10.3390/foods14152616 - 25 Jul 2025
Viewed by 493
Abstract
This research analyzes the innovative development of carnauba wax coatings enriched with essential oils (EOs: lemon, orange, grapefruit, clove, oregano, and cinnamon) or fruit by-products (FBPs: avocado, tomato, carrot, orange, lemon, and grapefruit) to improve postharvest preservation of organic oranges and lemons. Six [...] Read more.
This research analyzes the innovative development of carnauba wax coatings enriched with essential oils (EOs: lemon, orange, grapefruit, clove, oregano, and cinnamon) or fruit by-products (FBPs: avocado, tomato, carrot, orange, lemon, and grapefruit) to improve postharvest preservation of organic oranges and lemons. Six EOs and six FBPs were evaluated for total phenolic content (TPC) and in vitro antifungal activity against Penicillium digitatum. Based on results, grapefruit, oregano, and clove EOs were selected for lemons, while avocado, orange, and grapefruit FBPs were selected for oranges. An in vivo test at 20 °C for 15 days with carnauba wax coatings assessed antifungal performance. Clove EO and avocado FBP showed strong in vitro inhibition and consistent hyphal suppression (~100 and ~82%, respectively). In vivo, coatings with grapefruit EO and avocado FBP significantly reduced fungal decay and sporulation (~75%) in lemons and oranges, respectively. Coated fruits also retained weight losses by ~25% compared to uncoated ones. These findings suggest that phenolic-rich natural extracts, especially from agro-industrial residues like avocado peels, offer a promising and sustainable strategy for postharvest citrus disease control. Further studies should test coating effectiveness in large-scale trials under refrigeration combined with other preservation strategies. Full article
Show Figures

Graphical abstract

16 pages, 1367 KiB  
Article
Enhancing Hydrophobicity of Nanocellulose-Based Films by Coating with Natural Wax from Halimium viscosum
by Ana Ramos, Jesus M. Rodilla, Rodrigo Ferreira and Ângelo Luís
Appl. Sci. 2025, 15(13), 7576; https://doi.org/10.3390/app15137576 - 6 Jul 2025
Viewed by 394
Abstract
This study aimed to improve the hydrophobicity of cellulose nanofibril (CNF) films using a natural wax coating. For this purpose, firstly, the selection, extraction and characterization of a natural wax and fatty acids were carried out. These compounds were extracted from the aerial [...] Read more.
This study aimed to improve the hydrophobicity of cellulose nanofibril (CNF) films using a natural wax coating. For this purpose, firstly, the selection, extraction and characterization of a natural wax and fatty acids were carried out. These compounds were extracted from the aerial part of the Halimium viscosum plant. The chromatogram resulting from the chemical analysis of the extract revealed the presence of 15 compounds, with nonacosane being the major compound present. For film production, two different chemical pulps gels (sulfite and sulfate) were first characterized in terms of solids content, rheology and Fourier transform infrared spectroscopy (FTIR). The CNF films were produced by the solvent casting method, coated on one side with the extracted wax and subsequently characterized by wettability, surface energy, differential scanning calorimetry (DSC), FTIR, structural properties and water vapor permeability. The results showed that the wax-coated films exhibited a significant increase in water resistance, with a water contact angle exceeding 100°, demonstrating improved hydrophobicity. Also, the water vapor transmission rate (WVTR) of the films was drastically reduced after wax coating. Furthermore, the coated films maintained good transparency, making them a viable alternative to synthetic plastic. This study highlights the potential of natural wax coatings to improve the moisture barrier properties of biodegradable CNF films, promoting their application in sustainable packaging solutions. Full article
Show Figures

Figure 1

13 pages, 3132 KiB  
Article
Development of Structural Type Mortars Reinforced with Coconut (Cocos Nucifera) Fiber: Chemical, Thermal, and Mechanical Behavior
by Mónica-Johanna Monsalve-Arias, Oscar-Fabián Higuera-Cobos and Cristian-Antonio Pedraza-Yepes
J. Compos. Sci. 2025, 9(6), 300; https://doi.org/10.3390/jcs9060300 - 12 Jun 2025
Viewed by 456
Abstract
In this research, the effect of the addition of coconut fibers coated with hydrophobic substances as reinforcement material in mortars was evaluated. Fibers of different sizes (1, 2, and 5 cm) were pretreated with linseed oil and paraffin wax, in order to obtain [...] Read more.
In this research, the effect of the addition of coconut fibers coated with hydrophobic substances as reinforcement material in mortars was evaluated. Fibers of different sizes (1, 2, and 5 cm) were pretreated with linseed oil and paraffin wax, in order to obtain a mortar/fiber ratio of 0.5% and 1% by weight. The chemical resistance of the fibers were evaluated before and after being exposed to a concentrated solution of Ca(OH)2 in order to simulate the alkaline environment of the cement. The physicochemical characterization of the fibers was conducted by DTG (derivative thermogravimetry), TGA (thermogravimetric analysis), and FTIR (Fourier transform infrared spectrometry). The mechanical strength of the fiber-reinforced mortars was evaluated by compression and flexural tests. The effect of fiber degradation on mechanical behavior was evaluated between 28 days of processing. The results showed that the highest compressive and flexural strength were obtained with the composites reinforced with coconut fiber of 0.5% by weight, length of 1 cm, and paraffin wax as the impregnation substance. Full article
Show Figures

Figure 1

12 pages, 1752 KiB  
Proceeding Paper
Ab Initio Life-Cycle Analysis Assisting the Selection of Eco-Friendly Additives in Bio-Based Coatings
by Pieter Samyn, Patrick Cosemans and Thomas Vandenhaute
Eng. Proc. 2025, 87(1), 76; https://doi.org/10.3390/engproc2025087076 - 11 Jun 2025
Viewed by 413
Abstract
The formulation of eco-friendly coatings with protective properties against corrosion and/or mechanical degradation requires the selection of appropriate bio-based binders and functional additives. Although the concentration of additives remains limited, the replacement of fossil-based additives with bio-based additives may deliver an important contribution [...] Read more.
The formulation of eco-friendly coatings with protective properties against corrosion and/or mechanical degradation requires the selection of appropriate bio-based binders and functional additives. Although the concentration of additives remains limited, the replacement of fossil-based additives with bio-based additives may deliver an important contribution to improving the carbon footprint of a coating, in parallel with their influences on coating performance, lifetime, and processing. However, the role of bio-based additives in life-cycle analysis (LCA) is often neglected and minorly considered in current literature. Reasons for this include the complexity of the full system, together with a lack of data, methodological inconveniences, and appropriate design of realistic scenarios. Within this work, an approach of simplified LCA is followed by ab initio cradle-to-gate analysis of coating formulations focusing on the replacement of specific fossil additives (e.g., carbon black, silicates, and calcium carbonate) with bio-based additives (e.g., biochar, bio-based wax, recovered calcium carbonate, and nanocellulose). The different environmental impact parameters (human health, eco-toxicity, resource scarcity, and carbon footprint) for bio-based additives and coating formulations are calculated from eco-cost analysis (Idemat 2024 v2.2 database), indicating a 15 to 30% gain in carbon footprint for coatings with bio-based additives. In a particular case study for improving coating performance by substituting cellulosic additives into nanocellulose from different sources, the reduction in environmental impact parameters is positively associated with their high performance at low concentration. The need for intermediate processing of bio-based additives is a main parameter contributing to their environmental impact, but environmental benefits are abundantly compensated by their carbon storage credit and performance improvement. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

19 pages, 6268 KiB  
Article
Performance of Micronized Biowax Powders Replacing PTFE Fillers in Bio-Based Epoxy Resin Coatings
by Pieter Samyn, Chris Vanheusden and Patrick Cosemans
Coatings 2025, 15(5), 511; https://doi.org/10.3390/coatings15050511 - 24 Apr 2025
Viewed by 819
Abstract
In view of sustainable-by-design issues, there is an urgent need for replacing harmful coating ingredients with more ecological, non-toxic alternatives from bio-based sources. In particular, fluorine derivatives such as polytetrafluoroethylene (PTFE) powders are frequently applied as coating additives because of their versatile role [...] Read more.
In view of sustainable-by-design issues, there is an urgent need for replacing harmful coating ingredients with more ecological, non-toxic alternatives from bio-based sources. In particular, fluorine derivatives such as polytetrafluoroethylene (PTFE) powders are frequently applied as coating additives because of their versatile role in rendering hydrophobicity and lubrication. In this research, a screening study is presented regarding the performance of alternative micronized biowax powders, produced from various natural origins, when used as functional additives in protective epoxy coatings for wood. The micronized wax powders from bio-based sources (carnauba wax, rice bran wax, amide biowax) and reference fossil sources (PE wax/PTFE, PE wax, PTFE), of large (8 to 11 µm) and small sizes (4 to 6 µm), were added into fully bio-based epoxy clear coat formulations based on epoxidized flaxseed oil and proprietary acid hardener. Within concentration ranges of 0.5 to 10 wt.-%, it was observed that rice bran micropowders present higher hardness, scratch resistance, abrasion resistance, and hydrophobicity when compared to the results for PTFE. Moreover, the proprietary mixtures of biowax combined with PTFE micropowders provide synergistic effects, with PTFE mostly dominating in regards to the mechanical and physical properties. However, the granulometry of the micronized wax powders is a crucial parameter, as the smallest biowax particle sizes are the most effective. Based on further analysis of the sliding interface, a more ductile surface film forms for the coatings with rice bran and carnauba wax micropowders, while the amide wax is more brittle in parallel with the synthetic waxes and PTFE. Infrared spectroscopy confirms a favorable distribution of biowax micropowders at the coating surface in parallel with the formation of a protective surface film and protection of the epoxy matrix after abrasive wear. This study confirms that alternatives to PTFE for the mechanical protection, gloss, and hydrophobicity of wood coatings should be critically selected among the available grades of micronized waxes, depending on the targeted properties. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

45 pages, 10295 KiB  
Review
Holistic Molecular Design of Ionic Surfaces for Tailored Water Wettability and Technical Applications
by Huiyun Wang, Chongling Cheng and Dayang Wang
Nanomaterials 2025, 15(8), 591; https://doi.org/10.3390/nano15080591 - 11 Apr 2025
Cited by 1 | Viewed by 1298
Abstract
This comprehensive review systematically explores the molecular design and functional applications of nano-smooth hydrophilic ionic polymer surfaces. Beginning with advanced fabrication strategies—including plasma treatment, surface grafting, and layer-by-layer assembly—we critically evaluate their efficacy in eliminating surface irregularities and tailoring wettability. Central to this [...] Read more.
This comprehensive review systematically explores the molecular design and functional applications of nano-smooth hydrophilic ionic polymer surfaces. Beginning with advanced fabrication strategies—including plasma treatment, surface grafting, and layer-by-layer assembly—we critically evaluate their efficacy in eliminating surface irregularities and tailoring wettability. Central to this discussion are the types of ionic groups, molecular configurations, and counterion hydration effects, which collectively govern macroscopic hydrophilicity through electrostatic interactions, hydrogen bonding, and molecular reorganization. By bridging molecular-level insights with application-driven design, we highlight breakthroughs in oil–water separation, anti-fogging, anti-icing, and anti-waxing technologies, where precise control over ionic group density, the hydration layer’s stability, and the degree of perfection enable exceptional performance. Case studies demonstrate how zwitterionic architectures, pH-responsive coatings, and biomimetic interfaces address real-world challenges in industrial and biomedical settings. In conclusion, we synthesize the molecular mechanisms governing hydrophilic ionic surfaces and identify key research directions to address future material challenges. This review bridges critical gaps in the current understanding of molecular-level determinants of wettability while providing actionable design principles for engineered hydrophilic surfaces. Full article
(This article belongs to the Special Issue Advances in Polymer Nanocomposite Films:2nd Edition)
Show Figures

Figure 1

26 pages, 1038 KiB  
Review
Advances in Stored-Product Pest Management: Combined Effects of Diatomaceous Earths with Botanicals, Insecticides, Entomopathogenic/Plant Pathogenic Fungi, and Silica Gel
by Waqas Wakil, Maria C. Boukouvala, Nickolas G. Kavallieratos, Demeter Lorentha S. Gidari, Anna Skourti and Tahira Riasat
Sustainability 2025, 17(8), 3316; https://doi.org/10.3390/su17083316 - 8 Apr 2025
Cited by 2 | Viewed by 729
Abstract
Diatomaceous earth (DE) consists of fossilized remnants of diatoms, which are marine or freshwater unicellular algae. Most DEs originate from fossilized sedimentary layers of diatoms deposited in water bodies during the Eocene and Miocene periods, much more than 20 million years ago. Processed [...] Read more.
Diatomaceous earth (DE) consists of fossilized remnants of diatoms, which are marine or freshwater unicellular algae. Most DEs originate from fossilized sedimentary layers of diatoms deposited in water bodies during the Eocene and Miocene periods, much more than 20 million years ago. Processed DE, a soft, chalky powder, is widely used as an insecticide due to the highly absorptive and abrasive nature of its particles. As an insecticide, DE removes the wax coating of the insect epicuticle, the primary barrier against water loss. This results in water evaporation, leading to desiccation and death of the targeted insects. This review emphasizes the co-treatment of DEs with biological agents that have insecticidal properties (e.g., essential oils, plant powders, silica gel, and species/isolates of fungi), reducing the quantities used in single-application treatments and suggesting paths for the sustainable management of insects damaging stored products. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

20 pages, 5254 KiB  
Article
Biomimetic Modification of Waterborne Polymer Coating Using Bio-Wax for Enhancing Controlled Release Performance of Nutrient
by Lianjie Wan, Cong Ge, Fei Ma, Jianmin Zhou and Changwen Du
Polymers 2025, 17(7), 838; https://doi.org/10.3390/polym17070838 - 21 Mar 2025
Cited by 1 | Viewed by 630
Abstract
Waterborne polymer coated controlled release fertilizers (CRFs) are highly valued for their potential to enhance nitrogen use efficiency (NUE) and reduce fertilization labor costs. However, their application in crops with long growth periods, such as rice and maize, is limited by inadequate coating [...] Read more.
Waterborne polymer coated controlled release fertilizers (CRFs) are highly valued for their potential to enhance nitrogen use efficiency (NUE) and reduce fertilization labor costs. However, their application in crops with long growth periods, such as rice and maize, is limited by inadequate coating strength and suboptimal hydrophobicity. Inspired by the hydrophobic and anti-fouling structure of lotus leaf cuticles, this study biomimetically modified waterborne polyacrylate-coated urea (PACU) using natural bio-wax including rice bran wax (RBW), candelilla wax (CAW), bees wax (BW) and carnauba wax (CW), along with paraffin wax (PW) as a control. The modifications significantly extended nutrient release duration by 22 d compared to unmodified PACU, with CW providing the longest duration, followed by CAW, BW, RBW, and PW. Additionally, the modification of BW, CAW, and CW exhibited superior hydrophobicity and affinity to polyacrylate coatings, while the inferior hardness and toughness of PW compromised its controlled release performance. Field trials demonstrated that CW-modified CRFs effectively controlled nutrient release in rice and maize, resulting in a 7.2% increase in rice yield and a 37.9% increase in maize yield, as well as an 18.7% improvement in NUE compared to conventional fertilizers. These findings offered a novel approach for hydrophobic modification of waterborne polymer coatings, thereby enhancing the performance and applicability of waterborne polymer coated CRFs in long-season crops. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 2025 KiB  
Article
Advanced Evaluation of Fire Resistance in Spruce Wood (Picea abies spp.) Treated with Innovative Surface Coatings
by Redžo Hasanagić, Selma Mujanić, Eli Keržič, Leila Fathi, Mohsen Bahmani, Mohammad Dahmardeh Ghalehno, Boštjan Lesar and Miha Humar
Fire 2025, 8(4), 120; https://doi.org/10.3390/fire8040120 - 21 Mar 2025
Cited by 1 | Viewed by 756
Abstract
This study investigates innovative surface coatings’ effectiveness in enhancing spruce wood’s fire resistance (Picea abies spp.). Spruce wood samples were treated with various agents, including oils, waxes, boric acid, commercial coatings, and fire-retardant agents. The evaluation was conducted using the small flame [...] Read more.
This study investigates innovative surface coatings’ effectiveness in enhancing spruce wood’s fire resistance (Picea abies spp.). Spruce wood samples were treated with various agents, including oils, waxes, boric acid, commercial coatings, and fire-retardant agents. The evaluation was conducted using the small flame method (EN ISO 11925-2:2020), surface roughness analysis, hyperspectral imaging (HSI), and contact angle measurements. The results demonstrated significant improvements in fire resistance for samples treated with specific coatings, particularly the Burn Block spray and Caparol coating, which effectively prevented flame spread. The analysis revealed that the Burn Block spray reduced the average flame height to 6.57 cm, while the Caparol coating achieved a similar effect with an average flame height of 6.95 cm. In contrast, untreated samples exhibited a flame height of 9.34 cm, with boric acid-treated samples reaching up to 12.18 cm. Char depth measurements and the surface roughness analysis revealed a clear correlation between the type of treatment and the thermal stability of the wood. Hyperspectral imaging enabled a detailed visualisation of surface degradation, while contact angle measurements highlighted the impact of hydrophobicity on flammability. This research provides in-depth insights into the fire-retardant mechanisms of spruce wood and offers practical guidelines for developing safer and more sustainable wood materials for the construction industry. Full article
Show Figures

Figure 1

22 pages, 5674 KiB  
Article
Overcoming Dormancy of Black Locust (Robinia pseudoacacia L.) Seeds Using Various Non-Thermal Plasma Sources
by Vladimír Scholtz, Jana Jirešová, Josef Khun, Tomasz Czapka, Jaroslav Julák and Myron Klenivskyi
Plants 2025, 14(5), 728; https://doi.org/10.3390/plants14050728 - 27 Feb 2025
Viewed by 661
Abstract
Black locust (Fabaceae family) seeds are known for their strong dormant state and are an excellent candidate for studying and developing methods to break dormancy. We investigated overcoming the dormancy using several different sources of non-thermal plasma, which, by modifying, etching, or disrupting [...] Read more.
Black locust (Fabaceae family) seeds are known for their strong dormant state and are an excellent candidate for studying and developing methods to break dormancy. We investigated overcoming the dormancy using several different sources of non-thermal plasma, which, by modifying, etching, or disrupting the waxy seed coat, allowed water to penetrate the seeds and initiate germination. All plasma sources tested enhanced seed germination to varying degrees, with over 80% germination observed when using a dielectric barrier discharge, while control seeds showed no germination. Non-thermal plasma treatment significantly decreased the water contact angle of the seed surface from an initial 120° (for untreated seeds) to complete wetting when using a dielectric barrier discharge or atmospheric-pressure plasma jet. The experiments indicate two mechanisms for the modification of the waxy seed coat by a non-thermal plasma: hydrophilization of the wax surface through the binding of oxygen particles and etching of narrow channels in the wax layer, allowing water to penetrate the seed. Full article
Show Figures

Figure 1

32 pages, 9267 KiB  
Article
On the Structural and Biological Effects of Hydroxyapatite and Gold Nano-Scale Particles in Poly(Vinylidene Fluoride) Smart Scaffolds for Bone and Neural Tissue Engineering
by Angelika Zaszczyńska, Marzena Zychowicz, Dorota Kołbuk, Piotr Denis, Arkadiusz Gradys and Paweł Ł. Sajkiewicz
Molecules 2025, 30(5), 1041; https://doi.org/10.3390/molecules30051041 - 25 Feb 2025
Viewed by 1195
Abstract
Piezoelectric materials, due to their ability to generate an electric charge in response to mechanical deformation, are becoming increasingly attractive in the engineering of bone and neural tissues. This manuscript reports the effects of the addition of nanohydroxyapatite (nHA), introduction of gold nanoparticles [...] Read more.
Piezoelectric materials, due to their ability to generate an electric charge in response to mechanical deformation, are becoming increasingly attractive in the engineering of bone and neural tissues. This manuscript reports the effects of the addition of nanohydroxyapatite (nHA), introduction of gold nanoparticles (AuNPs) via sonochemical coating, and collector rotation speed on the formation of electroactive phases and biological properties in electrospun nanofiber scaffolds consisting of poly(vinylidene fluoride) (PVDF). FTIR, WAXS, DSC, and SEM results indicate that introduction of nHA increases the content of electroactive phases and fiber alignment. The collector rotational speed increases not only the fiber alignment but also the content of electroactive phases in PVDF and PVDF/nHA fibers. Increased fiber orientation and introduction of each of additives resulted in increased SFE and water uptake. In vitro tests conducted on MG-63 and hiPSC-NSC cells showed increased adhesion and cell proliferation. The results indicate that PVDF-based composites with nHA and AuNPs are promising candidates for the development of advanced scaffolds for bone and neural tissue engineering applications, combining electrical functionality and biological activity to support tissue regeneration. Full article
(This article belongs to the Special Issue Bio-Based Polymers for Sustainable Future)
Show Figures

Figure 1

26 pages, 10787 KiB  
Article
Development and Characterization of Pectin and Beeswax-Based Coatings Enhanced with Anthocyanins and Its Antioxidant and Antifungal Properties
by Ariel Alain Vergel-Alfonso, Rocío Arias-Avelenda, Alicia Casariego-Año, María José Giménez, Saúl Ruíz-Cruz, Betzabe Ebenhezer López-Corona, Carmen Lizette Del-Toro-Sánchez, Ana Liz Gonzalez-Bravo, Maribel Plascencia-Jatomea, Mariela Menchaca-Armenta, Dalila Fernanda Canizales-Rodríguez, José Rogelio Ramos-Enríquez, José Agustín Tapia-Hernández and Francisco Rodríguez-Félix
Processes 2025, 13(2), 542; https://doi.org/10.3390/pr13020542 - 14 Feb 2025
Cited by 4 | Viewed by 1814
Abstract
Currently, approximately one third of food is wasted; to counteract this, several novel packaging technologies have been developed to extend its shelf life, among which active packaging stands out. In this research, filmogenic solutions of pectin and beeswax with the addition of bioactive [...] Read more.
Currently, approximately one third of food is wasted; to counteract this, several novel packaging technologies have been developed to extend its shelf life, among which active packaging stands out. In this research, filmogenic solutions of pectin and beeswax with the addition of bioactive compounds as anthocyanins were developed and characterized to evaluate their potential application as active coatings. The antioxidant and antifungal activity of anthocyanins and coatings were determined, and the rheological properties, pH, color, SEM and FT-IR of the coatings were evaluated. The antioxidant activity of the anthocyanins had IC50 values of 79.52 and 56.14 μg/mL for DPPH and ABTS•+, respectively, and 0.25% (w/v) for the antifungal activity against Colletotrichum siamense, which was inhibited by 32.16% and had morphological affectations in the fungus. The best formulation for coating was obtained with 3% (w/v) pectin, 1% (w/v) wax, and 1% (w/v) Tween 80, and 0.1, 0.25, and 0.5% anthocyanins were added. The rheological properties showed adequate viscosity values (0.08–0.12 Pa·s), and the pH values were acidic (3.05–3.78) and showed reddish tones. FT-IR analysis showed that the interactions between the components included the C=O stretching band being shifted due to intermolecular interactions and SEM micrographs showed that the film coatings presented continuous areas of pectin with embedded wax crystals. Promising results were obtained for antioxidant and antifungal activity for the coatings. The formulations presented suitable characteristics for their use as active coating in food. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Graphical abstract

15 pages, 6389 KiB  
Article
Enhancing the Hydrophobicity of Chitosan Films Through Hierarchical Plant Wax Particles and Dilute Chitosan Solution Coatings
by Chengcheng Gao, Ni Zhang, Ying Chen, Fengwei Xie, Linghan Meng and Xiaozhi Tang
Foods 2025, 14(4), 610; https://doi.org/10.3390/foods14040610 - 12 Feb 2025
Cited by 1 | Viewed by 1423
Abstract
The strong hydrophilicity of chitosan-based films limits their practical applications. To enhance the hydrophobicity of these films, hierarchical carnauba wax particles were prepared using the Pickering emulsion method and subsequently coated onto the film surfaces. The wax was stabilized with various types and [...] Read more.
The strong hydrophilicity of chitosan-based films limits their practical applications. To enhance the hydrophobicity of these films, hierarchical carnauba wax particles were prepared using the Pickering emulsion method and subsequently coated onto the film surfaces. The wax was stabilized with various types and concentrations of TiO2. The resulting wax particles exhibited a micro-scale structure, with nano-scale TiO2 and micro-scale TiO2 aggregates present on the surface. No significant differences in contact angle were observed among these particles. Hydrophilic TiO2 demonstrated smaller sliding angles and particle sizes. To improve the mechanical durability and compatibility of the wax particles with the chitosan matrix, the wax particles were mixed with a diluted chitosan solution before coating. As the concentration of wax particles increased and the concentration of chitosan solution decreased, more wax particles became exposed on the surface. This exposure increased the roughness of the coatings, resulting in a significant increase in contact angle and a decrease in sliding angle. A high concentration of chitosan provided greater protection to wax particles during mechanical durability tests. Additionally, the residue rate of liquid foods on the coating films significantly decreased. This study demonstrates that the Pickering emulsion method is an effective approach for preparing hierarchical wax particles, and that mixing these particles with a polymer similar to the matrix can effectively improve mechanical durability. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

48 pages, 7112 KiB  
Review
Biobased Hydrophobic Solutions for Natural Textiles—Moving Beyond PFAS
by Petra Jerič, Blaž Likozar and Uroš Novak
J. Compos. Sci. 2025, 9(2), 81; https://doi.org/10.3390/jcs9020081 - 10 Feb 2025
Cited by 1 | Viewed by 2969
Abstract
In order to achieve hydrophobic properties in textiles, per- and poly-fluoroalkyl substances (PFAS) are often used. These chemicals represent a class of synthetic compounds that have found wide application in numerous industries because of their advantageous properties, such as hydrophobicity, lipophobicity, chemical inertness, [...] Read more.
In order to achieve hydrophobic properties in textiles, per- and poly-fluoroalkyl substances (PFAS) are often used. These chemicals represent a class of synthetic compounds that have found wide application in numerous industries because of their advantageous properties, such as hydrophobicity, lipophobicity, chemical inertness, remarkable lubricity, non-stickiness, exceptional fire resistance, resistance to high temperatures, and high resistance to various weathering conditions. However, recent scientific research has demonstrated that these compounds possess persistent, accumulative, and highly mobile properties that make them an environmental hazard. Since the toxicity of PFAS is now recognized, ongoing research has been initiated to explore new substitutes. This comprehensive review focuses on the exploration of natural-based hydrophobic coatings for natural textiles, which include materials such as natural waxes, fatty acids, naturally occurring polymeric compounds (including proteins, carbohydrates, complex aromatic polymers, and polymers like natural rubber), and other naturally occurring substances. The role of each compound in the hydrophobic coating is also highlighted. This review aims to evaluate the potential of natural compounds as viable replacements for PFAS, focusing on their efficiency and durability. Full article
Show Figures

Graphical abstract

18 pages, 5900 KiB  
Article
Research on Deflection and Stress Analyses and the Improvement of the Removal Uniformity of Silicon in a Single-Sided Polishing Machine Under Pressure
by Guoqing Ye and Zhenqiang Yao
Micromachines 2025, 16(2), 198; https://doi.org/10.3390/mi16020198 - 8 Feb 2025
Cited by 1 | Viewed by 3218
Abstract
The chemical–mechanical polishing (CMP) of silicon wafers involves high-precision surface machining after double-sided lapping. Silicon wafers are subjected to chemical corrosion and mechanical removal under pressurized conditions. The multichip CMP process for 4~6-inch silicon wafers, such as those in MOSFETs (Metal Oxide Semiconductor [...] Read more.
The chemical–mechanical polishing (CMP) of silicon wafers involves high-precision surface machining after double-sided lapping. Silicon wafers are subjected to chemical corrosion and mechanical removal under pressurized conditions. The multichip CMP process for 4~6-inch silicon wafers, such as those in MOSFETs (Metal Oxide Semiconductor Field Effect Transistors), IGBTs (Insulated-Gate Bipolar Transistors), and MEMS (Micro-Electromechanical System) field materials, is conducted to maintain multiple chips to improve efficiency and improve polish removal uniformity; that is, the detected TTV (total thickness variation) gradually increases from 10 μm to less than 3 μm. In this work, first, a mathematical model for calculating the small deflection of silicon wafers under pressure is established, and the limit values under two boundary conditions of fixed support and simple support are calculated. Moreover, the removal uniformity of the silicon wafers is improved by improving the uniformity of the wax-coated adhesion state and adjusting the boundary conditions to reflect a fixed support state. Then, the stress distribution of the silicon wafers under pressure is simulated, and the calculation methods for measuring the TTV of the silicon wafers and the uniformity measurement index are described. Stress distribution is changed by changing the size of the pressure ring to achieve the purpose of removing uniformity. This study provides a reference for improving the removal uniformity of multichip silicon wafer chemical–mechanical polishing. Full article
(This article belongs to the Special Issue Functional Materials and Microdevices, 2nd Edition)
Show Figures

Figure 1

Back to TopTop