Advances in Stored-Product Pest Management: Combined Effects of Diatomaceous Earths with Botanicals, Insecticides, Entomopathogenic/Plant Pathogenic Fungi, and Silica Gel
Abstract
:1. Introduction
2. Combination of DEs with Other Agents for Sustainable Control of Stored-Product Insects
2.1. DEs and Botanicals
Botanical | DE Formulation | Target Insect Species | Efficacy | References |
---|---|---|---|---|
Bitterbarkomycin (BBM) Plant extract from the roots of Celastrus angulatus Maxim. (Celastrales: Celastraceae) (Diatom, Canada) | DE, belonging to a fresh water DEs group (Diatom, Canada) | C. ferrugineus, S. zeamais, and T. castaneum adults | In all investigated exposure intervals, mortality of S. zeamais on BBM-trated wheat or the enhanced DE (DEBBM) was higher, compared to the mortality of the DE alone. With a few exceptions, DEBBM resulted in a significantly higher mortality rate for T. castaneum vs. the single applications. Among the three species examined, C. ferrugineus was the most susceptible; even at the lowest dose of DEBBM, mortality was 90% 5 days post-exposure. | Athanassiou et al. (2009) [112] |
Cinnamaldehyde Active constituent of Cinnamonum verum J. Presl (Laurales: Lauraceae) and eugenol originating from Syzygium aromaticum (L.) Merrill & Perry (Myrtales: Myrtaceae) (Karlsruhe, Germany) | Protect-It, and SilicoSec (Suhlendorf, Germany) | C. maculatus and S. oryzae adults | Cinnamaldehyde enhanced the efficacy of Protect-It against C. maculatus. Both botanicals enhanced the efficacy of the DEs against S. oryzae. | Islam et al. (2010) [80] |
Allium sativum L. (Asparagales: Amaryllidaceae), essential oil (Guangdong, China) | DE (93% SiO2) Saiwei brand (Guangdong Institute of Cereal Science) | S. oryzae and T. castaneum eggs, larvae, and adults | The combined treatment was more effective, even at low doses vs. single oil applications. Compared to the single use of the essential oil, the combined treatments decreased the survival of eggs or larvae to the adult stage against both species, and their activity persisted longer, compared to the single use of the essential oil. | Yang et al. (2010) [113] |
Citrus sinensis (L.) Osbeck (Sapindales: Rutaceae) essential oil (Belpasso, Italy) | Protector (Lombardy, Italy) | R. dominica adults | DE alone was more effective than DE combined with C. sinensis essential oil. | Campolo et al. (2014) [114] |
Carum copticum (L.) Benth. & Hook.f. (Apiales: Apiaceae) powder and essential oil (Mashhad, Iran) | DEs from Maragheh and Mamaghan, Iran | T. confusum and S. granarius adults | The combination of the DEs with the essential oil proved to be synergistic, in contrast to the one with the powder, which was antagonistic. | Ziaee et al. (2014) [115] |
2.2. DEs with Entomopathogenic Fungi
Fungus Species | DE Formulation | Target Insect Species | Efficacy | References |
---|---|---|---|---|
Beauveria bassiana | Protect-It (Blaine, WA) | R. dominica adults and larvae, O. surinamensis adults, and C. ferrugineus adults | At all species and stages, the combination outperformed the single applications. Significantly higher mortalities were observed in all tested scenarios, at least in one mixture rate. | Lord (2001) [127] |
Beauveria bassiana | Protect-It (Blaine, WA) | T. castaneum adults and larvae | The DE improved the fungal efficacy against larvae at concentrations from 33 to 2700 mg conidia/kg grain. | Akbar et al. (2004) [123] |
Metarhizium robertsii | SilicoSec (Münsingen, Germany) | T. confusum larvae | Larval mortality was higher when 0.5 g of SilicoSec was added to the fungal preparation at the highest concentration (8×1010 conidia/kg commodities) than when the fungus was used alone or in conjunction with 0.2 g of SilicoSec. | Michalaki et al. (2006) [138] |
Metarhizium robertsii | SilicoSec (Münsingen, Germany) | S. oryzae, T. confusum, and R. dominica adults | Fourteen days post-exposure, mortality rate for adults of R. dominica was 100% for the conidial suspension and 96% for the conidial powder at the combined treatments. Without DE, the corresponding percentages were 74.6% and 94.4%. Adult S. oryzae were less susceptible to the combined effects of conidial suspension and DE than to the DE alone. Conidial suspension, with or without DE, was less efficient against T. confusum than conidial powder. | Kavallieratos et al. (2006) [116] |
Beauveria bassiana | DE from various deposits in Ingeniero Jacobacci (Rio Negro, Argentina) | A. obtectus and S. oryzae adults | When DE was combined with B. bassiana powder, the mortality rate of S. oryzae was not significantly different. Complete mortality of A. obtectus was accomplished by DE alone or in combination with B. bassiana dry or wet formulations. | Dal Bello et al. (2006) [139] |
Isaria fumosorosea | SilicoSec (Münsingen, Germany) | E. kuehniella larvae and T. confusum adults and larvae | When T. confusum larvae were exposed to wheat treated with the highest concentration of I. fumosorosea plus SilicoSec 14 days after exposure, mortality rate was substantially higher than that of I. fumosorosea or SilicoSec alone. Adult T. confusum mortality was low, not surpassing 34% at all tested treatments. Mortality of E. kuehniella larvae did not exceed 56%; however, SilicoSec alone resulted in a higher mortality rate than the other treatments. | Michalaki et al. (2007) [140] |
Beauveria bassiana | Insecto (Costa Mesa, USA) SilicoSec (Münsingen, Germany) PyriSec (Münsingen, Germany) | S. granarius adults | The combinations of B. bassiana with DEs led to higher mortality rates vs. those of the single applications. | Athanassiou and Steenberg (2007) [141] |
Beauveria bassiana and Metarhizium robertsii | SilicoSec (Münsingen, Germany) and Fossil shield (Eiterfeld, Germany) | R. dominica, T. castaneum, and S. oryzae adults | All combinations (B. bassiana + Fossil shield, B. bassiana + SilicoSec, M. anisopliae + Fossil shield, M. anisopliae + SilicoSec) achieved significantly higher mortality rates of S. oryzae and R. dominica, compared to every single application. The same trend was observed for T. castaneum, with only the M. anisopliae + SilicoSec combination resulting in higher but not significant rates. | Batta (2008) [125] |
Metarhizium robertsii | Protect-It (Ontario, Canada) | S. oryzae and R. dominica adults | The highest mortality rates and the lowest progeny production numbers of both species were observed in conjunction with the DE and the highest fungal rate. Rhyzopertha dominica was more susceptible, compared to S. oryzae. | Athanassiou et al. (2008) [142] |
Beauveria bassiana and Isaria fumosorosea | DE containing 95% SiO2 (USA) | S. oryzae and T. castaneum adults | For both species, mortality rate was higher than that of any other treatment when both entomopathogenic fungi were combined with the higher dose of DE (500 ppm). | Ramaswamy et al. (2009) [143] |
Beauveria bassiana | DEBBM (Diatom, Canada) | R. dominica adults | Compared to applying DEBBM and B. bassiana alone, their combined use significantly increased the mortality of adults, particularly at longer exposure intervals and higher temperatures. High doses of B. bassiana plus DEBBM led to lower numbers of offspring production. | Wakil et al. (2011) [144] |
Beauveria bassiana | Diafil 610 (Lompoc, CA, USA) | R. dominica adults | The mortality rates of combined treatments were significantly higher compared to those of single applications. | Riasat et al. (2011) [145] |
Beauveria bassiana, Metarhzium robertsii, and Isaria fumosorosea | Natural DE and three modifications by different mono-, di-, tri- valent metal hydroxides (MOH, M = Na, Ca, Al) | E. kuehniella, P. interpunctella, and E. cautella larvae and adults | Effectiveness of entomopathogenic fungi was significantly increased in combination with Ca-DE and Na-DE. Modified diatoms containing aluminium hydroxide (Al-DE) reduced the effectiveness of I. fumosorosea and M. robertsii against larvae of E. cautella. DE and Al-DE reduced the efficiency of I. fumosorosea against E. kuehniella larvae. The combination of Na-DE and Ca-DE with the EPF significantly reduced the production of eggs, vs. control. Combining Ca-DE with B. bassiana significantly reduced the number of P. interpunctella eggs. | Sabbour et al. (2012) [118] |
Isaria fumosorosea | DEBBM (Diatom, Canada) | R. dominica adults | When compared to I. fumosorosea alone, the DE alone suppressed the offspring production at a high dose (400 ppm). When both were used together, the production of R. dominica progeny was further decreased. The combined application enhanced their respective effects and resulted in the greatest mortality at 56% relative humidity and 25 °C. | Riasat et al. (2013) [146] |
Metarhzium robertsii and Beauveria bassiana | SilicoSec (Münsingen, Germany) | R. dominica, O. surinamensis, and T. castaneum adults | For all the tested species, mortality rates in all combinations treatments were higher compared to those of single applications. The differences were significant only compared to the entomopathogenic fungi single applications. | Shafighi et al. (2014) [147] |
Metarhzium rileyi and Lecanicilium lecanii | Natural DE and three modifications by different mono-, di-, tri- valent metal hydroxides (MOH, M = Na, Ca, Al) | B. incarnatus and R. dominica adults | DE combinations with EPF tend to show synergistic effects. Al-DE reduced the ability of M. rileyi to effectively control both species. | Sabbour et al. (2014) [148] |
2.3. Integration of DEs with Insecticides
Insecticide | DE Formulation | Target Insect Species | Efficacy | References |
---|---|---|---|---|
s-Methoprene | Protect-It (Blaine, WA) | R. dominica adults | The positive interaction between the treatments caused significant adult mortality with no progeny emergence even at lower DE dose rates. | Arthur [152] |
Deltamethrin powder | Keepdry | S. zeamais adults | Treatments with the combination of deltamethrin powder and the DE, even in the lowest doses of both, led to significantly higher mortality rates of S. zeamais adults, compared to those with the DE alone. | Ceruti and Lazzari [167] |
Beta-cyfluthrin (Alpha agrochemicals, Athens, Greece) | SilicoSec (Biofa GmbH, Münsingen, Germany) | T. confusum and S. oryzae adults | The combination of beta cyfluthrin and the DE caused significantly higher mortality rates of the two tested species, vs. the single application of DE. Combination treatments led to significant reduction in the offspring production of S. oryzae and suppression for T. confusum offspring emergence, compared to the DE single application. | Athanassiou [105] |
s-Methoprene | Protect-It (Blaine, WA) | R. dominica adults | Adult mortality, mean number of progeny emergence, and percentage kernel loss were evaluated under the combined effect of DE and s-methoprene treatment and the finding revealed a high-level additive effect between treatments. | Chanbang et al. [168] |
Thiamethoxam (Syngenta Pakistan Limited, Karachi, Pakistan) | SilicoSec (Biofa GmbH, Münsingen, Germany) | R. dominica adults from four different locations in Pakistan | The combination of the two substances outperformed at both mortality and progeny bioassays, compared to the application of DE alone. | Wakil et al. [153] |
2.4. DEs with Synthetic Silica
2.5. Multicombinations of DEs with Other Agents
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Losic, D.; Korunic, Z. Diatomaceous Earth, a Natural Insecticide for Stored Grain Protection: Recent Progress and Perspectives. In Diatom Nanotechnology: Progress and Emerging Applications; The Royal Society of Chemistry: London, UK, 2018. [Google Scholar]
- Ziaee, M.; Ebadollahi, A.; Wakil, W. Integrating inert dusts with other technologies in stored products protection. Toxin Rev. 2021, 40, 404–419. [Google Scholar]
- Golob, P. Current status and future perspectives for inert dusts for control of stored product insects. J. Stored Prod. Res. 1997, 33, 69–79. [Google Scholar]
- Subramanyam, B.; Roesli, R. Inert dusts. In Alternatives to Pesticides in Stored-Product IPM; Springer: Boston, MA, USA, 2000; pp. 321–380. [Google Scholar]
- Kljajić, P.; Andrić, G.; Adamović, M.; Bodroža-Solarov, M.; Marković, M.; Perić, I. Laboratory assessment of insecticidal effectiveness of natural zeolite and diatomaceous earth formulations against three stored-product beetle pests. J. Stored Prod. Res. 2010, 46, 1–6. [Google Scholar]
- Shah, M.A.; Khan, A.A. Use of diatomaceous earth for the management of stored-product pests. Int. J. Pest Manag. 2014, 60, 100–113. [Google Scholar]
- Korunic, Z.; Cenkowski, S.; Fields, P. Grain bulk density as affected by diatomaceous earth and application method. Postharvest Biol. Technol. 1998, 13, 81–89. [Google Scholar]
- Batta, Y.A.; Kavallieratos, N.G. The use of entomopathogenic fungi for the control of stored-grain insects. Int. J. Pest Manag. 2018, 64, 77–87. [Google Scholar]
- Korunić, Z.; Liška, A.; Lucić, P.; Hamel, D.; Rozman, V. Evaluation of diatomaceous earth formulations enhanced with natural products against stored product insects. J. Stored Prod. Res. 2020, 86, 101565. [Google Scholar]
- Mortazavi, H.; Toprak, U.; Tütüncü, Ş.; Ormanoglu, N.; Ferizli, A.G. Surface application of diatomaceous earth, SilicoSec® is effective on Sitophilus granarius and Rhyzopertha dominica, but less against Tribolium confusum. J. Stored Prod. Res. 2024, 107, 102334. [Google Scholar] [CrossRef]
- Mortazavi, H.; Ferizli, A.G.; Toprak, U.; Tütüncü, Ş.; Emekci, M.; Ormanoğlu, N. Long-term efficacy of diatomaceous earth, SilicoSec® against three major stored grain insect pests. J. Stored Prod. Res. 2025, 111, 102531. [Google Scholar]
- Quarles, W.; Winn, P. Diatomaceous earth and stored product pests. IPM Pract. 1996, 18, 1–10. [Google Scholar]
- Reka, A.A.; Smirnov, P.V.; Belousov, P.; Durmishi, B.; Abbdesettar, L.; Aggrey, P.; Kabra Malpani, S.; Idrizi, H. Diatomaceous Earth: A Literature Review. J. Nat. Sci. Math. 2022, 7, 256–268. [Google Scholar]
- Nanayakkara, R.; Gunathilake, C.; Dassanayake, R. Suitability of reusing the spent diatomaceous earth in brick production: A review. Adv. Technol. 2022, 2, 151–166. [Google Scholar] [CrossRef]
- Maher, S.; Kumeria, T.; Aw, M.S.; Losic, D. Diatom silica for biomedical applications: Recent progress and advances. Adv. Healthc. Mater. 2018, 7, 1800552. [Google Scholar]
- Ide, Y.; Matsukawa, Y. Fabrication of functional diatomaceous earth with enhanced papain enzyme adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2024, 701, 134888. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Khraisheh, M.A.M.; Allen, S.J.; Ahmad, M.N. The removal of dyes from textile wastewater: A study of the physical characteristics and adsorption mechanisms of diatomaceous earth. J. Environ. Manag. 2003, 69, 229–238. [Google Scholar] [CrossRef]
- Sriram, G.; Kigga, M.; Uthappa, U.T.; Rego, R.M.; Thendral, V.; Kumeria, T.; Jung, H.Y.; Kurkuri, M.D. Naturally available diatomite and their surface modification for the removal of hazardous dye and metal ions: A review. Adv. Colloid Interface Sci. 2020, 282, 102198. [Google Scholar] [PubMed]
- Smol, J.P.; Stoermer, E.F. The Diatoms: Applications for the Environmental and Earth Sciences, 2nd ed.; Cambridge University Press: Cambridge, UK, 2010; pp. 1–667. [Google Scholar]
- Elhaddad, E.; Abdel-Raouf, M.E.S. New model to eliminate salts from Sarir crude oil: A case study. Int. J. Eng. Sci. Technol. 2013, 2, 1111–1116. [Google Scholar]
- Li, J.; Zhang, W.; Li, C.; Monteiro, P.J. Green concrete containing diatomaceous earth and limestone: Workability, mechanical properties, and life-cycle assessment. J. Clean. Prod. 2019, 223, 662–679. [Google Scholar]
- Cuevas-González, P.F.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Aguilar-Toalá, J.E.; Hall, F.G.; Urbizo-Reyes, U.C.; Liceaga, A.M.; Hernandez-Mendoza, A.; García, H.S. Protective role of lactic acid bacteria and yeasts as dietary carcinogen-binding agents—A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 160–180. [Google Scholar]
- Fernandez, M.I.; Woodward, B.W.; Stromberg, B.E. Effect of diatomaceous earth as an anthelmintic treatment on internal parasites and feedlot performance of beef steers. Anim. Sci. 1998, 66, 635–641. [Google Scholar]
- McLean, B.; Frost, D.; Evans, E.; Clarke, A.; Griffiths, B. The inclusion of diatomaceous earth in the diets of grazing ruminants and its effect on gastrointestinal parasite burdens. In Proceedings of the International Scientific Conference on Organic Agriculture, Adelaide, Australia, 21–23 September 2005. [Google Scholar]
- Sooby, J.; Landeck, J.; Lipson, M. 2007 National Organic Research Agenda: Outcomes from the Scientific Congress on Organic Agricultura Research (SCOAR); Organic Farming Research Foundation: Santa Cruz, CA, USA, 2007. [Google Scholar]
- Bernard, G.; Worku, M.; Ahmedna, M. The effects of diatomaceous earth on parasite-infected goats. Bull. Georgian Natl. Acad. Sci 2009, 3, 129–135. [Google Scholar]
- Kılıç, N. Efficacy of dust and wettable powder formulation of diatomaceous earth (Detech®) in the control of Tyrophagus putrescentiae (Schrank) (Acari: Acaridae). Insects 2022, 13, 857. [Google Scholar] [CrossRef]
- Ikusika, O.O.; Mpendulo, C.T.; Zindove, T.J.; Okoh, A.I. Effect of varying inclusion levels of fossil Shell flour on growth performance, water intake, digestibility, and N retention in Dohne-merino Wethers. Animals 2019, 9, 565. [Google Scholar] [CrossRef] [PubMed]
- Mthi, S.; Ikusika, O.O.; Washaya, S.; Mpendulo, C.T.; Nowers, C.B. Growth performance and nematode infestation in grazing lambs: Impact of diatomaceous earth. J. Anim. Health Prod. 2024, 12, 165–172. [Google Scholar]
- Machekano, H.; Mvumi, B.M.; Chinwada, P.; Kageler, S.J.; Rwafa, R. Evaluation of alternatives to synthetic pesticides under small-scale farmer-managed grain storage conditions. Crop Prot. 2019, 126, 104941. [Google Scholar] [CrossRef]
- Plumier, B.; Zhao, Y.; Cook, S.; Ambrose, R.K. Adhesion of diatomaceous earth dusts on wheat and corn kernels. J. Stored Prod. Res. 2019, 83, 347–352. [Google Scholar] [CrossRef]
- Wakil, W.; Schmitt, T.; Kavallieratos, N.G. Persistence and efficacy of enhanced diatomaceous earth, imidacloprid, and Beauveria bassiana against three coleopteran and one psocid stored-grain insects. Environ. Sci. Pollut. Res. 2021, 28, 23459–23472. [Google Scholar] [CrossRef]
- Wakil, W.; Kavallieratos, N.G.; Nika, E.P.; Riasat, T.; Ghazanfar, M.U.; Rasool, K.G.; Husain, M.; Aldawood, A.S. Entomopathogenic fungus and enhanced diatomaceous earth: The sustainable lethal combination against Tribolium castaneum. Sustainability 2023, 15, 4403. [Google Scholar] [CrossRef]
- Allen, F. A natural earth that controls insects. Org. Gard. Farm. 1972, 19, 50–56. [Google Scholar]
- Sharma, R.R.; Reddy, S.V.R.; Datta, S.C. Particle films and their applications in horticultural crops. Appl. Clay Sci. 2015, 116, 54–68. [Google Scholar] [CrossRef]
- Korunic, Z. Overview of undesirable effects of using diatomaceous earths for direct mixing with grains. Pestic. Fitomed. 2016, 31, 9–18. [Google Scholar] [CrossRef]
- Richardson, C.H.; Glover, L.H. Some effects of certain “inert” and toxic substances upon the twelve-spotted cucumber beetle, Diabrotica duodecimpunctata (Fab.). J. Econ. Entomol. 1932, 25, 1176–1181. [Google Scholar] [CrossRef]
- Glenn, D.M.; Puterka, G.J. Particle films: A new technology for agriculture. In Horticultural Reviews; Janik, J., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005; pp. 1–44. [Google Scholar]
- Shafer, G.D. How contact insecticides kill. Mich. Agric. Exp. Stn. Tech. Bull. 1915, 21, 51–55. [Google Scholar] [CrossRef]
- Losic, D.; Mitchell, J.G.; Voelcker, N.H. Diatomaceous lessons in nanotechnology and advanced materials. Adv. Mater. 2009, 21, 2947–2958. [Google Scholar] [CrossRef]
- Mewis, I.; Ulrich, C. Action of Amorphous Diatomaceous earths against different stages of stored Product Pests Tribolium confusum, Tenebrio molitor, Sitophilus granarius and Plodia interpunctella. J. Stored Prod. Res. 2001, 37, 153–164. [Google Scholar] [CrossRef]
- Vurro, M.; Miguel-Rojas, C.; Pérez-de-Luque, A. Safe nanotechnologies for increasing the effectiveness of environmentally friendly natural agrochemicals. Pest Manag. Sci. 2019, 75, 2403–2412. [Google Scholar] [CrossRef]
- Audu, A.; Ibrahim, N.D. Evaluation of raw diatomaceous earth, leaf powders of Eucalyptus and Melia as toxicant and repellent against Callosobruchus subinnotatus (Pic.) (Coleoptera: Chrysomelidae). J. Agric. Econ. Environ. Soc. Sci. 2021, 7, 18–32. [Google Scholar]
- Subramanyam, B.; Swanson, C.L.; Madamanchi, N.; Norwood, S. Effectiveness of Insecto®, a new diatomaceous earth formulation in suppressing several stored grain insect species. In Proceedings of the 6th International Working Conference on Stored Product Protection, Canberra, Australia, 17–23 April 1994; Volume 2, pp. 650–659. [Google Scholar]
- Anastassiadou, M.; Arena, M.; Auteri, D.; Brancato, A.; Bura, L.; Carrasco Cabrera, L.; Chaideftou, E.; Chiusolo, A.; Marques, D.C. Peer review of the pesticide risk assessment of the active substance kieselgur (diatomaceous earth). Efsa J. 2020, 18, e06054. [Google Scholar] [PubMed]
- Braga, F.M.; Barbosa, M.H.C.; Oliveira, E.S.A.; Sousa, I.D.P.; Santos, C.B.D.; Sampaio, R.A. Physical and chemical characterization of sewage sludge with different proportions of diatomaceous earth. Rev. Ceres 2020, 67, 81–85. [Google Scholar] [CrossRef]
- Demirozer, O.; Bulus, I.Y.; Yanik, G.; Uzun, A.; Gosterit, A. Does diatomaceous earth (DE) cause mortality on Apis mellifera and Bombus terrestris? J. Apic. Res. 2024, 63, 778–784. [Google Scholar] [CrossRef]
- Li, F.; Xing, Y.; Huang, M.; Li, K.L.; Yu, T.T.; Zhang, Y.X.; Losic, D. MnO2 nanostructures with three-dimensional (3D) morphology replicated from diatoms for high-performance supercapacitors. J. Mater. Chem. A 2015, 3, 7855. [Google Scholar]
- Kavallieratos, N.G.; Athanassiou, C.G.; Korunic, Z.; Mikeli, N.H. Evaluation of three novel diatomaceous earths against three stored grain bettle species wheat and maize. Crop Prot. 2015, 75, 32–138. [Google Scholar]
- Gad, H.A.; Al-Anany, M.S.; Atta, A.A.; Abdelgaleil, S.A. Efficacy of low-dose combinations of diatomaceous earth, spinosad and Trichoderma harzianum for the control of Callosobruchus maculatus and Callosobruchus chinensis on stored cowpea seeds. J. Stored Prod. Res. 2021, 91, 101778. [Google Scholar]
- Paponja, I.; Rozman, V.; Liška, A. Natural formulation based on diatomaceous earth and botanicals against stored product insects. Insects 2020, 11, 613. [Google Scholar] [CrossRef]
- Romei, F.; Schilman, P.E. Diatomaceous earth as insecticide: Physiological and morphological evidence of its underlying mechanism. Pest Manag. Sci. 2024, 80, 3301–3307. [Google Scholar]
- Sakka, M.K.; Athanassiou, C.G. Insecticidal effect of diatomaceous earth and pirimiphos-methyl against phosphine-susceptible and phosphine-resistant populations of two stored product beetle species. Environm. Sci. Poll. Res. 2021, 28, 33181–33191. [Google Scholar] [CrossRef]
- Korunić, Z.; Rozman, V.; Liška, A.; Lucić, P. Laboratory tests on insecticidal effectiveness of disodium octaborate tetrahydrate, diatomaceous earth and amorphous silica gel against Sitophilus oryzae (L.) and their effect on wheat bulk density. Poljopr. Agric. 2017, 23, 3–10. [Google Scholar]
- Athanassiou, C.G.; Kavallieratos, N.G.; Chiriloaie, A.; Vassilakos, T.N.; Fatu, V.; Drosu, S.; Ciobanu, M.; Dudoiu, R. Insecticidal efficacy of natural diatomaceous earth deposits from Greece and Romania against four stored grain beetles: The effect of temperature and relative humidity. Bull. Insectol. 2016, 69, 25–34. [Google Scholar]
- Bohinc, T.; Horvat, A.; Andrić, G.; Golić, M.P.; Kljajić, P.; Trdan, S. Comparison of three different wood ashes and diatomaceous earth in controlling the maize weevil under laboratory conditions. J. Stored Prod. Res. 2018, 79, 1–8. [Google Scholar] [CrossRef]
- Stathers, T.E.; Chigariro, J.; Mudiwa, M.; Mvumi, B.M.; Golob, P. Small-scale farmer perceptions of diatomaceous earth products as potential stored grain protectants in Zimbabwe. Crop Prot. 2003, 21, 1049–1060. [Google Scholar]
- Hamel, D.; Rozman, V.; Liška, A. Storage of cereals in warehouses with or without pesticides. Insects 2020, 11, 846. [Google Scholar] [CrossRef] [PubMed]
- Ziaee, M.; Atapour, M.; Marouf, A. Insecticidal efficacy of Iranian diatomaceous earths on adults of Oryzaephilus surinamensis. J. Agric. Sci. Technol. 2016, 18, 361–370. [Google Scholar]
- Ortega, J.E.C.; Ruvalcaba, L.P.; Alcaraz, T.D.J.V.; Liera, J.E.G.; Valdés, T.D.; Ortiz, L.D.C.O. Effectiveness of different doses of diatomaceous earth on Mexican bean weevil (Zabrotes subfasciatus Boheman) in Culiacan, Sinaloa, Mexico. OA Lib. J. 2016, 3, 1–11. [Google Scholar]
- Mvumi, B.M.; Stathers, T.E. Challenges in grain protection in Sub-Saharan Africa: The case of diatomaceous earths. In Proceedings of the Food Africa-Internet-Based Forum, Online, 31 March–11 April 2003. [Google Scholar]
- Omura, T. Dynamic changes of protease inhibitors in workers exposed to diatomaceous earth dust. Averugi 1981, 30, 181. [Google Scholar]
- Akhoundi, M.; Bruel, C.; Izri, A. A harmful effects of bed bug-killing method of diatomaceous earth on human health. J. Insect Sci. 2019, 19, 5. [Google Scholar]
- van den Berg, H.; da Silva Bezerra, H.S.; Chanda, E.; Al-Eryani, S.; Nagpal, B.N.; Gasimov, E.; Velayudhan, R.; Yadav, R.S. Management of insecticides for use in disease vector control: A global survey. BMC Infect. Dis. 2021, 21, 468. [Google Scholar]
- Ertürk, S.; Atay, T.; Toprak, U.; Alkan, M. The efficacy of different surface applications of wettable powder formulation of Detech® diatomaceous earth against the rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae). J. Stored Prod. Res. 2020, 89, 101725. [Google Scholar]
- Collins, D.A.; Cook, D.A. Laboratory evaluation of diatomaceous earths, when applied as dry dust and slurries to wooden surfaces, against stored-product insect and mite pests. J. Stored Prod. Res. 2006, 42, 197–206. [Google Scholar]
- Wakil, W.; Ashfaq, M.; Ghazanfar, M.U.; Riasat, T. Susceptibility of stored-product insects to enhanced diatomaceous earth. J. Stored Prod. Res. 2010, 46, 248–249. [Google Scholar]
- Liška, A.; Korunić, Z.; Rozman, V.; Halamić, J.; Galović, I.; Lucić, P.; Baličević, R. Efficacy of nine Croatian inert dusts against rice weevil Sitophilus oryzae L. (Coleoptera: Curculionidae) on wheat. Emir. J. Food Agric. 2017, 29, 485–494. [Google Scholar]
- Dal Bello, G.M.; Fusé, C.B.; Pedrini, N.; Padín, S.B. Insecticidal efficacy of Beauveria bassiana, diatomaceous earth and fenitrothion against Rhyzopertha dominica and Tribolium castaneum on stored wheat. Int. J. Pest Manag. 2018, 64, 279–286. [Google Scholar] [CrossRef]
- Wakil, W.; Kavallieratos, N.G.; Eleftheriadou, N.; Riasat, T.; Ghazanfar, M.U.; Rasool, K.G.; Aldawood, A.S. The potential of two entomopathogenic fungi and enhanced diatomaceous earth mixed with abamectin: A comprehensive study on mortality, progeny production, application method, and surface application against Tribolium castaneum. Pathogens 2023, 12, 773. [Google Scholar] [CrossRef]
- Pourian, H.R.; Alizadeh, M. Diatomaceous earth low-lethal dose effects on the fitness of entomopathogenic fungus, Beauveria bassiana, against two coleopteran stored product pests. J. Stored Prod. Res. 2021, 94, 101878. [Google Scholar]
- Delgarm, N.; Ziaee, M.; McLaughlin, A. Enhanced-efficacy Iranian diatomaceous earth for controlling two stored-product insect pests. J. Econ. Entomol. 2020, 113, 504–510. [Google Scholar]
- Saed, B.; Ziaee, M.; Kiasat, A.; Jafari Nasab, M. Evaluation of Iranian diatomaceous earth in combination with nanosilica from sugarcane bagasse ash applied on three different storage surfaces against two insect pests of stored products. Int. J. Trop. Insect Sci. 2021, 41, 1747–1752. [Google Scholar]
- Saed, B.; Ziaee, M.; Kiasat, A.R.; Jafari Nasab, M. Preparation of nanosilica from sugarcane bagasse ash for enhanced insecticidal activity of diatomaceous earth against two stored-products insect pests. Toxin Rev. 2022, 41, 516–522. [Google Scholar]
- Tanveer, M.; Ejaz, S.; Zaka, S.M.; Batool, M.; e Zahra, T.; Saghir, M.; Saeed, Q. Toxicology of diatomaceous earth, phyto oils and their admixed emulsions against adults of Tribolium castaneum (Herbst). Toxicol. Rep. 2022, 9, 1172–1179. [Google Scholar] [CrossRef]
- Bachrouch, O.; Nefzi, H.; Belloumi, S.; Horchani-Naifer, K.; Sriti Eljazi, J.; Haoual Hamdi, S.; Msaada, K.; Labidi, J.; Abderrabba, M.; Mediouni Ben Jemaa, J. Insecticidal effects of two Tunisian diatomaceous earth loaded with Thymus capitatus (L.) Hoffmans and Links as an ecofriendly approach for stored coleopteran pest control. Int. J. Environ. Health Res. 2023, 33, 398–412. [Google Scholar]
- Saeed, Q.; Amir, W.; Batool, M.; Parvaiz, F.; Chen, T.; Ahmad, F. Eco-friendly control of rice weevil, Sitophilus oryzae L. (Coleoptera: Curculionidae) in grain storage structures using diatomaceous earth admixed insecticides. Int. J. Pest Manag. 2023, 70, 1338–1347. [Google Scholar]
- Bianchi, A.; Farina, P.; Venturi, F.; Trusendi, F.; Flamini, G.; Ascrizzi, R.; Sarrocco, S.; Ortega-Andrade, S.; Echeverria, M.C.; Conti, B.; et al. Reduced doses of diatomaceous earth and basil essential oil on stored grain against the wheat-damaging Sitophilus oryzae: Influence on bread quality and sensory profile. Foods 2025, 14, 572. [Google Scholar] [CrossRef]
- Gad, H.A.; Al-Anany, M.S.; Abdelgaleil, S.A. Enhancement the efficacy of spinosad for the control Sitophilus oryzae by combined application with diatomaceous earth and Trichoderma harzianum. J. Stored Prod. Res. 2020, 88, 101663. [Google Scholar] [CrossRef]
- Islam, M.S.; Hasan, M.M.; Lei, C.; Mucha-Pelzer, T.; Mewis, I.; Ulrichs, C. Direct and admixture toxicity of diatomaceous earth and monoterpenoids against the storage pests Callosobruchus maculatus (F.) and Sitophilus oryzae (L.). J. Pest Sci. 2010, 83, 105–112. [Google Scholar] [CrossRef]
- Bougherra-Nehaoua, H.H.; Bedini, S.; Cosci, F.; Flamini, G.; Belhamel, K.; Conti, B. Enhancing the insecticidal efficacy of inert dusts against stored food insect pest by the combined action with essential oils. IOBC-WPRS Bull. 2015, 111, 31–38. [Google Scholar]
- Atay, T.; Alkan, M.; Ertürk, S.; Toprak, U. Individual and combined effects of α-Pinene and a native diatomaceous earth product on control of stored product beetle pests. J. Asia Pac. Entomol. 2023, 26, 102149. [Google Scholar] [CrossRef]
- Zidan, N. Insecticidal efficacy of spinosad, Beauveria bassiana and Metarhizium anisopliae in combination with diatomaceous earth, for controlling Sitophilus oryzae (L.) (Coleoptera: Curculionidae) infesting stored wheat. Acta Phytopathol. Entomol. Hung. 2014, 49, 117–127. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef]
- Jood, S.; Kapoor, A.C.; Singh, R. Evaluation of some plant products against Trogoderma granarium everts in sorghum and their effects on nutritional composition and organoleptic characteristics. J. Stored Prod. Res. 1996, 32, 345–352. [Google Scholar] [CrossRef]
- Lale, N.E.S.; Abdulrahman, H.T. Evaluation of neem (Azadirachta indica A. Juss) seed oil obtained by different methods and neem powder for the management of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) in stored cowpea. J. Stored Prod. Res. 1999, 35, 135–143. [Google Scholar] [CrossRef]
- Fields, P.; Xie, Y.; Hou, X. Repellent effect of pea (Pisum sativum) fractions against stored-product insects. J. Stored Prod. Res. 2001, 37, 359–370. [Google Scholar] [CrossRef]
- Ogendo, J.O.; Deng, A.L.; Belmain, S.R.; Walker, D.J.; Musandus, A.A.O. Effect of insecticidal plant materials, Lantana camara L. and Tephrosia vogelii Hook on the quality parameters of stored maize grains. J. Food Technol. Afr. 2004, 9, 29–35. [Google Scholar]
- Paul, U.V.; Lossini, J.S.; Edwards, P.J.; Hilbeck, A. Effectiveness of products from four locally grown plants for the management of Acanthoscelides obtectus (Say) and Zabrotes subfasciatus (Boheman) (Coleoptera: Bruchidae) in stored beans under laboratory and farm conditions in Northern Tanzania. J. Stored Prod. Res. 2009, 45, 97–107. [Google Scholar] [CrossRef]
- Ilboudo, Z.; Dabiré, L.C.B.; Nébié, R.C.H.; Dicko, I.O.; Dugravot, S.; Cortesero, A.M.; Sanon, A. Biological activity and persistence of four essential oils towards the main pest of stored cowpeas, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). J. Stored Prod. Res. 2010, 46, 124–128. [Google Scholar] [CrossRef]
- Mao, L.; Henderson, G. Evaluation of potential use of nootkatone against maize weevil (Sitophilus zeamais Motschulsky) and rice weevil [S. oryzae (L.)] (Coleoptera: Curculionidae). J. Stored Prod. Res. 2010, 46, 129–132. [Google Scholar] [CrossRef]
- Heshmati Afshar, F.; Maggi, F.; Iannarelli, R.; Cianfaglione, K.; Isman, M.B. Comparative toxicity of Helosciadium nodiflorum essential oils and combinations of their main constituents against the cabbage looper, Trichoplusia ni (Lepidoptera). Ind. Crops Prod. 2017, 98, 46–52. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Eleftheriadou, N.; Filintas, C.S.; Boukouvala, M.C.; Gidari, D.L.S.; Skourti, A.; Ntinokas, D.; Ferrati, M.; Spinozzi, E.; Petrelli, R.; et al. The potency of essential oils in combating stored-product pests: From nature to nemesis. Plants 2025, 14, 192. [Google Scholar] [CrossRef]
- Obeng-Ofori, D. The use of botanicals by resource poor farmers in Africa and Asia for the protection of stored agricultural products. Stewart Postharvest Rev. 2007, 3, 1–8. [Google Scholar] [CrossRef]
- Adarkwah, C.; Obeng-Ofori, D.; Ulrichs, C.; Schöller, M. Insecticidal efficacy of botanical food by-products against selected stored-grain beetles by the combined action with modified diatomaceous earth. J. Plant Dis. Prot. 2017, 124, 255–267. [Google Scholar] [CrossRef]
- Adarkwah, C.; Obeng-Ofori, D.; Hörmann, V.; Ulrichs, C.; Schöller, M. Bioefficacy of enhanced diatomaceous earth and botanical powders on the mortality and progeny production of Acanthoscelides obtectus (Coleoptera: Chrysomelidae), Sitophilus granarius (Coleoptera: Dryophthoridae) and Tribolium castaneum (Coleoptera: Tenebrionidae) in stored grain cereals. Int. J. Trop. Insect Sci. 2017, 37, 243–258. [Google Scholar]
- Khorrami, F.; Valizadegan, O.; Forouzan, M.; Soleymanzade, A. The antagonistic/synergistic effects of some medicinal plant essential oils, extracts and powders combined with Diatomaceous earth on red flour beetle, Tribolium castaneum Herbst (Cloepotera: Tenebrionidae). Arch. Phytopathol. Plant Prot. 2018, 51, 685–695. [Google Scholar] [CrossRef]
- Lee, B.H.; Annis, P.C.; Tumaalii, F.; Lee, S. The potential of 1,8-cineole as a fumigant for stored wheat. In Proceedings of the Australian Postharvest Technical Conference, Canberra, Australia, 25–27 June 2003. [Google Scholar]
- Sékou, M.K.; Charles, V.; Schmit, J.P.; Ramaswamy, S.; André, B. Effect of various essential oils on Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). J. Stored Prod. Res 2000, 36, 355–364. [Google Scholar]
- Benkeblia, N. Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum). LWT-Food Sci. Technol. 2004, 37, 263–268. [Google Scholar] [CrossRef]
- Lupu, C.; Delian, E.; CHIRA, L.; Chira, A. New insights into the multiple protective functions of diatomaceous earth during storage of agricultural products. Sci. Pap. Ser. A-Agron. 2018, 61, 487–496. [Google Scholar]
- Pierrard, G. Control of the cowpea weevil Callosobruchus maculatus, at the farmer level in Senegal. Int. J. Pest Manag. 1986, 32, 197–200. [Google Scholar]
- Farina, P.; Ascrizzi, R.; Bedini, S.; Castagna, A.; Flamini, G.; Macaluso, M.; Mannucci, A.; Pieracci, Y.; Ranieri, A.; Sciampagna, M.C.; et al. Chitosan and essential oils combined for beef meat protection against the oviposition of Calliphora vomitoria, water loss, lipid peroxidation, and colour changes. Foods 2022, 11, 3994. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, S.; Sriranjini, V. Plant products as fumigants for stored-product insect control. J. Stored Prod. Res. 2008, 44, 126–135. [Google Scholar]
- Athanassiou, C.G. Influence of instar and commodity on insecticidal effect of two diatomaceous earth formulations against larvae of Ephestia kuehniella (Lepidoptera: Pyralidae). J. Econ. Entomol. 2006, 99, 1905–1911. [Google Scholar] [CrossRef]
- Pierattini, E.C.; Bedini, S.; Venturi, F.; Ascrizzi, R.; Flamini, G.; Bocchino, R.; Girardi, J.; Giannotti, P.; Ferroni, G.; Conti, B. Sensory quality of essential oils and their synergistic effect with diatomaceous earth, for the control of stored grain insects. Insects 2019, 10, 114. [Google Scholar] [CrossRef]
- Fayemiro, S.S. Investigation of combined effect of three plant powders with diatomaceous earth against Callosobruchus maculatus. J. Agr. Sustain. Dev. 2024, 7, 60–69. [Google Scholar] [CrossRef]
- Ebeling, W. Sorptive dusts for pest control. Ann. Rev. Entomol. 1971, 16, 123–158. [Google Scholar] [CrossRef]
- Yazdanian, M.; Reihani, M. Chemical composition of myrtle essential oil and its insecticidal activity in combination with diatomaceous earth against adults of the granary weevil, Sitophilus granarius (L.). J. Plant Prot. Res. 2021, 35, 203–216. [Google Scholar]
- Bounouira, Y.; Gaouar Benyelles, N.; Senouci, H.; Benazzouz, F.Z.; Chaieb, I. The insecticidal activity of a formulation of Ammoides verticillata essential oil and diatomaceous earth on Sitophilus zeamais. Int. J. Trop. Insect Sci. 2022, 42, 2979–2985. [Google Scholar]
- El-Halim, A.; Hend, T.; Ayad, E.L.; El-Deeb, S.E. Efficiency of utilizing Citrullus colocynthis (L.) essential oil alone and when it mixed with diatomaceous earth against some stored products insect pests. J. Plant Prot. Pathol. 2023, 14, 405–413. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Korunic, Z.; Vayias, B.J. Diatomaceous earths enhance the insecticidal effect of bitterbarkomycin against stored-grain insects. Crop Prot. 2009, 28, 123–127. [Google Scholar]
- Yang, F.L.; Liang, G.W.; Xu, Y.J.; Lu, Y.Y.; Zeng, L. Diatomaceous earth enhances the toxicity of garlic, Allium sativum, essential oil against stored-product pests. J. Stored Prod. Res. 2010, 46, 118–123. [Google Scholar]
- Campolo, O.; Romeo, F.V.; Malacrinò, A.; Laudani, F.; Carpinteri, G.; Fabroni, S.; Rapisarda, P.; Palmeri, V. Effects of inert dusts applied alone and in combination with sweet orange essential oil against Rhyzopertha dominica (Coleoptera: Bostrichidae) and wheat microbial population. Ind. Crops Prod. 2014, 61, 361–369. [Google Scholar]
- Ziaee, M.; Moharramipour, S.; Francikowski, J. The synergistic effects of Carum copticum essential oil on diatomaceous earth against Sitophilus granarius and Tribolium confusum. J. Asia Pac. Entomol. 2014, 17, 817–822. [Google Scholar]
- Kavallieratos, N.G.; Athanassiou, C.G.; Michalaki, M.P.; Batta, Y.A.; Rigatos, H.A.; Pashalidou, F.G.; Balotis, G.N.; Tomanović, Ž.; Vayias, B.J. Effect of the combined use of Metarhizium anisopliae (Metschinkoff) Sorokin and diatomaceous earth for the control of three stored-product beetle species. Crop Prot. 2006, 25, 1087–1094. [Google Scholar] [CrossRef]
- Sabbour, M.M.; Abd El Aziz, S.E. Efficacy of some bioinsecticides against Bruchidius incarnatus (Boh.) (Coleoptera: Bruchidae) infestation during storage. J Plant Prot Res 2010, 50, 25–31. [Google Scholar]
- Sabbour, M.M.; Abd El Aziz, S.E.; Sherief, M.A. Efficacy of three entomopathogenic fungi alone or in combination with diatomaceous earth. J. Plant Prot. Res. 2012, 52, 359–363. [Google Scholar] [CrossRef]
- Wakil, W.; Schmitt, T. Field trials on the efficacy of Beauveria bassiana, diatomaceous earth and Imidacloprid for the protection of wheat grains from four major stored grain insect pests. J. Stored Prod. Res. 2015, 64, 160–167. [Google Scholar]
- Sewify, G.H.; El Shabrawy, H.A.; Eweis, M.E.; Naroz, M.H. Efficacy of entomopathogenic fungi, Beauveria bassiana and Metarhizium Anisopliae for controlling certain stored product insects. Egypt. J. Biol. Pest Control 2014, 24, 191–196. [Google Scholar]
- Singh, C.B.; Fielke, J.M. Recent Developments in Stored Grain Sensors, Monitoring and Management Technology. IEEE Instrum. Meas. Mag. 2017, 20, 32–55. [Google Scholar] [CrossRef]
- Quesada-Moraga, E.; González-Mas, N.; Yousef-Yousef, M.; Garrido-Jurado, I.; Fernández-Bravo, M. Key role of environmental competence in successful use of entomopathogenic fungi in microbial pest control. J. Pest Sci. 2024, 97, 1–15. [Google Scholar] [CrossRef]
- Akbar, W.; Lord, J.C.; Nechols, J.R.; Howard, R.W. Diatomaceous earth dusts increases the efficacy of Beauveria bassiana against Tribolium castaneum larvae and increases conidial attachment. J. Econ. Entomol. 2004, 97, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Khoobdel, M.; Pourian, H.R.; Alizadeh, M. Bio-efficacy of the indigenous entomopathogenic fungus, Beauveria bassiana in conjunction with desiccant dust to control of coleopteran stored product pests. J. Invertebr. Pathol. 2019, 168, 107254. [Google Scholar] [CrossRef] [PubMed]
- Batta, Y.A. Control of main stored-grain insects with new formulations of entomopathogenic fungi in diatomaceous earth dusts. Int. J. Food Eng. 2008, 4, 9. [Google Scholar] [CrossRef]
- Korunic, Z. ReviewDiatomaceous earths, a group of natural insecticides. J. Stored Prod. Res. 1998, 34, 87–97. [Google Scholar] [CrossRef]
- Lord, J.C. Desiccant dusts synergize the effect of Beauveria bassiana (Hyphomycetes: Moniliales) on stored grain beetles. J. Econ. Entomol. 2001, 94, 367–372. [Google Scholar] [CrossRef]
- Yasin, M.; Khan, A.A.; Rubab, S.; Maqsood, S. Effect of the combined use of Beauveria bassiana (Balsamo) Vuillemin and diatomaceous earth for the control of Tribolium castaneum (Herbst) and Trogoderma granarium Everts. Pak. J. Zool. 2022, 56, 753. [Google Scholar] [CrossRef]
- Rizwan, M.; Atta, B.; Rizwan, M.; Sabir, A.M.; Shah, Z.U.; Hussain, M. Effect of the entomopathogenic fungus, Beauveria bassiana, combined with diatomaceous earth on the red flour beetle, Tribolium castaneum (Herbst) (Tenebrionidae: Coleoptera). Egypt J. Biol. Pest Control 2019, 29, 27. [Google Scholar] [CrossRef]
- Ashraf, M.; Farooq, M.; Shakeel, M.; Din, N.; Hussain, S.; Saeed, N.; Shakeel, Q.; Rajput, N.A. Influence of entomopathogenic fungus, Metarhizium anisopliae, alone and in combination with diatomaceous earth and thiamethoxam on mortality, progeny production, mycosis, and sporulation of the stored grain insect pests. Environ. Sci. Pollut. Res. 2017, 24, 28165–28174. [Google Scholar] [CrossRef]
- Saeed, N.; Wakil, W.; Farooq, M.; Shakeel, M.; Arain, M.S.; Shakeel, Q. Evaluating the combination of Metarhizium anisopliae and an enhanced form of diatomaceous earth (Grain-Guard) for the environmentally friendly control of stored grain pests. Environ. Monit. Assess. 2020, 192, 210. [Google Scholar] [CrossRef]
- Khezripour, F.; Mahdian, K.; Izadi, H. The effect of the Iranian strain of Metarhizium anisopliae applied alone and in combination with diatomaceous earth and kaolin against Plodia interpunctella. Pist. Health J. 2022, 5, 14–26. [Google Scholar]
- Wakil, W.; Kavallieratos, N.G.; Eleftheriadou, N.; Haider, S.A.; Qayyum, M.A.; Tahir, M.; Rasool, K.G.; Husain, M.; Aldawood, A.S. A winning formula: Sustainable control of three stored-product insects through paired combinations of entomopathogenic fungus, diatomaceous earth, and lambda-cyhalothrin. Environ. Sci. Pollut. Res. 2024, 31, 15364–15378. [Google Scholar] [CrossRef]
- Rodríguez-González, Á.; Casquero, P.A.; Suárez-Villanueva, V.; Carro-Huerga, G.; Álvarez-García, S.; Mayo-Prieto, S.; Lorenzana, A.; Cardoza, R.E.; Gutiérrez, S. Effect of trichodiene production by Trichoderma harzianum on Acanthoscelides obtectus. J. Stored Prod. Res. 2018, 77, 231–239. [Google Scholar] [CrossRef]
- Rodríguez-González, Á.; Campelo, M.P.; Lorenzana, A.; Mayo-Prieto, A.; González-López, Ó.; Álvarez-García, S.; Gutiérrez, S.; Casquero, P.A. Spores of Trichoderma strains sprayed over Acanthoscelides obtectus and Phaseolus vulgaris L. beans: Effects in the biology of the bean weevil. J. Stored Prod. Res. 2020, 88, 101666. [Google Scholar] [CrossRef]
- Gad, H.A.; Al-Anany, M.S.M.; mohamed Sameer, W.; Al-Anany, F.S.M. Control of Acanthoscelides obtectus with Trichoderma harzianum applied alone or in combination with diatomaceous earth on a stored common bean. Plant Prot. Sci. 2020, 56, 107–115. [Google Scholar] [CrossRef]
- Abdelgaleil, S.A.; Gad, H.A.; Hamza, A.F.; Al-Anany, M.S. Insecticidal efficacy of two inert dusts and Trichoderma harzianum, applied alone or in combination, against Callosobruchus maculatus and Callosobruchus chinensis on stored cowpea seeds. Crop Prot. 2021, 146, 105656. [Google Scholar] [CrossRef]
- Michalaki, M.P.; Athanassiou, C.G.; Kavallieratos, N.G.; Batta, Y.A.; Balotis, G.N. Effectiveness of Metarhizium anisopliae (Metschinkoff) Sorokin applied alone or in combination with diatomaceous earth against Tribolium confusum Du Val larvae: Influence of temperature, relative humidity and type of commodity. Crop Prot. 2006, 25, 418–425. [Google Scholar] [CrossRef]
- Dal Bello, G.; Padín, S.; Juárez, P.; Pedrini, N.; De Giusto, M. Biocontrol of Acanthoscelides obtectus and Sitophilus oryzae with diatomaceous earth and Beauveria bassiana on stored grains. Biocontrol Sci. Technol. 2006, 16, 215–220. [Google Scholar] [CrossRef]
- Michalaki, M.P.; Athanassiou, G.G.; Steenberg, T. Effect of Paecilomyces fumosoroseus (Wise) Brown and Smith (Ascomycota: Hypocreales) alone or in combination with diatomaceous earth against Tribolium confusum Jacquelin du Val (Coleoptera: Tenebrionidae) and Ephestia kuehniella Zeller (Lepidoptera: Pyrallidae). Biol. Control 2007, 40, 280–286. [Google Scholar]
- Athanassiou, C.G.; Steenberg, T. Insecticidal effect of Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) in combination with three diatomaceous earth formulations against Sitophilus granarius (L.) (Coleoptera: Curculionidae). Biol. Control 2007, 40, 411–416. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Vayias, B.J.; Tsakiri, J.B.; Mikeli, N.H.; Meletsis, C.M.; Tomanović, Z. Persistence and efficacy of Metarhizium anisopliae (Metschnikoff) Sorokin (Deuteromycotina: Hyphomycetes) and diatomaceous earth against Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) on wheat and maize. Crop Prot. 2008, 27, 1303–1311. [Google Scholar]
- Ramaswamy, K.; Vijayarangan, N.; Krishnaiah, H.E. Insecticidal effect of Beauveria bassiana and Paecilomyces fumosoroseus alone and in combination with diatomaceous earth against rice weevil (Sitophilus oryzae) and red flour beetle (Tribolium castaneum). J. Pure Appl. Microbiol. 2009, 3, 637–642. [Google Scholar]
- Wakil, W.; Riasat, T.; Ghazanfar, M.U.; Kwon, Y.J.; Shaheen, F.A. Aptness of Beauveria bassiana and enhanced diatomaceous earth (DEBBM) for control of Rhyzopertha dominica F. Entomol. Res. 2011, 41, 233–241. [Google Scholar] [CrossRef]
- Riasat, T.; Wakil, W.; Ashfaq, M.; Sahi, S.T. Effect of Beauveria bassiana mixed with diatomaceous earth on mortality, mycosis and sporulation of Rhyzopertha dominica on stored wheat. Phytoparasitica 2011, 39, 325–331. [Google Scholar] [CrossRef]
- Riasat, T.; Wakil, W.; Yasin, M.; Kwon, Y.J. Mixing of Isaria fumosorosea with enhanced diatomaceous earth and bitterbarkomycin for control of Rhyzopertha dominica. Entomol. Res. 2013, 43, 215–223. [Google Scholar] [CrossRef]
- Shafighi, Y.; Ziaee, M.; Ghosta, Y. Diatomaceous earth used against insect pests, applied alone or in combination with Metarhizium anisopliae and Beauveria bassiana. J. Plant Prot. Res. 2014, 54, 62–66. [Google Scholar] [CrossRef]
- Sabbour, M.M.; Abd-El-Aziz, S.E.; Shadia, E. Control of Bruchidius incarnatus and Rhyzopertha dominica using two entomopathogenic fungi alone or in combination with modified diatomaceous earth. Elixir Entomol. 2014, 68, 22239–22242. [Google Scholar]
- Yao, J.; Chen, C.; Wu, H.; Chang, J.; Silver, K.; Campbell, J.F.; Arthur, F.H.; Zhu, K.Y. Differential susceptibilities of two closelyrelated stored product pests, the red flour beetle (Tribolium castaneum) and the confused flour beetle (Tribolium confusum), to five selected insecticides. J. Stored Prod. Res. 2019, 84, 101524. [Google Scholar] [CrossRef]
- Attia, M.A.; Wahba, T.F.; Shaarawy, N.; Moustafa, F.I.; Guedes, R.N.C.; Dewer, Y. Stored grain pest prevalence and insecticide resistance in Egyptian populations of the red flour beetle Tribolium castaneum (Herbst) and the rice weevil Sitophilus oryzae (L.). J. Stored Prod. Res. 2020, 87, 101611.
- Cui, K.; Zhang, L.; He, L.; Zhang, Z.; Zhang, T.; Mu, W.; Lin, J.; Liu, F. Toxicological effects of the fungal volatile compound 1-octen-3-ol against the red flour beetle, Tribolium castaneum (Herbst). Ecotoxicol. Environ. Saf. 2021, 208, 111597. [Google Scholar] [CrossRef]
- Arthur, F.H. Evaluation of methoprence alone or in combination with diatomaceous earth to control Rhyzopertha dominica (Coleoptera: Bostrichidae) on stored wheat. J. Stored Prod. Res. 2004, 40, 485–498. [Google Scholar]
- Wakil, W.; Riasat, T.; Lord, J.C. Effects of combined thiamethoxam and diatomaceous earth on mortality and progeny production of four Pakistani populations of Rhyzopertha dominica (Coleoptera: Bostrichidae) on wheat, rice and maize. J. Stored Prod. Res. 2013, 52, 28–35. [Google Scholar]
- Hertlein, M.B.; Thompson, G.D.; Subramanyam, B.; Athanassiou, C.G. Spinosad: A new natural product for stored grain protection. J. Stored Prod. Res. 2011, 47, 131–146. [Google Scholar] [CrossRef]
- Subramanyam, B. Performance of Spinosad as a Stored Grain Protectant. In Proceedings of the 9th International Working Conference on Stored Product Protection, Sao Paulo, Brazil, 15–18 October 2006; Campinas, I., Lorini, B., Bacaltchuk, H., Beckel, D., Deckers, E., Sundfeld, J.P., dos Santos, J.D., Biagi, J.C., Celaro, L.R., Faroni, L., et al., Eds.; Brazilian Post Harvest Association: Campinas, Brazil, 2006; pp. 250–257. [Google Scholar]
- Dissanayaka, D.M.S.; Sammani, A.M.P.; Wijayaratne, L.K.W. Residual efficacy of spinosad and spinetoram on traditional and new improved rice varieties on the mortality of Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae). J. Stored Prod. Res. 2020, 88, 101643. [Google Scholar]
- Yasir, M.; Hasan, M.; Sagheer, M.; Rasul, A.; Ali, R.A.; Rehman, H. Evaluation of spinosad applied to grain commodities for the control of stored product insect pests. Sarhad J. Agric. 2021, 37, 24–31. [Google Scholar]
- Gad, H.A.; Al-Ayat, A.A.; Hassuba, M.M.; Abdelgaleil, S.A. Effectiveness of binary combinations of abamectin and deltamethrin with two inert dusts for the management of Trogoderma granarium Everts on wheat grains. J. Stored Prod. Res. 2023, 100, 102071. [Google Scholar]
- Ali, R.A.; Hasan, M.; Sagheer, M.; Sahi, S.T.; Rasul, A. Factors influencing the combined efficacy of microbial insecticides and inert dusts for the control of Trogoderma granarium. Int. J. Trop. Insect Sci. 2022, 42, 425–433. [Google Scholar]
- Kavallieratos, N.G.; Boukouvala, M.C. Efficacy of d-tetramethrin and acetamiprid for control of Trogoderma granarium Everts (Coleoptera: Dermestidae) adults and larvae on concrete. J. Stored Prod. Res. 2019, 80, 79–84. [Google Scholar]
- Ali, R.A.; Sagheer, M.; Sahi, S.T. Role of abiotic factors on the effectiveness of inert dusts for the control of Trogoderma granarium (Coleoptera: Dermestidae). Pak. J. Agric. Sci. 2021, 58, 529–537. [Google Scholar]
- Machekano, H.; Mvumi, B.M.; Chinwada, P.; Richardson-Kageler, S.J.; Rwafa, R. Efficacy of diatomaceous earths and their low-dose combinations with spinosad or deltamethrin against three beetle pests of stored-maize. J. Stored Prod. Res. 2017, 72, 128–137. [Google Scholar] [CrossRef]
- Wakil, W.; Kavallieratos, N.G.; Nika, E.P.; Ali, A.; Yaseen, T.; Asrar, M. Two are better than one: The combinations of Beauveria bassiana, diatomaceous earth, and indoxacarb as effective wheat protectants. Environ. Sci. Pollut. Res. 2023, 30, 41864–41877. [Google Scholar] [CrossRef]
- Atta, A.A.M.; Gad, H.A.; Al-Ayat, A.A.; Abdelgaleil, S.A.M. Evaluation of three organophosphorus insecticides alone and in combination with inert dusts for the control of Trogoderma granarium Everts (Coleoptera: Dermestidae). J. Stored Prod. Res. 2023, 102, 102104. [Google Scholar] [CrossRef]
- Awais, M.; Zeeshan, M.; Mansoor-ul-Hasan; Sagheer, M.; Asif, M.U.; Ali, Q.; Zaman, S. Combined effect of diatomaceous earth and two insect growth regulators against Trogoderma granarium (Coleoptera: Dermestidae). Sci. Lett. 2020, 8, 55–60. [Google Scholar]
- Gad, H.A.; Atta, A.A.; Abdelgaleil, S.A. Effectiveness of diatomaceous earth combined with chlorfluazuron and hexaflumuron in the control of Callosobruchus maculatus and C. chinensis on stored cowpea seeds. J. Stored Prod. Res. 2022, 97, 101985. [Google Scholar] [CrossRef]
- Ceruti, F.C.; Lazzari, S.M.N. Combination of diatomaceous earth and powder deltamethrin for insect control in stored corn. Rev. Bras. Entomol. 2005, 49, 580–583. [Google Scholar] [CrossRef]
- Chanbang, Y.; Arthur, F.H.; Wilde, G.E.; Throne, J.E. Control of Rhyzopertha dominica (F.) in stored rough rice through a combination of diatomaceous earth and varietal resistance. Insect Sci. 2008, 15, 455–460. [Google Scholar] [CrossRef]
- Boukouvala, M.C.; Kavallieratos, N.G.; Maggi, F.; Angeloni, S.; Ricciutelli, M.; Spinozzi, E.; Ferrati, M.; Petrelli, R.; Canale, A.; Benelli, G. Being exposed to Acmella oleracea-based insecticide extract reduces mobility and mating success in Prostaphanus truncatus, the major pest of maize in storages. J. Stored Prod. Res. 2023, 104, 102151. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Nika, E.P.; Skourti, A.; Spinozzi, E.; Ferrati, M.; Petrelli, R.; Maggi, F.; Benelli, G. Carlina acaulis essential oil: A candidate product for agrochemical industry due to its pesticidal capacity. Ind. Crops Prod. 2022, 188, 115572. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wakil, W.; Boukouvala, M.C.; Kavallieratos, N.G.; Gidari, D.L.S.; Skourti, A.; Riasat, T. Advances in Stored-Product Pest Management: Combined Effects of Diatomaceous Earths with Botanicals, Insecticides, Entomopathogenic/Plant Pathogenic Fungi, and Silica Gel. Sustainability 2025, 17, 3316. https://doi.org/10.3390/su17083316
Wakil W, Boukouvala MC, Kavallieratos NG, Gidari DLS, Skourti A, Riasat T. Advances in Stored-Product Pest Management: Combined Effects of Diatomaceous Earths with Botanicals, Insecticides, Entomopathogenic/Plant Pathogenic Fungi, and Silica Gel. Sustainability. 2025; 17(8):3316. https://doi.org/10.3390/su17083316
Chicago/Turabian StyleWakil, Waqas, Maria C. Boukouvala, Nickolas G. Kavallieratos, Demeter Lorentha S. Gidari, Anna Skourti, and Tahira Riasat. 2025. "Advances in Stored-Product Pest Management: Combined Effects of Diatomaceous Earths with Botanicals, Insecticides, Entomopathogenic/Plant Pathogenic Fungi, and Silica Gel" Sustainability 17, no. 8: 3316. https://doi.org/10.3390/su17083316
APA StyleWakil, W., Boukouvala, M. C., Kavallieratos, N. G., Gidari, D. L. S., Skourti, A., & Riasat, T. (2025). Advances in Stored-Product Pest Management: Combined Effects of Diatomaceous Earths with Botanicals, Insecticides, Entomopathogenic/Plant Pathogenic Fungi, and Silica Gel. Sustainability, 17(8), 3316. https://doi.org/10.3390/su17083316