Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (499)

Search Parameters:
Keywords = wave-current interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3616 KiB  
Article
A Multiband Dual Linear-to-Circular Polarization Conversion Reflective Metasurface Design Based on Liquid Crystal for X-Band Applications
by Xinju Wang, Lihan Tong, Peng Chen, Lu Liu, Yutong Yin and Haowei Zhang
Appl. Sci. 2025, 15(15), 8499; https://doi.org/10.3390/app15158499 (registering DOI) - 31 Jul 2025
Viewed by 109
Abstract
A novel reflective metasurface (RMS) is proposed in this paper. The MS measures 128 × 128 × 2.794 mm3 and consists of a six-layer vertically stacked structure, with a liquid crystal (LC) cavity in the middle layer. A dual fan-shaped direct current [...] Read more.
A novel reflective metasurface (RMS) is proposed in this paper. The MS measures 128 × 128 × 2.794 mm3 and consists of a six-layer vertically stacked structure, with a liquid crystal (LC) cavity in the middle layer. A dual fan-shaped direct current (DC) bias circuit is designed to minimize the interaction between the radio frequency (RF) signal and the DC source, allowing control of the LC dielectric constant via bias voltage. This enables multi-band operation to improve communication capacity and quality for x-band devices. The polarization conversion (PC) structure employs an orthogonal anisotropic design, utilizing logarithmic functions to create two pairs of bowtie microstrip patches for linear-to-circular polarization conversion (LCPC). Simulation results show that for x-polarized incident waves, with an LC dielectric constant of εr = 2.8, left- and right-handed circularly polarized (LHCP and RHCP) waves are achieved in the frequency ranges of 8.15–8.46 GHz and 9.84–12.52 GHz, respectively. For εr = 3.9, LHCP and RHCP are achieved in 9–9.11 GHz and 9.86–11.81 GHz, respectively, and for εr = 4.6, they are in 8.96–9.11 GHz and 9.95–11.51 GHz. In the case of y-polarized incident waves, the MS reflects the reverse CP waves within the same frequency ranges. Measured results show that at εr = 2.8, the axial ratio (AR) is below 3 dB in the frequency ranges 8.16–8.46 GHz and 9.86–12.48 GHz, with 3 dB AR relative bandwidth (ARBW) of 3.61% and 23.46%, respectively. For εr = 4.6, the AR < 3 dB in the frequency range of 9.78–11.34 GHz, with a 3 dB ARBW of 14.77%. Finally, the measured and simulated results are compared to validate the proposed design, which can be applied to various applications within the corresponding operating frequency band. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

34 pages, 13488 KiB  
Review
Numeric Modeling of Sea Surface Wave Using WAVEWATCH-III and SWAN During Tropical Cyclones: An Overview
by Ru Yao, Weizeng Shao, Yuyi Hu, Hao Xu and Qingping Zou
J. Mar. Sci. Eng. 2025, 13(8), 1450; https://doi.org/10.3390/jmse13081450 - 29 Jul 2025
Viewed by 180
Abstract
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview [...] Read more.
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview of TC-related wave modeling utilizing different computational schemes, with a special attention to WAVEWATCH III (WW3) and Simulating Waves Nearshore (SWAN). Due to the complex air–sea interactions during TCs, it is challenging to obtain accurate wind input data and optimize the parameterizations. Substantial spatial and temporal variations in water levels and current patterns occurs when coastal circulation is modulated by varying underwater topography. To explore their influence on waves, this study employs a coupled SWAN and Finite-Volume Community Ocean Model (FVCOM) modeling approach. Additionally, the interplay between wave and sea surface temperature (SST) is investigated by incorporating four key wave-induced forcing through breaking and non-breaking waves, radiation stress, and Stokes drift from WW3 into the Stony Brook Parallel Ocean Model (sbPOM). 20 TC events were analyzed to evaluate the performance of the selected parameterizations of external forcings in WW3 and SWAN. Among different nonlinear wave interaction schemes, Generalized Multiple Discrete Interaction Approximation (GMD) Discrete Interaction Approximation (DIA) and the computationally expensive Wave-Ray Tracing (WRT) A refined drag coefficient (Cd) equation, applied within an upgraded ST6 configuration, reduce significant wave height (SWH) prediction errors and the root mean square error (RMSE) for both SWAN and WW3 wave models. Surface currents and sea level variations notably altered the wave energy and wave height distributions, especially in the area with strong TC-induced oceanic current. Finally, coupling four wave-induced forcings into sbPOM enhanced SST simulation by refining heat flux estimates and promoting vertical mixing. Validation against Argo data showed that the updated sbPOM model achieved an RMSE as low as 1.39 m, with correlation coefficients nearing 0.9881. Full article
(This article belongs to the Section Ocean and Global Climate)
Show Figures

Figure 1

24 pages, 5313 KiB  
Article
The Influence of Gravity Gradient on the Inertialess Stratified Flow and Vortex Structure over an Obstacle in a Narrow Channel
by Karanvir Singh Grewal, Roger E. Khayat and Kelly A. Ogden
Fluids 2025, 10(8), 195; https://doi.org/10.3390/fluids10080195 - 29 Jul 2025
Viewed by 205
Abstract
The current study examines the influence of a varying gravity field and its interaction with density stratification. This represents a novel area in baroclinic flow analysis. The classical vortex and internal wave structures in stratified flows are shown to be significantly modified when [...] Read more.
The current study examines the influence of a varying gravity field and its interaction with density stratification. This represents a novel area in baroclinic flow analysis. The classical vortex and internal wave structures in stratified flows are shown to be significantly modified when gravity varies with height. Vortices may shift, stretch, or weaken depending on the direction and strength of gravity variation, and internal waves develop asymmetries or damping that are not present under constant gravity. We examine the influence of gravity variation on the flow of both homogeneous and density-stratified fluids in a channel with topography consisting of a Gaussian obstacle lying at the bottom of the channel. The flow is without inertia, induced by the translation of the top plate. Both the density and gravity are assumed to vary linearly with height, with the minimum density at the moving top plate. The narrow-gap approach is used to generate the flow field in terms of the pressure gradient along the top plate, which, in turn, is obtained in terms of the bottom topography and the three parameters of the problem, namely, the Froude number and the density and gravity gradients. The resulting stream function is a fifth-order polynomial in the vertical coordinate. In the absence of stratification, the flow is smooth, affected rather slightly by the variable topography, with an essentially linear drop in the pressure induced by the contraction. For a weak stratified fluid, the streamlines become distorted in the form of standing gravity waves. For a stronger stratification, separation occurs, and a pair of vortices generally appears on the two sides of the obstacle, the size of which depends strongly on the flow parameters. The influence of gravity stratification is closely coupled to that of density. We examine conditions where the coupling impacts the pressure and the velocity fields, particularly the onset of gravity waves and vortex flow. Only a mild density gradient is needed for flow separation to occur. The influence of the amplitude and width of the obstacle is also investigated. Full article
(This article belongs to the Section Geophysical and Environmental Fluid Mechanics)
Show Figures

Figure 1

14 pages, 3283 KiB  
Review
Impact of Internal Solitary Waves on Marine Suspended Particulate Matter: A Review
by Zhengrong Zhang, Xuezhi Feng, Xiuyao Fan, Yuchen Lin and Chaoqi Zhu
J. Mar. Sci. Eng. 2025, 13(8), 1433; https://doi.org/10.3390/jmse13081433 - 27 Jul 2025
Viewed by 187
Abstract
Suspended particulate matter (SPM) plays a pivotal role in marine source-to-sink sedimentary systems. Internal solitary waves (ISWs), a prevalent hydrodynamic phenomenon, significantly influence vertical mixing, cross-shelf material transport, and sediment resuspension. Acting as energetic nonlinear waves, ISWs can disrupt the settling trajectories of [...] Read more.
Suspended particulate matter (SPM) plays a pivotal role in marine source-to-sink sedimentary systems. Internal solitary waves (ISWs), a prevalent hydrodynamic phenomenon, significantly influence vertical mixing, cross-shelf material transport, and sediment resuspension. Acting as energetic nonlinear waves, ISWs can disrupt the settling trajectories of suspended particles, enhance lateral transport above the pycnocline, and generate nepheloid layers nearshore. Meanwhile, intense turbulent mixing induced by ISWs accumulates large quantities of SPM at both the leading surface and trailing bottom of the waves, thereby altering the structure and dynamics of the intermediate nepheloid layers. This review synthesizes recent advances in the in situ observational techniques for SPM under the influence of ISWs and highlights the key mechanisms governing their interactions. Particular attention is given to representative field cases in the SCS, where topographic complexity and strong stratification amplify ISWs–sediment coupling. Finally, current limitations in observational and modeling approaches are discussed, with suggestions for future interdisciplinary research directions that better integrate hydrodynamic and sediment transport processes. Full article
(This article belongs to the Special Issue Marine Geohazards: Characterization to Prediction)
Show Figures

Figure 1

18 pages, 1709 KiB  
Article
Fluid and Dynamic Analysis of Space–Time Symmetry in the Galloping Phenomenon
by Jéssica Luana da Silva Santos, Andreia Aoyagui Nascimento and Adailton Silva Borges
Symmetry 2025, 17(7), 1142; https://doi.org/10.3390/sym17071142 - 17 Jul 2025
Viewed by 299
Abstract
Energy generation from renewable sources has increased exponentially worldwide, particularly wind energy, which is converted into electricity through wind turbines. The growing demand for renewable energy has driven the development of horizontal-axis wind turbines with larger dimensions, as the energy captured is proportional [...] Read more.
Energy generation from renewable sources has increased exponentially worldwide, particularly wind energy, which is converted into electricity through wind turbines. The growing demand for renewable energy has driven the development of horizontal-axis wind turbines with larger dimensions, as the energy captured is proportional to the area swept by the rotor blades. In this context, the dynamic loads typically observed in wind turbine towers include vibrations caused by rotating blades at the top of the tower, wind pressure, and earthquakes (less common). In offshore wind farms, wind turbine towers are also subjected to dynamic loads from waves and ocean currents. Vortex-induced vibration can be an undesirable phenomenon, as it may lead to significant adverse effects on wind turbine structures. This study presents a two-dimensional transient model for a rigid body anchored by a torsional spring subjected to a constant velocity flow. We applied a coupling of the Fourier pseudospectral method (FPM) and immersed boundary method (IBM), referred to in this study as IMERSPEC, for a two-dimensional, incompressible, and isothermal flow with constant properties—the FPM to solve the Navier–Stokes equations, and IBM to represent the geometries. Computational simulations, solved at an aspect ratio of ϕ=4.0, were analyzed, considering Reynolds numbers ranging from Re=150 to Re = 1000 when the cylinder is stationary, and Re=250 when the cylinder is in motion. In addition to evaluating vortex shedding and Strouhal number, the study focuses on the characterization of space–time symmetry during the galloping response. The results show a spatial symmetry breaking in the flow patterns, while the oscillatory motion of the rigid body preserves temporal symmetry. The numerical accuracy suggested that the IMERSPEC methodology can effectively solve complex problems. Moreover, the proposed IMERSPEC approach demonstrates notable advantages over conventional techniques, particularly in terms of spectral accuracy, low numerical diffusion, and ease of implementation for moving boundaries. These features make the model especially efficient and suitable for capturing intricate fluid–structure interactions, offering a promising tool for analyzing wind turbine dynamics and other similar systems. Full article
Show Figures

Figure 1

35 pages, 10456 KiB  
Article
Amplified Westward SAPS Flows near Magnetic Midnight in the Vicinity of the Harang Region
by Ildiko Horvath and Brian C. Lovell
Atmosphere 2025, 16(7), 862; https://doi.org/10.3390/atmos16070862 - 15 Jul 2025
Viewed by 318
Abstract
Rare (only 10) observations, made in the southern topside ionosphere during 2015–2016, demonstrate the amplification of westward subauroral polarization streams (SAPS) up to 3000 m/s near the Harang region. The observed amplified SAPS flows were streaming antisunward after midnight and sunward at midnight, [...] Read more.
Rare (only 10) observations, made in the southern topside ionosphere during 2015–2016, demonstrate the amplification of westward subauroral polarization streams (SAPS) up to 3000 m/s near the Harang region. The observed amplified SAPS flows were streaming antisunward after midnight and sunward at midnight, where the dusk convection cell intruded dawnward. One SAPS event illustrates the elevated electron temperature (Te; ~5500 K) and the stable auroral red arc developed over Rothera. Three inner-magnetosphere SAPS events depict the Harang region’s earthward edge within the plasmasheet’s earthward edge, where the outward SAPS electric (E) field (within the downward Region 2 currents) and inward convection E field (within the upward Region 2 currents) converged. Under isotropic or weak anisotropic conditions, the hot zone was fueled by the interaction of auroral kilometric radiation waves and electron diamagnetic currents. Generated for the conjugate topside ionosphere, the SAMI3 simulations reproduced the westward SAPS flow in the deep electron density trough, where Te became elevated, and the dawnward-intruding westward convection flows. We conclude that the near-midnight westward SAPS flow became amplified because of the favorable conditions created near the Harang region by the convection E field reaching subauroral latitudes and the positive feedback mechanisms in the SAPS channel. Full article
(This article belongs to the Special Issue Feature Papers in Upper Atmosphere (2nd Edition))
Show Figures

Figure 1

20 pages, 859 KiB  
Article
Theoretical Description of Changes in Conformation and Symmetry of Supramolecular Systems During the Reception of a Molecular Signal
by Yuriy Gorovoy, Natalia Rodionova, German Stepanov, Anastasia Petrova, Nadezda Penkova and Nikita Penkov
Int. J. Mol. Sci. 2025, 26(13), 6411; https://doi.org/10.3390/ijms26136411 - 3 Jul 2025
Viewed by 252
Abstract
Aqueous solutions are not homogeneous and could be considered supramolecular systems. They can emit electromagnetic waves. Electromagnetic emission from one supramolecular system (“source”) can be received by another supramolecular system (“receiver”) without direct contact (distantly). This process represents a transfer of a “molecular [...] Read more.
Aqueous solutions are not homogeneous and could be considered supramolecular systems. They can emit electromagnetic waves. Electromagnetic emission from one supramolecular system (“source”) can be received by another supramolecular system (“receiver”) without direct contact (distantly). This process represents a transfer of a “molecular signal” and causes changes in conformation and symmetry of the “receiver”. The aim of the current work is to theoretically describe such changes primarily using a solution of the chiral protein interferon-gamma (IFNγ) as an example. We provide theoretical evidence that supramolecular systems of highly diluted (HD) aqueous solutions formed by self-assembly after mechanical activation generate a stronger molecular signal compared to non-activated solutions, due to their higher energy-saturated state. Additionally, molecular signals cause supramolecular systems with complex (including chiral) structures to undergo easier changes in conformation and symmetry compared to simpler systems, enhancing their biological activity. Using statistical physics, we obtained the parameter Ic, characterizing the magnitude of conformational and symmetry changes in supramolecular (including chiral) systems caused by molecular signals. In quantum information science, there is an analogue of the parameter Ic, which characterizes the entanglement depth of quantum systems. This study contributes to the understanding of the physico-chemical basis of distant molecular interactions and opens up new possibilities for controlling the properties of complex biological and chemical systems. Full article
(This article belongs to the Special Issue Supramolecular Chiral Self-Assembly and Applications)
Show Figures

Figure 1

41 pages, 3722 KiB  
Review
Advances of Complex Marine Environmental Influences on Underwater Vehicles
by Sen Zhao, Haibao Hu, Abdellatif Ouahsine, Haochen Lu, Zhuoyue Li, Zhiming Yuan and Peng Du
J. Mar. Sci. Eng. 2025, 13(7), 1297; https://doi.org/10.3390/jmse13071297 - 1 Jul 2025
Viewed by 503
Abstract
Underwater vehicles serve as critical assets for global ocean exploration and naval capability enhancement. The marine environment exhibits intricate hydrodynamic phenomena that significantly threaten underwater vehicle navigation safety, particularly in four prevalent complex conditions: surface waves, oceanic currents, stratified fluids, and internal waves. [...] Read more.
Underwater vehicles serve as critical assets for global ocean exploration and naval capability enhancement. The marine environment exhibits intricate hydrodynamic phenomena that significantly threaten underwater vehicle navigation safety, particularly in four prevalent complex conditions: surface waves, oceanic currents, stratified fluids, and internal waves. This comprehensive review systematically examines the impacts of these four marine environments on underwater vehicles through critical analysis and synthesis of contemporary advances in theoretical frameworks, experimental methodologies, and numerical simulation approaches. The identified influences are categorized into five primary aspects: hydrodynamic characteristics, dynamic response patterns, load distribution mechanisms, navigation trajectory optimization, and stealth performance. Particular emphasis is placed on internal wave interactions, with rigorous analysis derived from experimental investigations and numerical modeling of internal wave dynamics and their coupling effects with underwater vehicles. In addition, this review points out and analyzes the shortcomings of the current research in various aspects and puts forward some thoughts and suggestions for future research directions that are worth further exploration, including enriching the research objects, upgrading the experimental techniques, and introducing artificial intelligence methods. Full article
Show Figures

Figure 1

18 pages, 8012 KiB  
Article
Wave–Current Interactions in the Agulhas Retroflection: The Beluga Reefer Accident
by Victor Edem Setordjie, Aifeng Tao, Shuhan Lin and Jinhai Zheng
J. Mar. Sci. Eng. 2025, 13(7), 1275; https://doi.org/10.3390/jmse13071275 - 30 Jun 2025
Viewed by 329
Abstract
The Beluga Reefer accident underscores the hidden risks associated with complex wave–current interactions along South Africa’s coastline, particularly in the Agulhas Current retroflection zone. This study utilized ERA5 reanalysis and CMEMS surface current data to analyze the sea state conditions at the time [...] Read more.
The Beluga Reefer accident underscores the hidden risks associated with complex wave–current interactions along South Africa’s coastline, particularly in the Agulhas Current retroflection zone. This study utilized ERA5 reanalysis and CMEMS surface current data to analyze the sea state conditions at the time of the accident. While the wind speeds were moderate (5.42 m/s) and windsea heights were relatively low (0.99 m), the significant wave height (Hs) peaked at 3.24 m, with a strong opposing NE Agulhas Current (1.27 m/s) inducing wave steepening and group compression, creating transient hazardous conditions despite a low overall wave steepness (0.0209). Just before the accident, the directional disparity (Δθ) between the swell and windsea systems collapsed sharply from 167.45° to 8.98°, providing a false sense of stability. The synergy of these conditions at the accident site triggered the event, demonstrating that visually aligned wave conditions can mask dangerous underlying interactions. These findings highlight the critical need for integrated wave–current diagnostics in maritime forecasting to better predict complex hazards and enhance vessel safety. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

31 pages, 17228 KiB  
Article
The Hydrodynamic Performance of a Vertical-Axis Hydro Turbine with an Airfoil Designed Based on the Outline of a Sailfish
by Aiping Wu, Shiming Wang and Chenglin Ding
J. Mar. Sci. Eng. 2025, 13(7), 1266; https://doi.org/10.3390/jmse13071266 - 29 Jun 2025
Viewed by 342
Abstract
This study investigates an aerodynamic optimization framework inspired by marine biological morphology, utilizing the sailfish profile as a basis for airfoil configuration. Through Latin hypercube experimental design combined with optimization algorithms, four key geometric variables governing the airfoil’s hydrodynamic characteristics were systematically analyzed. [...] Read more.
This study investigates an aerodynamic optimization framework inspired by marine biological morphology, utilizing the sailfish profile as a basis for airfoil configuration. Through Latin hypercube experimental design combined with optimization algorithms, four key geometric variables governing the airfoil’s hydrodynamic characteristics were systematically analyzed. Parametric studies revealed that pivotal factors including installation angle significantly influenced the fluid dynamic performance metrics of lift generation and pressure drag. Response surface methodology was employed to establish predictive models for these critical performance indicators, effectively reducing computational resource consumption and experimental validation costs. The refined bio-inspired configuration demonstrated multi-objective performance improvements compared to the baseline configuration, validating the computational framework’s effectiveness for hydrodynamic profile optimization studies. Furthermore, a coaxial dual-rotor vertical axis turbine configuration was developed, integrating centrifugal and axial-flow energy conversion mechanisms through a shared drivetrain system. The centrifugal rotor component harnessed tidal current kinetic energy while the axial-flow rotor module captured wave-induced potential energy. Transient numerical simulations employing dynamic mesh techniques and user-defined functions within the Fluent environment were conducted to analyze rotor interactions. Results indicated the centrifugal subsystem demonstrated peak hydrodynamic efficiency at a 25° installation angle, whereas the axial-flow module achieves optimal performance at 35° blade orientation. Parametric optimization revealed maximum energy extraction efficiency for the centrifugal rotor occurs at λ = 1.25 tip-speed ratio under Re = 1.3 × 105 flow conditions, while the axial-flow counterpart attained optimal performance at λ = 1.5 with Re = 5.5 × 104. This synergistic configuration demonstrated complementary operational characteristics under marine energy conversion scenarios. Full article
Show Figures

Figure 1

21 pages, 14658 KiB  
Article
Retrieval of Ocean Surface Currents by Synergistic Sentinel-1 and SWOT Data Using Deep Learning
by Kai Sun, Jianjun Liang, Xiao-Ming Li and Jie Pan
Remote Sens. 2025, 17(13), 2133; https://doi.org/10.3390/rs17132133 - 21 Jun 2025
Viewed by 424
Abstract
A reliable ocean surface current (OSC) estimate is difficult to retrieve from synthetic aperture radar (SAR) data due to the challenge of accurately partitioning the Doppler shifts induced by wind waves and OSC. Recent research on SAR-based OSC retrieval is typically based on [...] Read more.
A reliable ocean surface current (OSC) estimate is difficult to retrieve from synthetic aperture radar (SAR) data due to the challenge of accurately partitioning the Doppler shifts induced by wind waves and OSC. Recent research on SAR-based OSC retrieval is typically based on the assumption that the SAR Doppler shifts caused by wind waves and OSC are linearly superimposed. However, this assumption may lead to large errors in regions where nonlinear wave–current interactions are significant. To address this issue, we developed a novel deep learning model, OSCNet, for OSC retrieval. The model leverages Sentinel-1 Interferometric Wide (IW) Level 2 Ocean products collected from July 2023 to September 2024, combined with wave data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and geostrophic currents from newly available SWOT Level 3 products. The OSCNet model is optimized by refining input ocean surface physical parameters and introducing a ResNet structure. Moreover, the Normalized Radar Cross-Section (NRCS) is incorporated to account for wave breaking and backscatter effects on Doppler shift estimates. The retrieval performance of the OSCNet model is evaluated using SWOT data. The mean absolute error (MAE) and root mean square error (RMSE) are found to be 0.15 m/s and 0.19 m/s, respectively. This result demonstrates that the OSCNet model enhances the retrieval of OSC from SAR data. Furthermore, a mesoscale eddy detected in the OSC map retrieved by OSCNet is consistent with the collocated sea surface chlorophyll-a observation, demonstrating the capability of the proposed method in capturing the variability of mesoscale eddies. Full article
Show Figures

Graphical abstract

29 pages, 7447 KiB  
Article
Cultural Resilience from Sacred to Secular: Ritual Spatial Construction and Changes to the Tujia Hand-Waving Sacrifice in the Wuling Corridor, China
by Tianyi Min and Tong Zhang
Religions 2025, 16(7), 811; https://doi.org/10.3390/rel16070811 - 20 Jun 2025
Viewed by 532
Abstract
The “hand-waving sacrifice” is a large-scale sacrificial ceremony with more than 2000 years of history. It was passed down from ancient times by the Tujia ethnic group living in the Wuling Corridor of China, and it integrates religion, sacrifice, dance, drama, and other [...] Read more.
The “hand-waving sacrifice” is a large-scale sacrificial ceremony with more than 2000 years of history. It was passed down from ancient times by the Tujia ethnic group living in the Wuling Corridor of China, and it integrates religion, sacrifice, dance, drama, and other cultural forms. It primarily consists of two parts: ritual content (inviting gods, offering sacrifices to gods, dancing a hand-waving dance, etc.) and the architectural space that hosts the ritual (hand-waving hall), which together constitute Tujia’s most sacred ritual space and the most representative art and culture symbol. Nonetheless, in existing studies, the hand-waving sacrifice ritual, hand-waving hall architectural space, and hand-waving dance art are often separated as independent research objects, and little attention is paid to the coupling mechanism of the mutual construction of space and ritual in the process of historical development. Moreover, with the acceleration of modernization, the current survival context of the hand-waving sacrifice has undergone drastic changes. On the one hand, the intangible cultural heritage protection policy and the wave of tourism development have pushed it into the public eye and the cultural consumption system. On the other hand, the changes in the social structure of traditional villages have led to the dissolution of the sacredness of ritual space. Therefore, using the interaction of “space-ritual” as a prompt, this research first uses GIS technology to visualize the spatial geographical distribution characteristics and diachronic evolution process of hand-waving halls in six historical periods and then specifically analyzes the sacred construction of hand-waving hall architecture for the hand-waving sacrifice ritual space throughout history, as well as the changing mechanism of the continuous secularization of the hand-waving sacrifice space in contemporary society. Overall, this study reveals a unique path for non-literate ethnic groups to achieve the intergenerational transmission of cultural memory through the collusion of material symbols and physical art practices, as well as the possibility of embedding the hand-waving sacrifice ritual into contemporary spatial practice through symbolic translation and functional extension in the context of social function inheritance and variation. Finally, this study has specific inspirational and reference value for exploring how the traditional culture and art of ethnic minorities can maintain resilience against the tide of modernization. Full article
(This article belongs to the Special Issue Arts, Spirituality, and Religion)
Show Figures

Figure 1

12 pages, 4723 KiB  
Article
Investigating Rayleigh Wave Dispersion Across the Carpathian Orogen in Romania
by Andrei Mihai, Laura Petrescu, Iren-Adelina Moldovan and Mircea Radulian
Geosciences 2025, 15(6), 228; https://doi.org/10.3390/geosciences15060228 - 16 Jun 2025
Viewed by 234
Abstract
The Carpathian orogen represents a natural laboratory for the study of geodynamic interactions between lithospheres of different ages. The ancient Archean Cratons, such as the East European Craton, and Proterozoic platforms like the Scythian and Moesian platforms collided with the younger Tisza and [...] Read more.
The Carpathian orogen represents a natural laboratory for the study of geodynamic interactions between lithospheres of different ages. The ancient Archean Cratons, such as the East European Craton, and Proterozoic platforms like the Scythian and Moesian platforms collided with the younger Tisza and Dacia mega-units, resulting in the formation of the current architecture of the Carpathian Mountains. To better understand how the lithospheric structure on Romanian territory changes from the East European Craton to younger European microplates, we use earthquake data recorded at the permanent broadband seismic stations of the Romanian National Seismic Network (RSN). Applying the multiple filter technique, we examine the dispersion of Rayleigh wave group velocities for earthquakes located within a 4000 km radius of the epicenter. Travel time tomography, conducted through fast marching surface tomography, helps us to construct group velocity maps for periods between 30 and 80 s. Our findings highlight a low-velocity body in front of the Vrancea slab, indicating asthenospheric upwelling due to slab verticalization. Full article
Show Figures

Figure 1

18 pages, 16697 KiB  
Article
Analysis of Abnormal Sea Level Rise in Offshore Waters of Bohai Sea in 2024
by Song Pan, Lu Liu, Yuyi Hu, Jie Zhang, Yongjun Jia and Weizeng Shao
J. Mar. Sci. Eng. 2025, 13(6), 1134; https://doi.org/10.3390/jmse13061134 - 5 Jun 2025
Cited by 1 | Viewed by 477
Abstract
The primary contribution of this study lies in analyzing the dynamic drivers during two anomalous sea level rise events in the Bohai Sea through coupled numeric modeling using the Weather Research and Forecasting (WRF) model and the Finite-Volume Community Ocean Model (FVCOM) integrated [...] Read more.
The primary contribution of this study lies in analyzing the dynamic drivers during two anomalous sea level rise events in the Bohai Sea through coupled numeric modeling using the Weather Research and Forecasting (WRF) model and the Finite-Volume Community Ocean Model (FVCOM) integrated with the Simulating Waves Nearshore (SWAN) module (hereafter referred to as FVCOM-SWAVE). WRF-derived wind speeds (0.05° grid resolution) were validated against Haiyang-2 (HY-2) scatterometer observations, yielding a root mean square error (RMSE) of 1.88 m/s and a correlation coefficient (Cor) of 0.85. Similarly, comparisons of significant wave height (SWH) simulated by FVCOM-SWAVE (0.05° triangular mesh) with HY-2 altimeter data showed an RMSE of 0.67 m and a Cor of 0.84. Four FVCOM sensitivity experiments were conducted to assess drivers of sea level rise, validated against tide gauge observations. The results identified tides as the primary driver of sea level rise, with wind stress and elevation forcing (e.g., storm surge) amplifying variability, while currents exhibited negligible influence. During the two events, i.e., 20–21 October and 25–26 August 2024, elevation forcing contributed to localized sea level rises of 0.6 m in the northern and southern Bohai Sea and 1.1 m in the southern Bohai Sea. A 1 m surge in the northern region correlated with intense Yellow Sea winds (20 m/s) and waves (5 m SWH), which drove water masses into the Bohai Sea. Stokes transport (wave-driven circulation) significantly amplified water levels during the 21 October and 26 August peak, underscoring critical wave–tide interactions. This study highlights the necessity of incorporating tides, wind, elevation forcing, and wave effects into coastal hydrodynamic models to improve predictions of extreme sea level rise events. In contrast, the role of imposed boundary current can be marginalized in such scenarios. Full article
Show Figures

Figure 1

15 pages, 1130 KiB  
Article
Hong–Ou–Mandel Interference on an Acousto-Optical Beam Splitter
by Piotr Kwiek
Optics 2025, 6(2), 25; https://doi.org/10.3390/opt6020025 - 5 Jun 2025
Viewed by 409
Abstract
This paper presents the results of theoretical and experimental investigations of a Hong–Ou–Mandel interferometer in which an optical beam splitter is replaced by an ultrasonic wave. The ultrasonic wave acts as an acousto-optical beam splitter for light, which is based on the phenomenon [...] Read more.
This paper presents the results of theoretical and experimental investigations of a Hong–Ou–Mandel interferometer in which an optical beam splitter is replaced by an ultrasonic wave. The ultrasonic wave acts as an acousto-optical beam splitter for light, which is based on the phenomenon of Bragg diffraction on an ultrasonic wave. The Doppler effect was considered in the theoretical considerations and confirmed experimentally. It has been shown theoretically and experimentally that the Doppler effect changes the frequency of two-photon states at the outputs of an acousto-optical beam splitter. The frequency of the two-photon state in the positive diffraction order is increased by the frequency of the ultrasonic wave, whereas in the negative diffraction order, it is reduced by the frequency of the ultrasonic wave. It should be emphasized that there are no states 1112 in the outputs (diffraction orders), which disappear as a result of Hong–Ou–Mandel interference; consequently, the probability of detecting coincidences of photons between the plus first and minus first diffraction orders is zero, as it occurs in the Hong–Ou–Mandel interferometer. The frequency difference between the two-photon states at the outputs of the acousto-optical beam splitter was confirmed by recording the two-photon beat phenomenon. The obtained results changed the current view that the Doppler effect caused by ultrasonic waves can be neglected in the interaction of correlated pairs of photons with ultrasonic waves. Full article
Show Figures

Figure 1

Back to TopTop