Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (203)

Search Parameters:
Keywords = waterproofing performance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 12915 KiB  
Article
Preparation of Tung Oil Microcapsules Coated with Chitosan–Arabic Gum and Its Effect on the Properties of UV Coating
by Jinzhe Deng and Xiaoxing Yan
Polymers 2025, 17(14), 1985; https://doi.org/10.3390/polym17141985 - 19 Jul 2025
Cited by 1 | Viewed by 246
Abstract
Tung oil, as dry oil, can quickly dry and polymerize into tough and glossy waterproof coatings, with a very high application value. Tung oil was used as a core material to prepare Tung oil microcapsules coated with chitosan–Arabic gum, and the preparation process [...] Read more.
Tung oil, as dry oil, can quickly dry and polymerize into tough and glossy waterproof coatings, with a very high application value. Tung oil was used as a core material to prepare Tung oil microcapsules coated with chitosan–Arabic gum, and the preparation process of the microcapsules was optimized. The effect of adding a UV coating on the performance of the microcapsules was explored. Under the conditions of a core–wall mass ratio of 0.5:1.0, pH value of 3.5, mass ratio of chitosan to Arabic gum of 1.0:4.0, and spray drying temperature of 130 °C, Tung oil microcapsules coated with chitosan–Arabic gum had a higher yield and coverage rate, which were 32.85% and 33.20%, respectively. With the increase of the spray drying temperature during preparation, the roughness of the coating first increased and then decreased, the visible light transmittance decreased first and then increased, and the glossiness showed an overall downward trend. The self-repairing rate decreased gradually. When the microcapsules #11 were added to the UV topcoat at 5%, the coating can obtain excellent comprehensive properties; the roughness was 0.79 μm, elongation at break was 5.04%, visible light transmittance was 77.96%, gloss loss rate was 10.95%, and self-repairing rate was 20.47%. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

18 pages, 6753 KiB  
Article
Deformation Analysis of 50 m-Deep Cylindrical Retaining Shaft in Composite Strata
by Peng Tang, Xiaofeng Fan, Wenyong Chai, Yu Liang and Xiaoming Yan
Sustainability 2025, 17(13), 6223; https://doi.org/10.3390/su17136223 - 7 Jul 2025
Viewed by 381
Abstract
Cylindrical retaining structures are widely adopted in intercity railway tunnel engineering due to their exceptional load-bearing performance, no need for internal support, and efficient utilization of concrete compressive strength. Measured deformation data not only comprehensively reflect the influence of construction and hydrogeological conditions [...] Read more.
Cylindrical retaining structures are widely adopted in intercity railway tunnel engineering due to their exceptional load-bearing performance, no need for internal support, and efficient utilization of concrete compressive strength. Measured deformation data not only comprehensively reflect the influence of construction and hydrogeological conditions but also directly and clearly indicate the safety and stability status of structure. Therefore, based on two geometrically similar cylindrical shield tunnel shafts in Shenzhen, the surface deformation, structure deformation, and changes in groundwater outside the shafts during excavation were analyzed, and the deformation characteristics under the soil–rock composite stratum were summarized. Results indicate that the uneven distribution of surface surcharge and groundwater level are key factors causing differential deformations. The maximum horizontal deformation of the shafts wall is less than 0.05% of the current excavation depth (H), occurring primarily in two zones: from H − 20 m to H + 20 m and in the shallow 0–10 m range. Vertical deformations at the wall top are mostly within ±0.2% H. Localized groundwater leakage in joints may lead to groundwater redistribution and seepage-induced fine particle migration, exacerbating uneven deformations. Timely grouting when leakage occurs and selecting joints with superior waterproof sealing performance are essential measures to ensure effective sealing. Compared with general polygonal foundation pits, cylindrical retaining structures can achieve low environmental disturbances while possessing high structural stability. Full article
(This article belongs to the Special Issue Sustainable Development and Analysis of Tunnels and Underground Works)
Show Figures

Figure 1

16 pages, 3633 KiB  
Article
Evaluation of Grouting Effectiveness on Cracks in Cement-Stabilized Macadam Layer Based on Pavement Mechanical Response Using FBG Sensors
by Min Zhang, Hongbin Hu, Cheng Ren, Zekun Shang and Xianyong Ma
Appl. Sci. 2025, 15(13), 7312; https://doi.org/10.3390/app15137312 - 28 Jun 2025
Viewed by 279
Abstract
Cracking in semi-rigid cement-stabilized macadam bases constitutes a prevalent distress in asphalt pavements. While extensive research exists on grouting materials for crack rehabilitation, quantitative assessment methodologies for treatment efficacy remain underdeveloped. This study proposes a novel evaluation framework integrating fiber Bragg grating (FBG) [...] Read more.
Cracking in semi-rigid cement-stabilized macadam bases constitutes a prevalent distress in asphalt pavements. While extensive research exists on grouting materials for crack rehabilitation, quantitative assessment methodologies for treatment efficacy remain underdeveloped. This study proposes a novel evaluation framework integrating fiber Bragg grating (FBG) technology to monitor pavement mechanical responses under traffic loads. Conducted on the South China Expressway project, the methodology encompassed (1) a method for back-calculating the modulus of the asphalt layer based on Hooke’s Law; (2) a sensor layout plan with FBG sensors buried at the top of the pavement base in seven sections; (3) statistical analysis of the asphalt modulus based on the mechanical response when a large number of vehicles passed; and (4) comparative analysis of modulus variations to establish quantitative performance metrics. The results demonstrate that high-strength geopolymer materials significantly enhanced the elastic modulus of the asphalt concrete layer, achieving 34% improvement without a waterproofing agent versus 19% with a waterproofing agent. Polymer-treated sections exhibited a mean elastic modulus of 676.15 MPa, substantially exceeding untreated pavement performance. Low-strength geopolymers showed marginal improvements. The modulus hierarchy was as follows: high-strength geopolymer (without waterproofing agent) > polymer > high-strength geopolymer (with waterproofing agent) > low-strength geopolymer (without waterproofing agent) > low-strength geopolymer (with waterproofing agent) > intact pavement > untreated pavement. These findings demonstrate that a high-strength geopolymer without a waterproofing agent and high-polymer materials constitute optimal grouting materials for this project. The developed methodology provides critical insights for grout material selection, construction process optimization, and post-treatment maintenance strategies, advancing quality control protocols in pavement rehabilitation engineering. Full article
(This article belongs to the Special Issue Recent Advances in Pavement Monitoring)
Show Figures

Figure 1

24 pages, 1909 KiB  
Article
Experimental Investigation into Waterproofing Performance of Cement Mortar Incorporating Nano Silicon
by Nasiru Zakari Muhammad, Muhd Zaimi Abd Majid, Ali Keyvanfar, Arezou Shafaghat, Ronald MCcaffer, Jahangir Mirza, Muhammad Magana Aliyu and Mujittafa Sariyyu
Buildings 2025, 15(13), 2227; https://doi.org/10.3390/buildings15132227 - 25 Jun 2025
Viewed by 448
Abstract
Water ingress and penetration of aggressive fluids undermines the integrity of many concrete structures. For this reason, optimal performance of such structures up to their designed life cannot be guaranteed. This study introduces nano silicon as an alternative waterproofing admixture for increasing life [...] Read more.
Water ingress and penetration of aggressive fluids undermines the integrity of many concrete structures. For this reason, optimal performance of such structures up to their designed life cannot be guaranteed. This study introduces nano silicon as an alternative waterproofing admixture for increasing life span of cementitious materials, due to its non-vulnerability to deterioration, which is common to traditional surface coating solutions. Therefore, nano silicon was characterized using Field Emission Scanning Electron Microscope (FESEM), Energy Dispersion Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and surface Zeta potential. The Central Composite Design (CCD) tool was adopted to plan the experiment and further used to model the relationship between experimental variables and experimental response. The model was found to be nonlinear quadratic based on Analysis of Variance (ANOVA). Also, the validity of the model was evaluated and found to have accurate prediction with mean absolute percentage error (MAPE) of 1.62%. The optimum mix ratio necessary to increase resistance to capillary water absorption was established at a nano silicon dosage of 6.6% by weight of cement and w/c of 0.42. In conclusion, the overall results indicate that resistance to capillary water absorption was increased by 62%. Furthermore, while gas permeability was reduced by 31%, on the other hand, volume of water permeable voids decreased by 10%. Full article
Show Figures

Figure 1

21 pages, 4833 KiB  
Article
Energy Dissipation Between Concrete and Composite Waterproof Sheet Interface
by Jongsun Park and Byoungil Kim
Buildings 2025, 15(10), 1724; https://doi.org/10.3390/buildings15101724 - 19 May 2025
Viewed by 359
Abstract
Underground structures are subject to deterioration conditions in which water leakage occurs through cracks due to the long-term influence of soil and groundwater. Therefore, composite waterproofing sheets can play an important role in securing the leakage stability of structures by combining them with [...] Read more.
Underground structures are subject to deterioration conditions in which water leakage occurs through cracks due to the long-term influence of soil and groundwater. Therefore, composite waterproofing sheets can play an important role in securing the leakage stability of structures by combining them with concrete structures. In this study, a total of eight composite waterproofing sheets were used according to the thickness of the compound and the properties of the material attached to the concrete, and the deformation characteristics at the bonding surface were identified through repeated tensile tests. Types A, B, and C, with a compound thickness of 1.35 to 1.85 mm and a single layer, had strong bonding performance, with a deformation rate of 0.5 to 2 × 10−4 and a DE/RE ratio of 0.3 to 1.3; tensile deformation progressed while maintaining integrity with the concrete at the bonding surface. Types D and E were viscoelastic and non-hardening compounds with a compound thickness of 1.35 to 3.5 mm, where the strain rate due to tensile deformation was the lowest, at 0.1 × 10−4 or less, and the DE/RE ratio was −5 to 3; therefore, when internal stress occurs, the high-viscosity compound absorbs it, and the material is judged to have low deformation characteristics. Types F, G, and H, which were 2 to 2.9 mm thick and had two layers using a core material, were found to have characteristics corresponding to tensile deformation, as the strain rate increased continuously from 0.2 to 0.5 × 10−4, and the DE/RE ratio increased up to 8 mm of tensile deformation. Full article
Show Figures

Figure 1

27 pages, 9717 KiB  
Article
Research on the Optimization and Regulation Mechanism of Waterproofing, Impermeability, and Water Vapor Transmission Property of Mortar Based on Different Modifiers
by Zelei Li, Chuanchuan Guo, Lanlan Xu and Ru Wang
Materials 2025, 18(10), 2363; https://doi.org/10.3390/ma18102363 - 19 May 2025
Viewed by 482
Abstract
It is challenging for mortar to simultaneously enhance the transmission property of water vapor while maintaining excellent waterproofness and impermeability. However, in some applications, both are necessary. Therefore, three different kinds of modifiers, i.e., cementitious capillary crystalline waterproof materials (XYPEX), γ-methacryloxy-propyl-trimethoxy-silane (KH570), and [...] Read more.
It is challenging for mortar to simultaneously enhance the transmission property of water vapor while maintaining excellent waterproofness and impermeability. However, in some applications, both are necessary. Therefore, three different kinds of modifiers, i.e., cementitious capillary crystalline waterproof materials (XYPEX), γ-methacryloxy-propyl-trimethoxy-silane (KH570), and styrene-butadiene rubber latex (SB), are employed to explore how modified mortar can possess excellent waterproofness, impermeability, and the water vapor transmission property simultaneously. Combining characterization techniques, the influencing factors of these three properties are studied. The results indicate that XYPEX promotes the formation of hydration products within pores, improves waterproofness and impermeability, but decreases the water vapor transmission property. KH570 introduces numerous pores ranging from 0.1 to 5 micrometers and enhances the hydrophobicity of mortar; at 1.25% and 2.5% contents, the modified mortar exhibits excellent waterproofness and water vapor transmission property but poor impermeability. SB introduces numerous air pores and forms polymer films; at 20% content, the modified mortar exhibits excellent waterproofness and water vapor transmission property, with impermeability remaining unchanged, making SB a favorable modifier that combines these three properties. Finally, the mechanisms of these three properties are discussed, which provides a theoretical reference for the control of mortar’s waterproofing, impermeability, and water vapor transmission. The selection of modifiers is based on the actual performance requirements. Full article
Show Figures

Figure 1

24 pages, 5751 KiB  
Article
Explainable Machine Learning with Two-Layer Multi-Objective Optimization Algorithm Applied to Sealing Structure Design
by Weiru Zhou and Zonghong Xie
Materials 2025, 18(10), 2307; https://doi.org/10.3390/ma18102307 - 15 May 2025
Viewed by 417
Abstract
This study addresses the challenge of optimizing seal structure design through a novel two-stage interpretable optimization framework. Focusing on O-ring waterproof performance under hyperelastic material behavior, this study proposes a double-layer optimization method integrating explainable machine learning with hierarchical clustering algorithms. The key [...] Read more.
This study addresses the challenge of optimizing seal structure design through a novel two-stage interpretable optimization framework. Focusing on O-ring waterproof performance under hyperelastic material behavior, this study proposes a double-layer optimization method integrating explainable machine learning with hierarchical clustering algorithms. The key innovation lies in employing modified hierarchical clustering to categorize design parameters into two interpretable groups: bolt preload and groove depth. This clustering enables dimensionality reduction while maintaining the physical interpretability of critical parameters. In the first layer, systematic parameter screening and optimization are applied to the preload variable to reduce the database, with six remaining data points that constitute one-seventh of the original data. The second layer subsequently refines configurations using E-TOPSIS (Entropy Weight—Technique for Order Preference by Similarity to Ideal Solution) optimization. All evaluations are performed through FEA (finite element analysis) considering nonlinear material responses. The optimal design is a groove depth of 0.8 mm and a preload of 80 N. The experimental validation demonstrates that this method efficiently identifies optimal designs meeting IPX8 waterproof requirements, with zero leakage observed in both O-ring surfaces and motor interiors. The proposed methodology provides physically meaningful design guidelines. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

23 pages, 8915 KiB  
Article
Multi-Objective Optimization of Motor Sealing Performance: Numerical and Experimental Approach
by Weiru Zhou and Zonghong Xie
Materials 2025, 18(9), 2064; https://doi.org/10.3390/ma18092064 - 30 Apr 2025
Viewed by 289
Abstract
Rubber seals have been widely applied in mechanical sealing structures in various fields such as automobiles, aerospace, and deep-sea hydraulic systems. The current analysis methods for O-ring sealing performance mainly include experiments and simulations. This study takes the motor sealing structure as the [...] Read more.
Rubber seals have been widely applied in mechanical sealing structures in various fields such as automobiles, aerospace, and deep-sea hydraulic systems. The current analysis methods for O-ring sealing performance mainly include experiments and simulations. This study takes the motor sealing structure as the research object and proposes a multi-objective optimization method for designing sealing structures. Based on the finite element analysis model, the main indicators related to sealing performance were obtained. These indicators transfer to multi-objective optimization analysis to determine the influence of different groove depths on sealing performance. The analysis results show that when the bolt preload is 50 N, a groove depth of 0.9 mm is the optimal design scheme. The optimal relationship between the O-ring diameter D and the sealing structure groove depth is H = 0.6 D. Moreover, a prototype test under the condition of IPX7 requirement verifies the optimal design scheme’s waterproof performance. The proposed method provides multiple design schemes for comprehensive evaluation considering different sealing structures. It reveals that the sealing performance is not only determined by rubber material characteristics but also by seal structure dimension. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

16 pages, 3051 KiB  
Article
Recycling End-of-Life Bituminous Membranes in Asphalt Mixtures: A Laboratory Study
by Marco Pasetto, Safeer Haider, Andrea Baliello and Emiliano Pasquini
Materials 2025, 18(9), 2035; https://doi.org/10.3390/ma18092035 - 29 Apr 2025
Viewed by 539
Abstract
The circular economy (i.e., reuse and recycling of waste materials) is gaining attention for the goal of achieving net-zero waste. In this regard, the use of waterproofing membrane waste in bituminous materials can be a valid option, as every year, a lot of [...] Read more.
The circular economy (i.e., reuse and recycling of waste materials) is gaining attention for the goal of achieving net-zero waste. In this regard, the use of waterproofing membrane waste in bituminous materials can be a valid option, as every year, a lot of bituminous membrane wastes are generated both as production scraps or end-of-life wastes. Given this background, the recycling feasibility of end-of-life bituminous membrane waste (MW) in asphalt mixtures was assessed in this research study. To this aim, MW shreds (≤20 mm) were added to dense-graded bituminous mixtures using the dry-mixing method. The shreds were dosed at 0.5% by the mix weight (mix coded as SH−) or at 2% by mix weight (mix coded as SH+). A corresponding reference mix without MW was also tested for comparison purposes. The mixtures’ workability, strength and stiffness as well as permanent deformation, moisture and fatigue resistance were evaluated. Overall, the laboratory experimental findings showed that MW-modified bituminous mixtures with a higher dosage of membrane waste (SH+) have relatively higher moisture resistance, fatigue resistance, stiffness and high-temperature performance with respect to the corresponding reference mix. Moreover, both the reference and MW-modified mixtures showed similar workability regardless of the MW content. Full article
(This article belongs to the Special Issue Innovative Materials and Technologies for Road Pavements)
Show Figures

Figure 1

16 pages, 3281 KiB  
Article
Assessment and Inspection Method for Watertightness Performance of Building Facades in Shanghai Under Wind-Driven Rain
by Libo Long, Fengrui Rao, Yueqiang Ma, Jinhu Xi, Shun Xiao, Qingfeng Xu and Qiushi Fu
Buildings 2025, 15(9), 1490; https://doi.org/10.3390/buildings15091490 - 28 Apr 2025
Viewed by 382
Abstract
The present work addresses the critical challenge of assessing building facade watertightness against wind-driven rain, a major threat to structural integrity and durability. The current evaluation methods rely heavily on standardized test outcomes, neglecting a disconnect between test conditions and real-world exposure, leading [...] Read more.
The present work addresses the critical challenge of assessing building facade watertightness against wind-driven rain, a major threat to structural integrity and durability. The current evaluation methods rely heavily on standardized test outcomes, neglecting a disconnect between test conditions and real-world exposure, leading to subjective judgments. To bridge this gap, this paper developed a quantitative method linking key inspection parameters (pump pressure, water spray distance) to wind-driven rain characteristics (wind speed, rainfall intensity) in the Shanghai area using statistical return periods. The calculation process encompasses regression models that correlate extreme rainfall and wind velocity values over sub-daily intervals, as well as a method for extrapolating maximum wind velocities using wind data coinciding with rainfall events. This approach enables specification-compliant performance assessment and tailored inspection protocols, such as JGJ/T 299, EN 12155, and ASTM E547. Applied to two Shanghai buildings, the method demonstrated a robust framework for translating environmental data into actionable inspection criteria. The results show a direct correlation between test parameters and extreme weather statistics. For instance, the watertightness performance of an old building is quantitively assessed as a return period of 1.02 years, while a new office building aiming for 50-year waterproofing could be inspected at a pump pressure of 900 kPa and a spraying distance of 0.15 m using the proposed method. This paper offers a data-driven alternative to empirical assessments, enhancing reliability in facade design and regulatory compliance, and provides a scientific basis for decision-making in building maintenance and renovation. Full article
Show Figures

Figure 1

10 pages, 2002 KiB  
Communication
Effect of Organotin on Performance of Siloxane Materials for Surface Treatment of Cementitious Materials
by Kaiyue Huang, Ji Zhang, Yue Li and Hui Yang
Materials 2025, 18(7), 1626; https://doi.org/10.3390/ma18071626 - 2 Apr 2025
Viewed by 473
Abstract
Surface treatment is essential for cementitious materials. Siloxane is a material that can potentially be applied in surface treatment, as it possesses the advantages of both inorganic and organic surface treatment materials for cement. Organotin, serving as a neutral catalyst, performs well in [...] Read more.
Surface treatment is essential for cementitious materials. Siloxane is a material that can potentially be applied in surface treatment, as it possesses the advantages of both inorganic and organic surface treatment materials for cement. Organotin, serving as a neutral catalyst, performs well in improving the performance of siloxane coating. In this work, the effect of organotin on the surface treatment performance of siloxane was studied for application in cementitious materials, including surface hardness and waterproofing properties. Organotin had little effect on the waterproofing of cement paste treated with siloxane. However, the addition of organotin positively impacted the surface hardness of cement paste treated with MTMS, which increased by 105.1%. The function of organotin was analyzed through XRD, FTIR, SEM, and pore structure characterizations. Organotin can speed up the gelation of siloxane, thus consuming more portlandite in cement. The negative effect of the alkyl group could be partially reduced by promoting the condensation of the alkoxy group. This indicated that treating siloxane with organotin is valuable for improving the durability of cement-based materials, increasing their surface hardness without affecting waterproofing. Full article
(This article belongs to the Topic Sustainable Building Materials)
Show Figures

Graphical abstract

22 pages, 5895 KiB  
Article
Hydro-Mechanical Numerical Analysis of a Double-Wall Deep Excavation in a Multi-Aquifer Strata Considering Soil–Structure Interaction
by Yinhang Zhu, Weidong Wang, Zhonghua Xu, Jinjian Chen and Ji Zhang
Buildings 2025, 15(6), 989; https://doi.org/10.3390/buildings15060989 - 20 Mar 2025
Cited by 2 | Viewed by 407
Abstract
In order to exploit the deep underground space, the construction of ultra-deep excavation in Shanghai is growing rapidly. In multi-aquifer strata, deep excavations typically require dewatering of confined aquifers to ensure engineering safety. However, existing studies have seldom conducted in-depth analysis on the [...] Read more.
In order to exploit the deep underground space, the construction of ultra-deep excavation in Shanghai is growing rapidly. In multi-aquifer strata, deep excavations typically require dewatering of confined aquifers to ensure engineering safety. However, existing studies have seldom conducted in-depth analysis on the influence of the soil parameters and construction measures on the deformation of retaining structures. In this study, a three-dimensional hydro-mechanical numerical model was developed to evaluate the performances of excavation and dewatering of the foundation pit. The model was validated by comparing the calculated and measured wall deflections and groundwater drawdowns of a 45 m ultra-deep double-wall excavation in Shanghai. According to the characteristics of soil stratification and construction activities, three parameters were selected for subsequent analysis, including the hydraulic conductivity of aquitard below the bottom of the pit, the pumping rate in the second confined aquifer and the construction of TRD wall. The stress distributions on both sides of the diaphragm wall were examined to elucidate the deformation mechanism. The results indicate that the aquitard hydraulic conductivity directly affects the effective stress of the overlying aquifer, which plays a crucial role in resisting wall deflection. An increase in the hydraulic conductivity leads to smaller effective stress, greater wall deflection and larger ground settlement. While an appropriately increased pumping rate enhances effective stress, over-pumping may induce excessive wall deflection at depth and disproportionate ground settlement. The TRD wall is quite useful in terms of waterproofing but the effect on deformation control is limited. The findings of this study provide valuable insights for engineering practices and the optimization of deep excavation construction measures in multi-aquifer strata. Full article
(This article belongs to the Special Issue Advances in Soil-Structure Interaction for Building Structures)
Show Figures

Figure 1

18 pages, 7168 KiB  
Article
Robust Carbon Nanotube Transistor Ion Sensors with Near-Nernstian Sensitivity for Multi-Ion Detection in Neurological Diseases
by Lidan Yan, Yang Zhang, Zhibiao Zhu, Yuqi Liang and Mengmeng Xiao
Nanomaterials 2025, 15(6), 447; https://doi.org/10.3390/nano15060447 - 15 Mar 2025
Cited by 1 | Viewed by 827
Abstract
Accurate monitoring of sodium and potassium ions in biological fluids is crucial for diseases related to electrolyte imbalance. Low-dimensional materials such as carbon nanotubes can be used to construct biochemical sensors based on high-performance field effect transistor (FET), but they face the problems [...] Read more.
Accurate monitoring of sodium and potassium ions in biological fluids is crucial for diseases related to electrolyte imbalance. Low-dimensional materials such as carbon nanotubes can be used to construct biochemical sensors based on high-performance field effect transistor (FET), but they face the problems of poor device consistency and difficulty in stable and reliable operation. In this work, we mass-produced carbon nanotube (CNT) floating-gate field-effect transistor devices with high uniformity and consistency through micro-/nanofabrication technology to improve the accuracy and reliability of detection without the need for statistical analysis based on machine learning. By introducing waterproof hafnium oxide gate dielectrics on the CNT FET channel, we not only effectively protect the channel area but also significantly improve the stability of the sensor. We have prepared array sensing technology based on CNT FET that can detect potassium, sodium, calcium, and hydrogen ions in artificial cerebrospinal fluid. The detection concentration range is 10 μM–100 mM and pH 3–pH 9, with a sensitivity close to the Nernst limit, and exhibits selective and long-term stable responses. This could help achieve early diagnosis and real-time monitoring of central nervous system diseases, highlighting the potential of this ion-sensing platform for highly sensitive and stable detection of various neurobiological markers. Full article
(This article belongs to the Special Issue Advanced Low-Dimensional Materials for Sensing Applications)
Show Figures

Figure 1

19 pages, 3537 KiB  
Article
To the Issue of Assessment of the Technical Condition of Underground Structures of Buildings
by Oleksandr Semko, Yuriy Vynnykov, Olena Filonenko, Oleg Yurin, Tetiana Ilchenko, Olena Hranko, Volodymyr Semko, Adriana Salles, Ricardo Mateus, Luís Bragança, Roman Rabenseifer and Nataliia Mahas
Sustainability 2025, 17(5), 2264; https://doi.org/10.3390/su17052264 - 5 Mar 2025
Viewed by 1015
Abstract
A survey and assessment of the technical condition of basement and semi-basement structures in public buildings aged 60 to 130 years were conducted to evaluate their suitability for use as basic shelters. Based on the survey results, the most adverse impacts were identified, [...] Read more.
A survey and assessment of the technical condition of basement and semi-basement structures in public buildings aged 60 to 130 years were conducted to evaluate their suitability for use as basic shelters. Based on the survey results, the most adverse impacts were identified, including changes in groundwater levels, improper building operation, and the characteristic damages to underground structural elements. Structural solutions were proposed to eliminate the consequences of these damages. The reviewed cases indicate that the vertical and horizontal waterproofing systems used during construction cannot perform their function throughout the building’s entire life cycle. When designing new buildings, waterproof materials should be used for the enclosing structures of underground premises. While this may have a higher initial cost than membrane or coating waterproofing, considering life-cycle costs, it can provide a positive economic effect and improve the quality and comfort of the indoor environment. Full article
Show Figures

Figure 1

23 pages, 6264 KiB  
Article
Influence of Aggregate Composition on the Properties of Recycled Concrete and Improving Performance Using Special Additives
by Kitti Banyai, Oliver Czoboly, Krisztian Menyhart and Zoltan Orban
Materials 2025, 18(5), 1108; https://doi.org/10.3390/ma18051108 - 28 Feb 2025
Viewed by 879
Abstract
The principles of the circular economy and the effective utilization of construction and demolition waste are becoming increasingly important, as evidenced by a growing body of research in this field. However, studies focusing on the waterproofing properties and setting times of recycled concrete [...] Read more.
The principles of the circular economy and the effective utilization of construction and demolition waste are becoming increasingly important, as evidenced by a growing body of research in this field. However, studies focusing on the waterproofing properties and setting times of recycled concrete derived from various construction and demolition waste sources remain scarce. This research investigates the characteristics of recycled aggregates from different origins and explores how these characteristics influence the properties of concrete. The study examines the effects of pre-soaking aggregates to saturation, the incorporation of water absorption-reducing additives, and the ratio of recycled aggregates to natural aggregates on the properties of both fresh and hardened concrete. Laboratory tests were conducted on crushed recycled concrete aggregates (RCA), confirming that concrete produced with recycled aggregates can meet standard requirements for compressive strength and water resistance exposure classes despite the recycled aggregates themselves not meeting the required standards. The results were used to calculate an effective water–cement ratio and establish a correlation between this ratio and compressive strength. The findings indicated that the compressive strength of mixtures approached, and in most instances exceeded, that of the reference concrete utilizing natural aggregates. Specifically, the reference concrete (REF-1) achieved a compressive strength value of 51.4 MPa after 28 days, whereas the 30% recycled mixture (REC-10), made from pure concrete demolition waste, produced a compressive strength of 62.7 MPa. The maximum water penetration depth of the REC-10 mixture was measured at 11 mm, in comparison to 15 mm for the reference mixture (REF-1). Additionally, the initial setting time of the mixtures incorporating special additives reached the 80 min threshold. The practical aspects of this research examined potential industrial applications that do not necessitate special aggregate treatments, thus maintaining the water–cement ratio within acceptable limits. This study evaluates the feasibility of utilizing recycled concrete aggregates (RCA) from construction waste to produce concrete that satisfies the standard requirements for compressive strength and water resistance. It assesses the impact of RCA on performance, provides industrial insights, and suggests potential regulatory revisions. Full article
Show Figures

Figure 1

Back to TopTop