Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = water-alternating gas (WAG)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1749 KiB  
Article
Potential of Gas-Enhanced Oil Recovery (EOR) Methods for High-Viscosity Oil: A Core Study from a Kazakhstani Reservoir
by Karlygash Soltanbekova, Gaukhar Ramazanova and Uzak Zhapbasbayev
Energies 2025, 18(15), 4182; https://doi.org/10.3390/en18154182 - 7 Aug 2025
Abstract
At present, various advanced technologies for field development based on gas-enhanced oil recovery (EOR) methods are widely applied worldwide. These include high-pressure gas injection (hydrocarbon gases, nitrogen, flue gases), water-alternating-gas (WAG) injection, and carbon dioxide (CO2) flooding. This study presents the [...] Read more.
At present, various advanced technologies for field development based on gas-enhanced oil recovery (EOR) methods are widely applied worldwide. These include high-pressure gas injection (hydrocarbon gases, nitrogen, flue gases), water-alternating-gas (WAG) injection, and carbon dioxide (CO2) flooding. This study presents the results of filtration experiments investigating the application of gas EOR methods using core samples from a heavy oil reservoir. The primary objective of these experiments was to determine the oil displacement factor and analyze changes in interfacial tension upon injection of different gas agents. The following gases were utilized for modeling gas EOR processes: nitrogen (N2), carbon dioxide (CO2), and hydrocarbon gases (methane, propane). The core samples used in the study were obtained from the East Moldabek heavy oil field in Kazakhstan. Based on the results of the filtration experiments, carbon dioxide (CO2) injection was identified as the most effective gas EOR method in terms of increasing the oil displacement factor, achieving an incremental displacement factor of 5.06%. Other gas injection methods demonstrated lower efficiency. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

16 pages, 1863 KiB  
Review
Environmental Protection in Enhanced Oil Recovery and Its Waste and Effluents Treatment: A Critical Patent-Based Review of BRICS and Non-BRICS (2004–2023)
by Cristina M. Quintella
Sustainability 2025, 17(7), 2896; https://doi.org/10.3390/su17072896 - 25 Mar 2025
Viewed by 530
Abstract
Oil production will remain essential in the coming decades, requiring environmental responsibilities that are aligned with Agenda 2030. Enhanced oil recovery (EOR) increases recovery efficiency with low investment, but environmental protection technologies (EOR and Env), including green EOR (GEOR) and waste treatment (WT), [...] Read more.
Oil production will remain essential in the coming decades, requiring environmental responsibilities that are aligned with Agenda 2030. Enhanced oil recovery (EOR) increases recovery efficiency with low investment, but environmental protection technologies (EOR and Env), including green EOR (GEOR) and waste treatment (WT), must be integrated. The BRICS association, representing half of global oil production, promotes technology transfer in this context. Worldwide patent data (2004–2023) of EOR and Env technologies at TRL 4–5 in BRICS and non-BRICS countries were compared for nine GEOR (1489 patents) and nine WT (2292 patents) methods. China is the global leader (73%, being 98% of BRICS patents), maintaining dominance even when normalized by GDP. Non-BRICS patents are from the USA (41%), Japan (31%), and the Republic of Korea (14%). BRICS countries surpassed non-BRICS in 2014, with a 5.9% growth rate, −13.2% for non-BRICS, with all methods growing, whereas in non-BRICS, only water flocculation treatment is growing. BRICS technological specialization is expanding more rapidly than that of non-BRICS countries. BRICS countries exhibit higher relative technological advantages and distance in surfactants, polymers, macromolecules, sludge treatment, and multistage water treatment devices. Non-BRICS countries are more competitive in in situ combustion, water alternating gas (WAG), re-pressurization, vacuum techniques, flotation, water–oil separation, sorption, or precipitation, flocculation, and oil-contaminated water. China is the primary BRICS leader and is positioned to define BRICS policies regarding technology transfer and innovation. Technological partnerships between BRICS and non-BRICS countries are strongly recommended to enhance synergy and achieve sustainable and efficient production more rapidly. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

20 pages, 9044 KiB  
Article
Simulation of Low-Salinity Water-Alternating Impure CO2 Process for Enhanced Oil Recovery and CO2 Sequestration in Carbonate Reservoirs
by Kwangduk Seo, Bomi Kim, Qingquan Liu and Kun Sang Lee
Energies 2025, 18(5), 1297; https://doi.org/10.3390/en18051297 - 6 Mar 2025
Viewed by 797
Abstract
This study investigates the combined effects of impurities in CO2 stream, geochemistry, water salinity, and wettability alteration on oil recovery and CO2 storage in carbonate reservoirs and optimizes injection strategy to maximize oil recovery and CO2 storage ratio. Specifically, it [...] Read more.
This study investigates the combined effects of impurities in CO2 stream, geochemistry, water salinity, and wettability alteration on oil recovery and CO2 storage in carbonate reservoirs and optimizes injection strategy to maximize oil recovery and CO2 storage ratio. Specifically, it compares the performance of pure CO2 water-alternating gas (WAG), impure CO2-WAG, pure CO2 low-salinity water-alternating gas (LSWAG), and impure CO2-LSWAG injection methods from perspectives of enhanced oil recovery (EOR) and CO2 sequestration. CO2-enhanced oil recovery (CO2-EOR) is an effective way to extract residual oil. CO2 injection and WAG methods can improve displacement efficiency and sweep efficiency. However, CO2-EOR has less impact on the carbonate reservoir because of the complex pore structure and oil-wet surface. Low-salinity water injection (LSWI) and CO2 injection can affect the complex pore structure by geochemical reaction and wettability by a relative permeability curve shift from oil-wet to water-wet. The results from extensive compositional simulations show that CO2 injection into carbonate reservoirs increases the recovery factor compared with waterflooding, with pure CO2-WAG injection yielding higher recovery factor than impure CO2-WAG injection. Impurities in CO2 gas decrease the efficiency of CO2-EOR, reducing oil viscosity less and increasing interfacial tension (IFT) compared to pure CO2 injection, leading to gas channeling and reduced sweep efficiency. This results in lower oil recovery and lower storage efficiency compared to pure CO2. CO2-LSWAG results in the highest oil-recovery factor as surface changes. Geochemical reactions during CO2 injection also increase CO2 storage capacity and alter trapping mechanisms. This study demonstrates that the use of impure CO2-LSWAG injection leads to improved oil recovery and CO2 storage compared to pure CO2-WAG injection. It reveals that wettability alteration plays a more significant role for oil recovery and geochemical reaction plays crucial role in CO2 storage than CO2 purity. According to optimization, the greater the injection of gas and water, the higher the oil recovery, while the less gas and water injected, the higher the storage ratio, leading to improved storage efficiency. This research provides valuable insights into parameters and injection scenarios affecting enhanced oil recovery and CO2 storage in carbonate reservoirs. Full article
(This article belongs to the Special Issue Oil Recovery and Simulation in Reservoir Engineering)
Show Figures

Figure 1

34 pages, 8695 KiB  
Article
Cost-Effective Strategies for Assessing CO2 Water-Alternating-Gas (WAG) Injection for Enhanced Oil Recovery (EOR) in a Heterogeneous Reservoir
by Abdul-Muaizz Koray, Emmanuel Appiah Kubi, Dung Bui, Jonathan Asante, Irma Primasari, Adewale Amosu, Son Nguyen, Samuel Appiah Acheampong, Anthony Hama, William Ampomah and Angus Eastwood-Anaba
Water 2025, 17(5), 651; https://doi.org/10.3390/w17050651 - 23 Feb 2025
Viewed by 1417
Abstract
This study evaluates the feasibility of CO2 Water-Alternating-Gas (WAG) injection for enhanced oil recovery (EOR) in a highly heterogeneous reservoir using cost-effective and efficient tools. The Rule of Thumb method was initially used to screen the reservoir, confirming its suitability for CO [...] Read more.
This study evaluates the feasibility of CO2 Water-Alternating-Gas (WAG) injection for enhanced oil recovery (EOR) in a highly heterogeneous reservoir using cost-effective and efficient tools. The Rule of Thumb method was initially used to screen the reservoir, confirming its suitability for CO2-WAG injection. A fluid model was constructed by comparing several component lumping methods, selecting the approach with the least deviation from experimental data to ensure accuracy. The minimum miscibility pressure (MMP), a critical parameter for CO2-EOR, was estimated using three methodologies: 1D simulation based on the slim tube test, semi-empirical analytical correlations, and fluid modeling. These techniques provided complementary insights into the reservoir’s miscibility conditions. The CO2 Prophet software version 1 was employed to history-match production data and evaluate different development strategies. The Kinder Morgan CO2 Scoping Model was used to perform production forecasting and assess the economic viability of implementing CO2-WAG. Quantitative comparisons showed that the CO2 Prophet version 1 model revealed minimal deviations from the history match results: oil production estimates differed by only 3.5%, and water production estimates differed by −4.11%. Cumulative oil recovery was projected to reach approximately 20.26 MMSTB over a 25-year production period. The results indicate that CO2-WAG injection could enhance oil recovery significantly compared to water flooding while maintaining economic feasibility. This study demonstrates the practical integration of analytical tools and inexpensive models to evaluate and optimize CO2-EOR strategies in complex reservoirs. The findings provide a systematic workflow for deploying CO2-WAG in heterogeneous reservoirs, balancing technical and economic considerations. Full article
Show Figures

Figure 1

24 pages, 7652 KiB  
Article
Economic Optimization of Enhanced Oil Recovery and Carbon Storage Using Mixed Dimethyl Ether-Impure CO2 Solvent in a Heterogeneous Reservoir
by Kwangduk Seo, Bomi Kim, Qingquan Liu and Kun Sang Lee
Energies 2025, 18(3), 718; https://doi.org/10.3390/en18030718 - 4 Feb 2025
Viewed by 864
Abstract
CO2 is the main solvent used in enhanced oil recovery (EOR). However, its low density and viscosity compared to oil cause a decrease in sweep efficiency. Recently, dimethyl ether (DME), which is more efficient than CO2, has been introduced into [...] Read more.
CO2 is the main solvent used in enhanced oil recovery (EOR). However, its low density and viscosity compared to oil cause a decrease in sweep efficiency. Recently, dimethyl ether (DME), which is more efficient than CO2, has been introduced into the process. DME improves oil recovery by reducing minimum miscible pressure (MMP), interfacial tension (IFT), and oil viscosity. Since DME is an expensive solvent, price reduction and appropriate injection scenarios are needed for economic feasibility. In this study, a compositional model was developed to inject DME with impure CO2 streams, where the CO2 was derived from one of these three purification methods: dehydration, double flash, and distillation. It was assumed that such a mixed solvent was injected into a heterogeneous reservoir where gravity override was maximized. As a result, lower oil recovery is achieved for the higher impurity content of the CO2 stream, lower DME content, and more heterogeneous reservoir. When a high-purity CO2 stream is used, the change in oil recovery according to DME content and heterogeneity of the reservoir is increased. When the lowest-purity CO2 stream is used, the net present value (NPV) is the highest. For a homogeneous reservoir, the NPV is highest for all impure CO2 streams. This optimization indicates a greater impact on revenue from reduced CO2 purchase cost than on profit loss due to reduced oil recovery by impurities. Additional benefits can be expected when considering solvent reuse and carbon capture and storage (CCS) credits. Full article
(This article belongs to the Special Issue Oil Recovery and Simulation in Reservoir Engineering)
Show Figures

Figure 1

14 pages, 3294 KiB  
Article
Research on Modifying the Development Plan to Enhanced Oil Recovery in the Middle and Late Stages of Water Flooding in Deep Clastic Rock Reservoirs
by Fuquan Song, Lu Tian and Hui Li
Processes 2025, 13(1), 177; https://doi.org/10.3390/pr13010177 - 10 Jan 2025
Viewed by 686
Abstract
The exploitation of Block L within the Tarim Basin oilfield commenced in 1989 and it has transitioned from the natural energy development stage to the current water injection development stage. Despite this, the efficacy of water flooding remains suboptimal, with the low degree [...] Read more.
The exploitation of Block L within the Tarim Basin oilfield commenced in 1989 and it has transitioned from the natural energy development stage to the current water injection development stage. Despite this, the efficacy of water flooding remains suboptimal, with the low degree of control, uneven utilization of reserves, and subpar mining outcomes. The block still contains substantial remaining oil resources, necessitating continued extraction. Notably, the primary oil produced in this block is condensate oil, which commands a high economic value. To enhance the oil recovery efficiency of the block reservoir, a development plan employing alternating and water-natural gas flooding has been proposed. The objective of this study is to evaluate the feasibility of the proposed alternating displacement scheme involving natural gas and water in this reservoir. The specific steps include PVT fitting, historical matching, residual oil evaluation, and the optimization of gas injection parameters. Results show that for this reservoir the water-natural gas flooding (WAG) is the optimal option. And this article has the application of WAG flooding simulation, simulating 15 years of operation. Compared with the original development scheme of the original well pattern, the recovery of this reservoir is increased by 12.05%, which provided a reference basis for the on-site application of WAG in this reservoir. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

28 pages, 11248 KiB  
Article
A Comparison of Water Flooding and CO2-EOR Strategies for the Optimization of Oil Recovery: A Case Study of a Highly Heterogeneous Sandstone Formation
by Dung Bui, Son Nguyen, William Ampomah, Samuel Appiah Acheampong, Anthony Hama, Adewale Amosu, Abdul-Muaizz Koray and Emmanuel Appiah Kubi
Gases 2025, 5(1), 1; https://doi.org/10.3390/gases5010001 - 24 Dec 2024
Cited by 2 | Viewed by 2385
Abstract
This study presents a comparative analysis of CO2-EOR and water flooding scenarios to optimize oil recovery in a geologically heterogeneous reservoir with a dome structure and partial aquifer support. Using production data from twelve production and three monitoring wells, a dynamic [...] Read more.
This study presents a comparative analysis of CO2-EOR and water flooding scenarios to optimize oil recovery in a geologically heterogeneous reservoir with a dome structure and partial aquifer support. Using production data from twelve production and three monitoring wells, a dynamic reservoir model was built and successfully history-matched with a 1% deviation from actual field data. Three main recovery methods were evaluated: water flooding, continuous CO2 injection, and water-alternating-gas (WAG) injection. Water flooding resulted in a four-fold increase from primary recovery, while continuous CO2 injection provided up to 40% additional oil recovery compared to water flooding. WAG injection further increased recovery by 20% following water flooding. The minimum miscibility pressure (MMP) was determined using a 1D slim-tube simulation to ensure effective CO2 performance. A sensitivity analysis on CO2/WAG ratios (1:1, 2:1, 3:1) revealed that continuous CO2 injection, particularly in high permeability zones, offered the most efficient recovery. An economic evaluation indicated that the optimal development strategy is 15 years of water flooding followed by 15 years of continuous CO2 injection, resulting in a net present value (NPV) of USD 1 billion. This study highlights the benefits of CO2-EOR for maximizing oil recovery and suggests further work on hybrid EOR techniques and carbon sequestration in depleted reservoirs. Full article
Show Figures

Figure 1

21 pages, 10455 KiB  
Article
Experimental Evaluation of a Recrosslinkable CO2-Resistant Micro-Sized Preformed Particle Gel for CO2 Sweep Efficiency Improvement in Reservoirs with Super-K Channels
by Adel Alotibi, Tao Song, Ali Al Brahim, Baojun Bai and Thomas Schuman
Gels 2024, 10(12), 765; https://doi.org/10.3390/gels10120765 - 24 Nov 2024
Viewed by 957
Abstract
A recrosslinkable CO2-resistant branched preformed particle gel (CO2-BRPPG) was developed for controlling CO2 injection conformance, particularly in reservoirs with super-permeable channels. Previous work focused on a millimeter-sized CO2-BRPPG in open fractures, but its performance in high-permeability [...] Read more.
A recrosslinkable CO2-resistant branched preformed particle gel (CO2-BRPPG) was developed for controlling CO2 injection conformance, particularly in reservoirs with super-permeable channels. Previous work focused on a millimeter-sized CO2-BRPPG in open fractures, but its performance in high-permeability channels with pore throat networks remained unexplored. This study used a sandpack model to evaluate a micro-sized CO2-BRPPG under varying conditions of salinity, gel concentration, and pH. At ambient conditions, the equilibrium swelling ratio (ESR) of the gel reached 76 times its original size. This ratio decreased with increasing salinity but remained stable at low pH values, demonstrating the gel’s resilience in acidic environments. Rheological tests revealed shear-thinning behavior, with gel strength improving as salinity increased (the storage modulus rose from 113 Pa in 1% NaCl to 145 Pa in 10% NaCl). Injectivity tests showed that lower gel concentrations reduced the injection pressure, offering flexibility in deep injection treatments. Gels with higher swelling ratios had lower injection pressures due to increased strength and reduced deformability. The gel maintained stable plugging performance during two water-alternating-CO2 cycles, but a decline was observed in the third cycle. It also demonstrated a high CO2 breakthrough pressure of 177 psi in high salinity conditions (10% NaCl). The permeability reduction for water and CO2 was influenced by gel concentration and salinity, with higher salinity increasing the permeability reduction and higher gel concentrations decreasing it. These findings underscore the effectiveness of the CO2-BRPPG in improving CO2 sweep efficiency and managing CO2 sequestration in reservoirs with high permeability. Full article
Show Figures

Figure 1

15 pages, 5818 KiB  
Article
Nano-Water-Alternating-Gas Simulation Study Considering Rock–Fluid Interaction in Heterogeneous Carbonate Reservoirs
by Seungmo Ko, Hyeri Park and Hochang Jang
Energies 2024, 17(19), 4846; https://doi.org/10.3390/en17194846 - 27 Sep 2024
Cited by 1 | Viewed by 1103
Abstract
In carbonate reservoirs, nanoparticles can adhere to rock surfaces, potentially altering the rock wettability and modifying the absolute permeability. In the water-alternating-gas (WAG) process, the introduction of nanoparticles into the water phase, termed nano-water-alternating gas (NWAG), is a promising approach for enhancing oil [...] Read more.
In carbonate reservoirs, nanoparticles can adhere to rock surfaces, potentially altering the rock wettability and modifying the absolute permeability. In the water-alternating-gas (WAG) process, the introduction of nanoparticles into the water phase, termed nano-water-alternating gas (NWAG), is a promising approach for enhancing oil recovery and CO2 storage. The NWAG process can alter rock wettability and absolute permeability through the adsorption of nanoparticles on the rock surface. This study investigated the efficiency of the NWAG method, which utilizes nanofluids in CO2-enhanced oil recovery (EOR) processes to simultaneously recover oil and store CO2 using 1D core and 3D heterogeneous reservoir models. The simulation results of the 1D core model showed that applying the NWAG method enhanced both oil recovery and CO2 storage efficiency by increasing to 3%. In a 3D reservoir model, a Dykstra–Parsons coefficient of 0.4 was selected to represent reservoir heterogeneity. Additionally, the capillary trapping of CO2 during WAG injection was computed using Larsen and Skauge’s three-phase relative permeability hysteresis model. A sensitivity analysis was performed using the NWAG ratio, slug size, injection period, injection cycle, and nanofluid concentration. The results confirmed an increase of 0.8% in oil recovery and 15.2% in CO2 storage compared with the conventional WAG process. This mechanism suggests that nanofluids can enhance oil recovery and expand CO2 storage, improving the efficiency of both the oil production rate and CO2 storage compared to conventional WAG methods. Full article
(This article belongs to the Special Issue Enhanced Oil Recovery: Numerical Simulation and Deep Machine Learning)
Show Figures

Figure 1

31 pages, 3353 KiB  
Review
Chemical-Assisted CO2 Water-Alternating-Gas Injection for Enhanced Sweep Efficiency in CO2-EOR
by Pengwei Fang, Qun Zhang, Can Zhou, Zhengming Yang, Hongwei Yu, Meng Du, Xinliang Chen, Yuxuan Song, Sicai Wang, Yuan Gao, Zhuoying Dou and Meiwen Cao
Molecules 2024, 29(16), 3978; https://doi.org/10.3390/molecules29163978 - 22 Aug 2024
Cited by 13 | Viewed by 4316
Abstract
CO2-enhanced oil recovery (CO2-EOR) is a crucial method for CO2 utilization and sequestration, representing an important zero-carbon or even negative-carbon emission reduction technology. However, the low viscosity of CO2 and reservoir heterogeneity often result in early gas [...] Read more.
CO2-enhanced oil recovery (CO2-EOR) is a crucial method for CO2 utilization and sequestration, representing an important zero-carbon or even negative-carbon emission reduction technology. However, the low viscosity of CO2 and reservoir heterogeneity often result in early gas breakthrough, significantly reducing CO2 utilization and sequestration efficiency. A water-alternating-gas (WAG) injection is a technique for mitigating gas breakthrough and viscous fingering in CO2-EOR. However, it encounters challenges related to insufficient mobility control in highly heterogeneous and fractured reservoirs, resulting in gas channeling and low sweep efficiency. Despite the extensive application and research of a WAG injection in oil and gas reservoirs, the most recent comprehensive review dates back to 2018, which focuses on the mechanisms of EOR using conventional WAG. Herein, we give an updated and comprehensive review to incorporate the latest advancements in CO2-WAG flooding techniques for enhanced sweep efficiency, which includes the theory, applications, fluid displacement mechanisms, and control strategies of a CO2-WAG injection. It addresses common challenges, operational issues, and remedial measures in WAG projects by covering studies from experiments, simulations, and pore-scale modeling. This review aims to provide guidance and serve as a reference for the application and research advancement of CO2-EOR techniques in heterogeneous and fractured reservoirs. Full article
(This article belongs to the Special Issue Advanced Chemical Approaches and Technologies in Water Treatment)
Show Figures

Figure 1

27 pages, 12674 KiB  
Article
Lessons Learned from the Process of Water Injection Management in Impactful Onshore and Offshore Carbonate Reservoirs
by Xuejia Du and Ganesh C. Thakur
Energies 2024, 17(16), 3951; https://doi.org/10.3390/en17163951 - 9 Aug 2024
Cited by 1 | Viewed by 2324
Abstract
This paper presents a comprehensive analysis of water injection management practices for complex and impactful onshore and offshore carbonate reservoirs. It delves into the fundamental aspects of waterflooding design, surveillance techniques, and monitoring methods tailored for the unique challenges posed by carbonate formations. [...] Read more.
This paper presents a comprehensive analysis of water injection management practices for complex and impactful onshore and offshore carbonate reservoirs. It delves into the fundamental aspects of waterflooding design, surveillance techniques, and monitoring methods tailored for the unique challenges posed by carbonate formations. Two case studies from the Permian Basin in Texas and two from Lula Field offshore Brazil and Agbami Field offshore Nigeria are examined considering scientific principles into practice to provide insights into best practices, lessons learned, and strategies to maximize the benefits derived from real noteworthy waterflood operations. The paper underscores the significance of rigorous reservoir characterization, including understanding reservoir architecture, heterogeneities, fracture networks, fluid communication pathways, and rock–fluid interactions. It emphasizes the crucial role of integrated multidisciplinary teams involving geologists, reservoir engineers, production engineers, and field operators in ensuring successful waterflood design, implementation, and optimization. Through the case studies, the paper highlights the importance of designing pattern configurations, well placements, and injection/production strategies to the specific reservoir characteristics, continually optimizing these elements based on surveillance data. It also stresses the necessity of comprehensive data acquisition, advanced analytics, numerical simulations, and frequent model updates for effective reservoir management and decision-making. The paper is impactful in terms of the lessons learned from the actual case studies, and how can these be implemented in actual field projects. Different case studies documented in the paper provide the challenges facing them and how different authors have addressed their problems in unique ways. The paper distills the information and important findings from a variety of case studies and provides succinct information that is of immense value as a reference. Important findings of these case studies are connected using creativity and are innovative as they introduce unique techniques and establish successful ideas to create new value in terms of maximizing oil recovery. Most importantly, this paper explores the application of innovative technologies, such as intelligent completions, 4D seismic monitoring, and water–alternating gas (WAG) injection, which can significantly improve waterflood performance in complex carbonate reservoirs. In summary, the paper provides a thorough understanding of the factors contributing to the success and failure of waterfloods in carbonate reservoirs through case studies based on factually and technically sound operations. It documents guidelines for optimizing waterflood performance and reducing or eliminating the potential for failures, reinforcing positive results in these challenging yet invaluable hydrocarbon resources. Full article
(This article belongs to the Special Issue Recent Advances in Oil and Gas Recovery and Production Optimisation)
Show Figures

Figure 1

15 pages, 3001 KiB  
Article
Carbon Dioxide Oil Repulsion in the Sandstone Reservoirs of Lunnan Oilfield, Tarim Basin
by Zangyuan Wu, Qihong Feng, Liming Lian, Xiangjuan Meng, Daiyu Zhou, Min Luo and Hanlie Cheng
Energies 2024, 17(14), 3503; https://doi.org/10.3390/en17143503 - 17 Jul 2024
Cited by 3 | Viewed by 1079
Abstract
The Lunnan oilfield, nestled within the Tarim Basin, represents a prototypical extra-low-permeability sandstone reservoir, distinguished by high-quality crude oil characterised by a low viscosity, density, and gel content. The effective exploitation of such reservoirs hinges on the implementation of carbon dioxide (CO2 [...] Read more.
The Lunnan oilfield, nestled within the Tarim Basin, represents a prototypical extra-low-permeability sandstone reservoir, distinguished by high-quality crude oil characterised by a low viscosity, density, and gel content. The effective exploitation of such reservoirs hinges on the implementation of carbon dioxide (CO2) flooding techniques. This study, focusing on the sandstone reservoirs of Lunnan, delves into the mechanisms of CO2-assisted oil displacement under diverse operational parameters: injection pressures, CO2 concentration levels, and variations in crude oil properties. It integrates analyses on the high-pressure, high-temperature behaviour of CO2, the dynamics of CO2 injection and expansion, prolonged core flood characteristics, and the governing principles of minimum miscible pressure transitions. The findings reveal a nuanced interplay between variables: CO2’s density and viscosity initially surge with escalating injection pressures before stabilising, whereas they experience a gradual decline with increasing temperature. Enhanced CO2 injection correlates with a heightened expansion coefficient, yet the density increment of degassed crude oil remains marginal. Notably, CO2 viscosity undergoes a substantial reduction under stratigraphic pressures. The sequential application of water alternating gas (WAG) followed by continuous CO2 flooding attains oil recovery efficiency surpassing 90%, emphasising the superiority of uninterrupted CO2 injection over processes lacking profiling. The presence of non-miscible hydrocarbon gases in segmented plug drives impedes the oil displacement efficiency, underscoring the importance of CO2 purity in the displacement medium. Furthermore, a marked trend emerges in crude oil recovery rates as the replacement pressure escalates, exhibiting an initial rapid enhancement succeeded by a gradual rise. Collectively, these insights offer a robust theoretical foundation endorsing the deployment of CO2 flooding strategies for enhancing oil recovery from sandstone reservoirs, thereby contributing valuable data to the advancement of enhanced oil recovery (EOR) technologies in challenging, low-permeability environments. Full article
Show Figures

Figure 1

20 pages, 10570 KiB  
Article
Monte Carlo Simulation of the CO2 Flooding Efficiency at a Core Scale for Different Oil Compositions
by Anna Andreeva and Andrey Afanasyev
Energies 2024, 17(10), 2259; https://doi.org/10.3390/en17102259 - 8 May 2024
Cited by 1 | Viewed by 1545
Abstract
The evaluation of water-alternating-gas (WAG) efficiency and profitability is complicated by a large number of reservoir, operating, and economic parameters and constraints. This study aims at understanding the influence of the oil composition on different WAG injections. By employing compositional reservoir modeling and [...] Read more.
The evaluation of water-alternating-gas (WAG) efficiency and profitability is complicated by a large number of reservoir, operating, and economic parameters and constraints. This study aims at understanding the influence of the oil composition on different WAG injections. By employing compositional reservoir modeling and the Monte Carlo method to characterize the diversity of oils occurring in nature, we simulate the microscopic displacement efficiency of CO2 flooding when it is applied to both light- and heavy-oil reservoirs. We find that the economic performance of WAG in both miscible and immiscible scenarios is mainly characterized by the dimensionless injection rate and the oil density at surface conditions. Neither the bubble point pressure nor the minimum miscibility pressure can be used for the quantification of the optimal WAG parameters. We present our estimates of the best strategies for the miscible and immiscible injections and verify some of our previous results for randomly sampled oils. In particular, we demonstrate that CO2 flooding is better to apply at higher-dimensionless injection rates. We show that the injection of CO2 organized at a light-oil reservoir results in a higher profitability of WAG, although this comes at the cost of lower carbon storage efficiency. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

21 pages, 7500 KiB  
Article
Numerical Investigation on Alkaline-Surfactant-Polymer Alternating CO2 Flooding
by Weirong Li, Xin Wei, Zhengbo Wang, Weidong Liu, Bing Ding, Zhenzhen Dong, Xu Pan, Keze Lin and Hongliang Yi
Processes 2024, 12(5), 916; https://doi.org/10.3390/pr12050916 - 29 Apr 2024
Cited by 1 | Viewed by 1979
Abstract
For over four decades, carbon dioxide (CO2) has been instrumental in enhancing oil extraction through advanced recovery techniques. One such method, water alternating gas (WAG) injection, while effective, grapples with limitations like gas channeling and gravity segregation. To tackle the aforementioned [...] Read more.
For over four decades, carbon dioxide (CO2) has been instrumental in enhancing oil extraction through advanced recovery techniques. One such method, water alternating gas (WAG) injection, while effective, grapples with limitations like gas channeling and gravity segregation. To tackle the aforementioned issues, this paper proposes an upgrade coupling method named alkaline-surfactant-polymer alternating gas (ASPAG). ASP flooding and CO2 are injected alternately into the reservoir to enhance the recovery of the WAG process. The uniqueness of this method lies in the fact that polymers could help profile modification, CO2 would miscible mix with oil, and alkaline surfactant would reduce oil–water interfacial tension (IFT). To analyze the feasibility of ASPAG, a couples model considering both gas flooding and ASP flooding processes is established by using the CMG-STARS (Version 2021) to study the performance of ASPAG and compare the recovery among ASPAG, WAG, and ASP flooding. Our research delved into the ASPAG’s adaptability across reservoirs varying in average permeability, interlayer heterogeneity, formation rhythmicity, and fluid properties. Key findings include that ASPAG surpasses the conventional WAG in sweep and displacement efficiency, elevating oil recovery by 12–17%, and in comparison to ASP, ASPAG bolsters displacement efficiency, leading to a 9–11% increase in oil recovery. The primary flooding mechanism of ASPAG stems from the ASP slug’s ability to diminish the interfacial tension, enhancing the oil and water mobility ratio, which is particularly efficient in medium-high permeability layers. Through sensitivity analysis, ASPAG is best suited for mid-high-permeability reservoirs characterized by low crude oil viscosity and a composite reverse sedimentary rhythm. This study offers invaluable insights into the underlying mechanisms and critical parameters that influence the alkaline-surfactant-polymer alternating gas method’s success for enhanced oil recovery. Furthermore, it unveils an innovative strategy to boost oil recovery in medium-to-high-permeability reservoirs. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

27 pages, 2009 KiB  
Review
A Comprehensive Summary of the Application of Machine Learning Techniques for CO2-Enhanced Oil Recovery Projects
by Xuejia Du, Sameer Salasakar and Ganesh Thakur
Mach. Learn. Knowl. Extr. 2024, 6(2), 917-943; https://doi.org/10.3390/make6020043 - 29 Apr 2024
Cited by 11 | Viewed by 4654
Abstract
This paper focuses on the current application of machine learning (ML) in enhanced oil recovery (EOR) through CO2 injection, which exhibits promising economic and environmental benefits for climate-change mitigation strategies. Our comprehensive review explores the diverse use cases of ML techniques in [...] Read more.
This paper focuses on the current application of machine learning (ML) in enhanced oil recovery (EOR) through CO2 injection, which exhibits promising economic and environmental benefits for climate-change mitigation strategies. Our comprehensive review explores the diverse use cases of ML techniques in CO2-EOR, including aspects such as minimum miscible pressure (MMP) prediction, well location optimization, oil production and recovery factor prediction, multi-objective optimization, Pressure–Volume–Temperature (PVT) property estimation, Water Alternating Gas (WAG) analysis, and CO2-foam EOR, from 101 reviewed papers. We catalog relative information, including the input parameters, objectives, data sources, train/test/validate information, results, evaluation, and rating score for each area based on criteria such as data quality, ML-building process, and the analysis of results. We also briefly summarized the benefits and limitations of ML methods in petroleum industry applications. Our detailed and extensive study could serve as an invaluable reference for employing ML techniques in the petroleum industry. Based on the review, we found that ML techniques offer great potential in solving problems in the majority of CO2-EOR areas involving prediction and regression. With the generation of massive amounts of data in the everyday oil and gas industry, machine learning techniques can provide efficient and reliable preliminary results for the industry. Full article
Show Figures

Figure 1

Back to TopTop