Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (583)

Search Parameters:
Keywords = water supply security

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4207 KiB  
Article
Impact Analysis of Inter-Basin Water Transfer on Water Shortage Risk in the Baiyangdian Area
by Yuhang Shi, Lixin Zhang and Jinping Zhang
Water 2025, 17(15), 2311; https://doi.org/10.3390/w17152311 - 4 Aug 2025
Viewed by 184
Abstract
This study quantitatively assesses the risk of water shortage (WSR) in the Baiyangdian area due to the Inter-Basin Water Transfer (IBWT) project, focusing on the impact of water transfer on regional water security. The actual evapotranspiration (ETa) is calculated, and the correlation simulation [...] Read more.
This study quantitatively assesses the risk of water shortage (WSR) in the Baiyangdian area due to the Inter-Basin Water Transfer (IBWT) project, focusing on the impact of water transfer on regional water security. The actual evapotranspiration (ETa) is calculated, and the correlation simulation using Archimedes’ Copula function is implemented in Python 3.7.1, with optimization using the sum of squares of deviations (OLS) and the AIC criterion. The joint distribution model between ETa and three water supply scenarios is constructed. Key findings include (1) ETa increased by 27.3% after water transfer, far exceeding the slight increase in water supply before the transfer; (2) various Archimedean Copulas effectively capture the dependence and joint probability distribution between water supply and ETa; (3) water shortage risk increased after water transfer, with rainfall and upstream water unable to alleviate the problem in Baiyangdian; and (4) cross-basin water transfer reduced risk, with a reduction of 8.90% in the total probability of three key water resource scheduling combinations. This study establishes a Copula-based framework for water shortage risk assessment, providing a scientific basis for water allocation strategies in ecologically sensitive areas affected by human activities. Full article
Show Figures

Figure 1

28 pages, 2191 KiB  
Article
An Evaluation of Food Security and Grain Production Trends in the Arid Region of Northwest China (2000–2035)
by Yifeng Hao and Yaodong Zhou
Agriculture 2025, 15(15), 1672; https://doi.org/10.3390/agriculture15151672 - 2 Aug 2025
Viewed by 244
Abstract
Food security is crucial for social stability and economic development. Ensuring food security in the arid region of Northwest China presents unique challenges due to limited water and soil resources. This study addresses these challenges by integrating a comprehensive water and soil resource [...] Read more.
Food security is crucial for social stability and economic development. Ensuring food security in the arid region of Northwest China presents unique challenges due to limited water and soil resources. This study addresses these challenges by integrating a comprehensive water and soil resource matching assessment with grain production forecasting. Based on data from 2000 to 2020, this research projects the food security status to 2035 using the GM(1,1) model, incorporating a comprehensive index of soil and water resource matching and regression analysis to inform production forecasts. Key assumptions include continued historical trends in population growth, urbanization, and dietary shifts towards an increased animal protein consumption. The findings revealed a consistent upward trend in grain production from 2000 to 2020, with an average annual growth rate of 3.5%. Corn and wheat emerged as the dominant grain crops. Certain provinces demonstrated comparative advantages for specific crops like rice and wheat. The most significant finding is that despite the projected growth in the total grain output by 2035 compared to 2020, the regional grain self-sufficiency rate is projected to range from 79.6% to 84.1%, falling below critical food security benchmarks set by the FAO and China. This projected shortfall carries significant implications, underscoring a serious challenge to regional food security and highlighting the region’s increasing vulnerability to external food supply fluctuations. The findings strongly signal that current trends are insufficient and necessitate urgent and proactive policy interventions. To address this, practical policy recommendations include promoting water-saving technologies, enhancing regional cooperation, and strategically utilizing the international grain trade to ensure regional food security. Full article
(This article belongs to the Topic Food Security and Healthy Nutrition)
Show Figures

Figure 1

22 pages, 3267 KiB  
Article
Identifying Deformation Drivers in Dam Segments Using Combined X- and C-Band PS Time Series
by Jonas Ziemer, Jannik Jänichen, Gideon Stein, Natascha Liedel, Carolin Wicker, Katja Last, Joachim Denzler, Christiane Schmullius, Maha Shadaydeh and Clémence Dubois
Remote Sens. 2025, 17(15), 2629; https://doi.org/10.3390/rs17152629 - 29 Jul 2025
Viewed by 262
Abstract
Dams play a vital role in securing water and electricity supplies for households and industry, and they contribute significantly to flood protection. Regular monitoring of dam deformations holds fundamental socio-economic and ecological importance. Traditionally, this has relied on time-consuming in situ techniques that [...] Read more.
Dams play a vital role in securing water and electricity supplies for households and industry, and they contribute significantly to flood protection. Regular monitoring of dam deformations holds fundamental socio-economic and ecological importance. Traditionally, this has relied on time-consuming in situ techniques that offer either high spatial or temporal resolution. Persistent Scatterer Interferometry (PSI) addresses these limitations, enabling high-resolution monitoring in both domains. Sensors such as TerraSAR-X (TSX) and Sentinel-1 (S-1) have proven effective for deformation analysis with millimeter accuracy. Combining TSX and S-1 datasets enhances monitoring capabilities by leveraging the high spatial resolution of TSX with the broad coverage of S-1. This improves monitoring by increasing PS point density, reducing revisit intervals, and facilitating the detection of environmental deformation drivers. This study aims to investigate two objectives: first, we evaluate the benefits of a spatially and temporally densified PS time series derived from TSX and S-1 data for detecting radial deformations in individual dam segments. To support this, we developed the TSX2StaMPS toolbox, integrated into the updated snap2stamps workflow for generating single-master interferogram stacks using TSX data. Second, we identify deformation drivers using water level and temperature as exogenous variables. The five-year study period (2017–2022) was conducted on a gravity dam in North Rhine-Westphalia, Germany, which was divided into logically connected segments. The results were compared to in situ data obtained from pendulum measurements. Linear models demonstrated a fair agreement between the combined time series and the pendulum data (R2 = 0.5; MAE = 2.3 mm). Temperature was identified as the primary long-term driver of periodic deformations of the gravity dam. Following the filling of the reservoir, the variance in the PS data increased from 0.9 mm to 3.9 mm in RMSE, suggesting that water level changes are more responsible for short-term variations in the SAR signal. Upon full impoundment, the mean deformation amplitude decreased by approximately 1.7 mm toward the downstream side of the dam, which was attributed to the higher water pressure. The last five meters of water level rise resulted in higher feature importance due to interaction effects with temperature. The study concludes that integrating multiple PS datasets for dam monitoring is beneficial particularly for dams where few PS points can be identified using one sensor or where pendulum systems are not installed. Identifying the drivers of deformation is feasible and can be incorporated into existing monitoring frameworks. Full article
(This article belongs to the Special Issue Dam Stability Monitoring with Satellite Geodesy II)
Show Figures

Figure 1

19 pages, 4641 KiB  
Article
The Hydrochemical Dynamics and Water Quality Evolution of the Rizhao Reservoir and Its Tributary Systems
by Qiyuan Feng, Youcheng Lv, Jianguo Feng, Weidong Lei, Yuqi Zhang, Mingyu Gao, Linghui Zhang, Baoqing Zhao, Dongliang Zhao and Kexin Lou
Water 2025, 17(15), 2224; https://doi.org/10.3390/w17152224 - 25 Jul 2025
Viewed by 293
Abstract
Rizhao Reservoir, Shandong Province, China, as a key regional water supply hub, provides water for domestic, industrial, and agricultural uses in and around Rizhao City by intercepting runoff, which plays a central role in guaranteeing water supply security and supporting regional development. This [...] Read more.
Rizhao Reservoir, Shandong Province, China, as a key regional water supply hub, provides water for domestic, industrial, and agricultural uses in and around Rizhao City by intercepting runoff, which plays a central role in guaranteeing water supply security and supporting regional development. This study systematically collected 66 surface water samples to elucidate the hydrochemical characteristics within the reservoir area, identify the principal influencing factors, and clarify the sources of dissolved ions, aiming to enhance the understanding of the prevailing water quality conditions. A systematic analysis of hydrochemical facies, solute provenance, and governing processes in the study area’s surface water was conducted, employing an integrated mathematical and statistical approach, comprising Piper trilinear diagrams, correlation analysis, and ionic ratios. Meanwhile, the entropy weight-based water quality index (EWQI) and irrigation water quality evaluation methods were employed to assess the surface water quality in the study area quantitatively. Analytical results demonstrate that the surface water system within the study area is classified as freshwater with circumneutral to slightly alkaline properties, predominantly characterized by Ca-HCO3 and Ca-Mg-SO4-Cl hydrochemical facies. The evolution of solute composition is principally governed by rock–water interactions, whereas anthropogenic influences and cation exchange processes exert comparatively minor control. Dissolved ions mostly originate from silicate rock weathering, carbonate rock dissolution, and sulfate mineral dissolution processes. Potability assessment via the entropy-weighted water quality index (EWQI) classifies surface waters in the study area as Grade I (Excellent), indicating compliance with drinking water criteria under defined boundary conditions. Irrigation suitability analysis confirms minimal secondary soil salinization risk during controlled agricultural application, with all samples meeting standards for direct irrigation use. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

20 pages, 2336 KiB  
Article
Microbial DNA-Based Monitoring of Underground Crude Oil Storage Bases Using Water-Sealed Rock-Cavern Tanks
by Ayae Goto, Shunichi Watanabe, Katsumasa Uruma, Yuki Momoi, Takuji Oomukai and Hajime Kobayashi
Water 2025, 17(15), 2197; https://doi.org/10.3390/w17152197 - 23 Jul 2025
Viewed by 284
Abstract
Strategic petroleum reserves are critical for energy security. In Japan, 0.5 million kiloliters of crude oil (12% of the state-owned reserves) is stored using underground rock-cavern tanks, which comprise unlined horizontal tunnels bored into bedrock. Crude oil is held within the tank by [...] Read more.
Strategic petroleum reserves are critical for energy security. In Japan, 0.5 million kiloliters of crude oil (12% of the state-owned reserves) is stored using underground rock-cavern tanks, which comprise unlined horizontal tunnels bored into bedrock. Crude oil is held within the tank by water inside the tank, the pressure of which is kept higher than that of the crude oil by natural groundwater and irrigation water. This study applied microbial DNA-based monitoring to assess the water environments in and around national petroleum-stockpiling bases (the Kuji, Kikuma, and Kushikino bases) using the rock-cavern tanks. Forty-five water samples were collected from the rock-cavern tanks, water-supply tunnels, and observation wells. Principal-component analysis and hierarchical clustering indicated that microbial profiles of the water samples reflect the local environments of their origins. Particularly, the microbial profiles of water inside the rock-cavern tanks were distinct from other samples, revealing biological conditions and hence environmental characteristics within the tanks. Moreover, the clustering analysis indicated distinct features of water samples that have not been detected by other monitoring methods. Thus, microbial DNA-based monitoring provides valuable information on the in situ environments of rock-cavern tanks and can serve as an extremely sensitive measurement to monitor the underground oil storage. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

34 pages, 2259 KiB  
Review
Unveiling the Molecular Mechanism of Azospirillum in Plant Growth Promotion
by Bikash Ranjan Giri, Sourav Chattaraj, Subhashree Rath, Mousumi Madhusmita Pattnaik, Debasis Mitra and Hrudayanath Thatoi
Bacteria 2025, 4(3), 36; https://doi.org/10.3390/bacteria4030036 - 18 Jul 2025
Viewed by 392
Abstract
Azospirillum is a well-studied genus of plant growth-promoting rhizobacteria (PGPR) and one of the most extensively researched diazotrophs. This genus can colonize rhizosphere soil and enhance plant growth and productivity by supplying essential nutrients to the host. Azospirillum–plant interactions involve multiple mechanisms, [...] Read more.
Azospirillum is a well-studied genus of plant growth-promoting rhizobacteria (PGPR) and one of the most extensively researched diazotrophs. This genus can colonize rhizosphere soil and enhance plant growth and productivity by supplying essential nutrients to the host. Azospirillum–plant interactions involve multiple mechanisms, including nitrogen fixation, the production of phytohormones (auxins, cytokinins, indole acetic acid (IAA), and gibberellins), plant growth regulators, siderophore production, phosphate solubilization, and the synthesis of various bioactive molecules, such as flavonoids, hydrogen cyanide (HCN), and catalase. Thus, Azospirillum is involved in plant growth and development. The genus Azospirillum also enhances membrane activity by modifying the composition of membrane phospholipids and fatty acids, thereby ensuring membrane fluidity under water deficiency. It promotes the development of adventitious root systems, increases mineral and water uptake, mitigates environmental stressors (both biotic and abiotic), and exhibits antipathogenic activity. Biological nitrogen fixation (BNF) is the primary mechanism of Azospirillum, which is governed by structural nif genes present in all diazotrophic species. Globally, Azospirillum spp. are widely used as inoculants for commercial crop production. It is considered a non-pathogenic bacterium that can be utilized as a biofertilizer for a variety of crops, particularly cereals and grasses such as rice and wheat, which are economically significant for agriculture. Furthermore, Azospirillum spp. influence gene expression pathways in plants, enhancing their resistance to biotic and abiotic stressors. Advances in genomics and transcriptomics have provided new insights into plant-microbe interactions. This review explored the molecular mechanisms underlying the role of Azospirillum spp. in plant growth. Additionally, BNF phytohormone synthesis, root architecture modification for nutrient uptake and stress tolerance, and immobilization for enhanced crop production are also important. A deeper understanding of the molecular basis of Azospirillum in biofertilizer and biostimulant development, as well as genetically engineered and immobilized strains for improved phosphate solubilization and nitrogen fixation, will contribute to sustainable agricultural practices and help to meet global food security demands. Full article
Show Figures

Figure 1

22 pages, 13221 KiB  
Article
Multi-Scenario Simulation of Ecosystem Service Value in Xiangjiang River Basin, China, Based on the PLUS Model
by Lisha Tang, Jingzhi Li, Chenmei Xie and Miao Wang
Land 2025, 14(7), 1482; https://doi.org/10.3390/land14071482 - 17 Jul 2025
Viewed by 278
Abstract
With rapid socio-economic development, excessive anthropogenic consumption and the exploitation of natural resources have impaired the self-healing, supply, and carrying capacities of ecosystems. The assessment and prediction of ecosystem service values (ESVs) are crucial for the coordinated development of ecology and economy. This [...] Read more.
With rapid socio-economic development, excessive anthropogenic consumption and the exploitation of natural resources have impaired the self-healing, supply, and carrying capacities of ecosystems. The assessment and prediction of ecosystem service values (ESVs) are crucial for the coordinated development of ecology and economy. This research examines the Xiangjiang River Basin and combines land use data from 1995 to 2020, Landsat images, meteorological data, and socio-economic data. These data are incorporated into the PLUS model to simulate land use patterns in 2035 under the following five scenarios: natural development, economic development, farmland protection, ecological protection, and coordinated development. Additionally, this research analyzes the dynamics of land use and changes in ESVs in the Xiangjiang River Basin. The results show that between 1995 and 2020 in the Xiangjiang River Basin, urbanization accelerated, human activities intensified, and the construction land area expanded significantly, while the areas of forest, farmland, and grassland decreased continuously. Based on multi-scenario simulations, the ESV showed the largest and smallest declines under economic development and ecological protection scenarios, respectively. This results from the economic development scenario inducing a rapid expansion in construction land. In contrast, construction land expansion was restricted under the ecological protection scenario, because the ecological functions of forests and water bodies were prioritized. This research proposes land use strategies to coordinate ecological protection and economic development to provide a basis for sustainable development in the Xiangjiang River Basin and constructing a national ecological security barrier, as well as offer Chinese experience and local cases for global ecological environment governance. Full article
Show Figures

Figure 1

22 pages, 828 KiB  
Review
Agricultural Irrigation Using Treated Wastewater: Challenges and Opportunities
by Christian C. Obijianya, Elif Yakamercan, Mahmoud Karimi, Sridevi Veluru, Ivan Simko, Sulaymon Eshkabilov and Halis Simsek
Water 2025, 17(14), 2083; https://doi.org/10.3390/w17142083 - 11 Jul 2025
Viewed by 607
Abstract
Reusing and recycling treated wastewater is a sustainable approach to meet the growing demand for clean water, ensuring its availability for both current and future generations. Wastewater can be treated in such advanced ways that it can be used for industrial operations, recharging [...] Read more.
Reusing and recycling treated wastewater is a sustainable approach to meet the growing demand for clean water, ensuring its availability for both current and future generations. Wastewater can be treated in such advanced ways that it can be used for industrial operations, recharging groundwater, irrigation of fields, or even manufacturing drinkable water. This strategy meets growing water demand in water-scarce areas while protecting natural ecosystems. Treated wastewater is both a resource and a challenge. Though it may be nutrient-rich and can increase agricultural output while showing resource reuse and environmental conservation, high treatment costs, public acceptance, and contamination hazards limit its use. Proper treatment can reduce these hazards, safeguarding human health and the environment while enhancing its benefits, including a stable water supply, nutrient-rich irrigation, higher crop yields, economic development, and community resilience. On the one hand, inadequate treatment may lead to soil salinization, environmental degradation, and hazardous foods. Examining the dual benefits and risks of using treated wastewater for agricultural irrigation, this paper investigates the complexities of its use as a valuable resource and as a potential hazard. Modern treatment technologies are needed to address these difficulties and to ensure safe and sustainable use. If properly handled, treated wastewater reuse has enormous potential for reducing water scarcity and expanding sustainable agriculture as well as global food security. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Graphical abstract

26 pages, 5129 KiB  
Article
HEC-RAS-Based Evaluation of Water Supply Reliability in the Dry Season of a Cold-Region Reservoir in Mudanjiang, Northeast China
by Peng-Fei Lu, Chang-Lei Dai, Yuan-Ming Wang, Xiao Yang and Xin-Yu Wang
Sustainability 2025, 17(14), 6302; https://doi.org/10.3390/su17146302 - 9 Jul 2025
Viewed by 339
Abstract
Under the influence of global climate change, water conservancy projects located in the high-latitude cold regions of the world are facing severe challenges. This study addresses the contradiction between water supply stability and ecological flow during the dry season in cold regions. Taking [...] Read more.
Under the influence of global climate change, water conservancy projects located in the high-latitude cold regions of the world are facing severe challenges. This study addresses the contradiction between water supply stability and ecological flow during the dry season in cold regions. Taking Linhai Reservoir as the core, it integrates the HEC-RAS hydrodynamic model with multi-source data such as basin topography, hydro-meteorological data, and water conservancy project parameters to construct a multi-scenario water supply scheduling model during the dry season. The aim is to provide scientific recommendations for different reservoir operation strategies in response to varying frequencies of upstream inflow, based on simulations conducted after the reservoir’s completion. Taking into account winter runoff reduction characteristics and engineering parameters, we simulated the relationships between water level and flow, ecological flow requirements, and urban water shortages. The results indicate that in both flood and normal years, dynamic coordination of storage and discharge can achieve a daily water supply of 120,000 cubic meters, with 100% compliance for the ecological flow rate. For mild and moderate drought years, additional water diversion becomes necessary to achieve 93.5% and 89% supply reliability, respectively. During severe and extreme droughts, significantly reduced reservoir inflows lower ecological compliance rates, necessitating emergency measures, such as utilizing dead storage capacity and exploring alternative water sources. The study proposes operational strategies tailored to different drought intensities: initiating storage adjustments in September for mild droughts and implementing peak-shifting measures by mid-October for extreme droughts. These approaches enhance storage efficiency and mitigate ice blockage risks. This research supports the water supply security and river ecological health of urban and rural areas in Mudanjiang City and Hailin City and provides a certain scientific reference basis for the multi-objective coordinated operation of reservoirs in the same type of high-latitude cold regions. Full article
Show Figures

Figure 1

21 pages, 1512 KiB  
Article
Assessment of Multi-Depth Water Quality Dynamics in an Artificial Lake: A Case Study of the Ribnica Reservoir in Serbia
by Dragana Milijašević Joksimović, Dejana Jakovljević and Dejan Doljak
Appl. Sci. 2025, 15(13), 7425; https://doi.org/10.3390/app15137425 - 2 Jul 2025
Viewed by 377
Abstract
High water quality in reservoirs used for drinking water supply and located within protected areas is of crucial importance for sustainable water-resource management. This study aims to evaluate the multi-depth water quality dynamics of the Ribnica Reservoir in western Serbia, combining two standardized [...] Read more.
High water quality in reservoirs used for drinking water supply and located within protected areas is of crucial importance for sustainable water-resource management. This study aims to evaluate the multi-depth water quality dynamics of the Ribnica Reservoir in western Serbia, combining two standardized assessment tools: the Serbian Water Quality Index (SWQI) and the Canadian Water Quality Index (CWQI). Data collected at various depths during 2021 and 2022 were analyzed to assess physico-chemical parameters and their impact on water quality, while the absence of microbiological data was noted as a limitation affecting the comprehensiveness of the assessment. The SWQI results indicated a general improvement in water quality over time, with values ranging from medium (82) to excellent (95) in 2021 and increasing from good (89) to excellent (98) in 2022. In contrast, the CWQI revealed specific risks, notably elevated concentrations of aluminum, mercury, and chromium, and reduced dissolved oxygen levels, with overall CWQI values ranging from poor (40) to good (88) depending on depth and parameter variability. The study highlights the necessity for continuous, comprehensive monitoring, including microbiological analyses and seasonal assessments, both within the reservoir and in the Crni Rzav River and its tributaries, to better understand pollutant sources and catchment influences. Strengthening microbiological and heavy metal monitoring, along with implementing proactive management strategies, is essential for preserving the Ribnica Reservoir’s ecological integrity and securing its long-term role in drinking water provision. Full article
Show Figures

Figure 1

19 pages, 1328 KiB  
Article
Crop Water Requirement Estimated with Data-Driven Models Improves the Reliability of CROPWAT 8.0 and the Water Footprint of Processing Tomato Grown in a Hot-Arid Environment
by Nicolò Iacuzzi, Noemi Tortorici, Carmelo Mosca, Cristina Bondì, Mauro Sarno and Teresa Tuttolomondo
Agronomy 2025, 15(7), 1533; https://doi.org/10.3390/agronomy15071533 - 24 Jun 2025
Viewed by 641
Abstract
The determination of the actual crop water requirement (CWR) today represents an important prerogative for combating climate change. A three-year trial was conducted to ad-dress the need to provide adequate support to processing tomato growers in defining the correct amounts of water to [...] Read more.
The determination of the actual crop water requirement (CWR) today represents an important prerogative for combating climate change. A three-year trial was conducted to ad-dress the need to provide adequate support to processing tomato growers in defining the correct amounts of water to be supplied. In fact, the objective of this work was to calculate the water requirement of processing tomatoes, specifically analyzing their irrigation needs using the CROPWAT 8.0 software and through capacitive and tensiometric probes. Furthermore, for both methods, the tomato yield was evaluated both by supplying 100% of its water requirement and by supplying, through regulated deficit irrigation (RDI), 70% of its water requirement. Subsequently, for each irrigation strategy employed and for each CWR calculation method, the water footprint was calculated by analyzing the blue, green, and grey components. In the years 2022 and 2023, there was an overestimation of CWR of 13.5% for IR100 and 13.94% for IR70, and 14.53% for IR100 and 11.65% for IR70, respectively, while in 2024 there was an underestimation, with values of 9.17% and 5.22% for the IR100 and IR70 treatments compared to the values obtained with the probes. The total WF of tomatoes varied between 33.42 and 51.91 m3 t−1 with the CROPWAT model and between 35.82 and 47.19 m3 t−1 with the probes for IR100, while for RDI70, the values ranged between 38.72 and 59.44 m3 t−1 with the CROPWAT method and between 35.81 and 53.95 m3 t−1 with the probe method. In water-scarce regions, integrating the CROPWAT 8.0 model (enhanced with real-world data) and implementing smart systems can significantly improve water management, refine decision-making processes, and mitigate environmental impacts. This approach directly addresses the urgent need for water security within sustainable agriculture. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

38 pages, 11189 KiB  
Article
Evaluating Sustainability of Water–Energy–Food–Ecosystems Nexus in Water-Scarce Regions via Coupled Simulation Model
by Huanyu Chang, Yong Zhao, Yongqiang Cao, Guohua He, Qingming Wang, Rong Liu, He Ren, Jiaqi Yao and Wei Li
Agriculture 2025, 15(12), 1271; https://doi.org/10.3390/agriculture15121271 - 12 Jun 2025
Cited by 4 | Viewed by 1476
Abstract
Complex feedback mechanisms and interdependencies exist among the water–energy–food–ecosystems (WEFE) nexus. In water-scarce regions, fluctuations in the supply or demand of any single subsystem can destabilize the others, with water shortages intensifying conflicts among food production, energy consumption, and ecological sustainability. Balancing the [...] Read more.
Complex feedback mechanisms and interdependencies exist among the water–energy–food–ecosystems (WEFE) nexus. In water-scarce regions, fluctuations in the supply or demand of any single subsystem can destabilize the others, with water shortages intensifying conflicts among food production, energy consumption, and ecological sustainability. Balancing the synergies and trade-offs within the WEFE system is therefore essential for achieving sustainable development. This study adopts the natural–social water cycle as the core process and develops a coupled simulation model of the WEFE (CSM-WEFE) system, integrating food production, ecological water replenishment, and energy consumption associated with water supply and use. Based on three performance indices—reliability, coupling coordination degree, and equilibrium—a coordinated sustainable development index (CSD) is constructed to quantify the performance of WEFE system under different scenarios. An integrated evaluation framework combining the CSM-WEFE and the CSD index is then proposed to assess the sustainability of WEFE systems. The framework is applied to the Beijing–Tianjin–Hebei (BTH) region, a representative water-scarce area in China. Results reveal that the current balance between water supply and socio-economic demand in the BTH region relies heavily on excessive groundwater extraction and the appropriation of ecological water resources. Pursuing food security goals further exacerbates groundwater overexploitation and ecological degradation, thereby undermining system coordination. In contrast, limiting groundwater use improves ecological conditions but increases regional water scarcity and reduces food self-sufficiency. Even with the full operation of the South-to-North Water Diversion Project (Middle Route), the region still experiences a 16.4% water shortage. By integrating the CSM-WEFE model with the CSD evaluation approach, the proposed framework not only provides a robust tool for assessing WEFE system sustainability but also offers practical guidance for alleviating water shortages, enhancing food security, and improving ecological health in water-scarce regions. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

23 pages, 3061 KiB  
Article
Calibration and Validation of the BMWP Index for the Assessment of Fluvial Systems in High Andean Mining Areas of Peru
by Manuel Emilio Hora Revilla, Alberto Ronal Gabriel Aguilar, José Luis Polo Corro, José Manuel Marchena Dioses, Eugenia López-López and Jacinto Elías Sedeño-Díaz
Water 2025, 17(12), 1724; https://doi.org/10.3390/w17121724 - 6 Jun 2025
Viewed by 833
Abstract
The High Andean region of Peru, characterized by a complex orography, has unique and highly biodiverse ecosystems. This region has several headwater basins that play a critical role in the hydrological cycle, providing diverse ecosystem services essential to sustain biodiversity and supply water [...] Read more.
The High Andean region of Peru, characterized by a complex orography, has unique and highly biodiverse ecosystems. This region has several headwater basins that play a critical role in the hydrological cycle, providing diverse ecosystem services essential to sustain biodiversity and supply water to human communities. Despite the importance of this region, it faces significant human intervention, particularly mining activities, which affect basin headwaters and jeopardize water security. This study aimed to calibrate the Biological Monitoring Working Party (BMWP) index to evaluate water quality in High Andean rivers in Peru affected by mining activities, using aquatic macroinvertebrates as bioindicators. We used a 15-year dataset (2008 to 2023) from three headwater basins in the High Andean region; this dataset included physicochemical water quality parameters, trace metals, and aquatic macroinvertebrates. The BMWP was calibrated for the High Andean region of Peru with this dataset (BMWP/PeIAZIM); afterward, it was validated to assess water quality in an area influenced by mining activities in this region. The results allowed us to differentiate between aquatic macroinvertebrate families tolerant to mining pollution and highly sensitive families. The sites heavily affected by mining activity returned very low BMWP/PeIAZIM scores; sites with no mining impact had the highest scores. These findings indicate that the calibrated index can be used for water resource management in the High Andean region, contributing to the conservation of its ecosystems. Full article
(This article belongs to the Special Issue Biodiversity of Freshwater Ecosystems: Monitoring and Conservation)
Show Figures

Graphical abstract

26 pages, 1615 KiB  
Review
Economic Analysis of Nuclear Energy Cogeneration: A Comprehensive Review on Integrated Utilization
by Guobin Jia, Guifeng Zhu, Yang Zou, Yuwen Ma, Ye Dai, Jianhui Wu and Jian Tian
Energies 2025, 18(11), 2929; https://doi.org/10.3390/en18112929 - 3 Jun 2025
Viewed by 861
Abstract
Nuclear energy cogeneration, which integrates electricity generation with thermal energy utilization, presents a transformative pathway for enhancing energy efficiency and decarbonizing industrial and urban sectors. This comprehensive review synthesizes advancements in technological stratification, economic modeling, and sectoral practices to evaluate the viability of [...] Read more.
Nuclear energy cogeneration, which integrates electricity generation with thermal energy utilization, presents a transformative pathway for enhancing energy efficiency and decarbonizing industrial and urban sectors. This comprehensive review synthesizes advancements in technological stratification, economic modeling, and sectoral practices to evaluate the viability of nuclear cogeneration as a cornerstone of low-carbon energy transitions. By categorizing applications based on temperature requirements (low: <250 °C, medium: 250–550 °C, high: >550 °C), the study highlights the adaptability of reactor technologies, including light water reactors (LWRs), high-temperature gas-cooled reactors (HTGRs), and molten salt reactors (MSRs), to sector-specific demands. Key findings reveal that nuclear cogeneration systems achieve thermal efficiencies exceeding 80% in low-temperature applications and reduce CO2 emissions by 1.5–2.5 million tons annually per reactor by displacing fossil fuel-based heat sources. Economic analyses emphasize the critical role of cost allocation methodologies, with exergy-based approaches reducing levelized costs by 18% in high-temperature applications. Policy instruments, such as carbon pricing, value-added tax (VAT) exemptions, and subsidized loans, enhance project viability, elevating net present values by 25–40% for district heating systems. Case studies from Finland, China, and Canada demonstrate operational successes, including 30% emission reductions in oil sands processing and hydrogen production costs as low as USD 3–5/kg via thermochemical cycles. Hybrid nuclear–renewable systems further stabilize energy supply, reducing the levelized cost of heat by 18%. The review underscores the necessity of integrating Generation IV reactors, thermal storage, and policy alignment to unlock nuclear cogeneration’s full potential in achieving global decarbonization and energy security goals. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

23 pages, 7384 KiB  
Article
Hydrogeochemical and Isotopic Approach to Groundwater Management in a Mediterranean City Dependent on External Water Supply (Aix-en-Provence, SE France)
by Christelle Claude, Hélène Miche, Ghislain Gassier, Ferhat Cherigui and Yves Dutour
Water 2025, 17(11), 1634; https://doi.org/10.3390/w17111634 - 28 May 2025
Viewed by 648
Abstract
Drought frequency and severity intensify with climate change, challenging many Mediterranean cities to face securing sustainable water supplies. In this context, groundwater emerges as a key but often overlooked resource, particularly in urban areas historically reliant on external drinking water systems. This study [...] Read more.
Drought frequency and severity intensify with climate change, challenging many Mediterranean cities to face securing sustainable water supplies. In this context, groundwater emerges as a key but often overlooked resource, particularly in urban areas historically reliant on external drinking water systems. This study provides a comprehensive hydrogeological characterisation of the groundwater system in Aix-en-Provence (southeastern France), with a specific focus on hypothermal springs and the cold springs of the Vallon des Pinchinats, which historically supplied the town before the creation of the Canal de Provence by the company of the same name (Société du Canal de Provence (SCP)). By combining chemical and isotopic analyses (δ18O, δ2H, and chloride concentrations) with a statistical clustering (DACMAD method), we characterise the origin and dynamics of distinct water sources and evaluate their influence with surface water and external supply systems. Four key hydrological entities influencing the study area were identified. (1) regional precipitation (RRW) contributing significantly to groundwater recharge in the region. The isotope composition of the RRW was calculated (δ18O: −6.68‰, δ2H: −41.80‰, Cl: 2.2 mg/L) (2) Groundwater from the Oligocene aquifer (OG) characterised by an enrichment in chloride and sulphate. (3) Groundwater from the Cretaceous–Jurassic aquifer (CJG), a karstified aquifer from the Sainte-Victoire-Concors massif, which supplies the cold and hypothermal springs in Aix-en-Provence and multiple springs in the region. (4) Canal de Provence water (CPW) as an external water source, used for domestic supply, which has left a traceable signal in the local hydrosystem. The study reveals that cold springs of the Vallon des Pinchinats result from the mixing of Oligocene and Cretaceous–Jurassic groundwaters. Hypothermal springs (20–30 °C) circulate at moderate depths (165–500 m), unlike previous models suggesting deeper infiltration and mixing processes. This study contributes a novel hydrogeochemical and isotopic framework applicable to other Mediterranean urban areas facing similar pressures and highlights the strategic role that local groundwater can play in building long-term water resilience. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

Back to TopTop