Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (552)

Search Parameters:
Keywords = water gas shift

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4533 KB  
Article
Environmental Filtering Drives Microbial Community Shifts and Functional Niche Differentiation of Fungi in Waterlogged and Dried Archeological Bamboo Slips
by Liwen Zhong, Weijun Li, Guoming Gao, Yu Wang, Cen Wang and Jiao Pan
J. Fungi 2026, 12(1), 66; https://doi.org/10.3390/jof12010066 - 14 Jan 2026
Viewed by 166
Abstract
Changes in preservation conditions act as an important environmental filter driving shifts in microbial communities. However, the precise identities, functional traits, and ecological mechanisms of the dominant agents driving stage-specific deterioration remain insufficiently characterized. This study investigated microbial communities and dominant fungal degraders [...] Read more.
Changes in preservation conditions act as an important environmental filter driving shifts in microbial communities. However, the precise identities, functional traits, and ecological mechanisms of the dominant agents driving stage-specific deterioration remain insufficiently characterized. This study investigated microbial communities and dominant fungal degraders in waterlogged versus dried bamboo slips using amplicon sequencing, multivariate statistics, and microbial isolation. Results revealed compositionally distinct communities, with dried slips sharing only a small proportion of operational taxonomic units (OTUs) with waterlogged slips, while indicating the persistence of a subset of taxa across preservation states. A key discovery was the dominance of Fonsecaea minima (92% relative abundance) at the water-solid-air interface of partially submerged slips. Scanning electron microscopy (SEM) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) indicate that this fungus forms melanin-rich, biofilm-like surface structures, suggesting enhanced surface colonization and stress resistance. In contrast, the fungal community isolated from dried slips was characterized by Apiospora saccharicola associated with detectable xylanase activity. Meanwhile, the xerophilic species Xerogeomyces pulvereus dominated (99% relative abundance) the storage box environment. Together, these results demonstrate that preservation niches select for fungi with distinct functional traits, highlighting the importance of stage-specific preservation strategies that consider functional traits rather than taxonomic identity alone. Full article
(This article belongs to the Special Issue Mycological Research in Cultural Heritage Protection)
Show Figures

Figure 1

11 pages, 2269 KB  
Article
Pt-Rare Earth Subnanometric Bimetallic Clusters Efficiently Catalyze the Reverse Water–Gas Reaction
by Zhaolei Liang, Chang Sun, Songhe Shen, Qingqing Li and Feng Luo
Nanomaterials 2026, 16(1), 77; https://doi.org/10.3390/nano16010077 - 5 Jan 2026
Viewed by 331
Abstract
The reverse water–gas shift (RWGS) reaction serves as a highly flexible and critical pathway for converting CO2 into CO, with Pt-based catalysts having been widely investigated. Here, a series of platinum-rare earth (RE) subnanometric bimetallic clusters (SBCs) were successfully prepared on carbon [...] Read more.
The reverse water–gas shift (RWGS) reaction serves as a highly flexible and critical pathway for converting CO2 into CO, with Pt-based catalysts having been widely investigated. Here, a series of platinum-rare earth (RE) subnanometric bimetallic clusters (SBCs) were successfully prepared on carbon support by the potassium vapor reduction method. Their structure and electronic properties, along with catalytic performance, were systematically characterized and evaluated. The Pt-RE SBC catalysts exhibited excellent catalytic activity, maintaining CO selectivity above 95% at high CO2 conversion levels and demonstrating stable operation over 100 h at 600 °C. Furthermore, the influence of different supports (carbon black and CeO2) on the catalytic performance was compared. It was found that Pt-Sc SBCs supported on the carbon exhibited better dispersion, smaller particle size, and superior catalytic performance relative to the CeO2 supported counterpart. This study provides new insights into the design of highly efficient and stable RWGS catalysts, highlighting the key role of the Pt-RE SBC interface synergistic effect and support selection, which is of great significance for the resource utilization of CO2. Full article
Show Figures

Graphical abstract

15 pages, 2433 KB  
Article
Investigation of Biogas Dry Reforming over Ru/CeO2 Catalysts and Pd/YSZ Membrane Reactor
by Omid Jazani and Simona Liguori
Membranes 2026, 16(1), 34; https://doi.org/10.3390/membranes16010034 - 5 Jan 2026
Viewed by 296
Abstract
The biogas dry reforming reaction offers a promising route for syngas production while simultaneously mitigating greenhouse gas emissions. Membrane reactors have proven to be an excellent option for hydrogen production and separation in a single unit, where conversion and yield can be enhanced [...] Read more.
The biogas dry reforming reaction offers a promising route for syngas production while simultaneously mitigating greenhouse gas emissions. Membrane reactors have proven to be an excellent option for hydrogen production and separation in a single unit, where conversion and yield can be enhanced over conventional processes. In this study, a Pd/YSZ membrane integrated with a Ru/CeO2 catalyst was evaluated for biogas reaction under varying operating conditions. The selective removal of hydrogen through the palladium membrane improved reactant conversion and suppressed side reactions such as methanation and the reverse water–gas shift. Experiments were performed at temperatures ranging from 500 to 600 °C, pressures of 1–6 bar, and a gas hourly space velocity (GHSV) of 800 h−1. Maximum conversions of CH4 (43%) and CO2 (46.7%) were achieved at 600 °C and 2 bar, while the maximum hydrogen recovery of 78% was reached at 6 bar. The membrane reactor outperformed a conventional reactor, offering up to 10% higher CH4 conversion and improved hydrogen production and yield. Also, a comparative analysis between Ru/CeO2 and Ni/Al2O3 catalysts revealed that while the Ni-based catalyst provided higher CH4 conversion, it also promoted methane decomposition reaction and coke formation. In contrast, the Ru/CeO2 catalyst exhibited excellent resistance to coke formation, attributable to ceria’s redox properties and oxygen storage capacity. The combined system of Ru/CeO2 catalyst and Pd/YSZ membrane offers an effective and sustainable approach for hydrogen-rich syngas production from biogas, with improved performance and long-term stability. Full article
(This article belongs to the Special Issue Advanced Membrane Design for Hydrogen Technologies)
Show Figures

Graphical abstract

16 pages, 1623 KB  
Article
Hydrothermal Carbonization of Fish Waste: A Sustainable Pathway for Valorization and Resource Recovery
by Carmen María Álvez-Medina, Sergio Nogales-Delgado, Beatriz Ledesma Cano, Vicente Montes-Jiménez and Silvia Román Suero
Clean Technol. 2026, 8(1), 4; https://doi.org/10.3390/cleantechnol8010004 - 4 Jan 2026
Viewed by 195
Abstract
Fisheries and aquaculture residues pose escalating environmental challenges due to their high moisture content, nutrient loads, and pollutant potential when improperly managed. Conventional valorization routes, such as fishmeal, fish oil, and silage, offer partial mitigation but remain limited in scalability, conversion efficiency, and [...] Read more.
Fisheries and aquaculture residues pose escalating environmental challenges due to their high moisture content, nutrient loads, and pollutant potential when improperly managed. Conventional valorization routes, such as fishmeal, fish oil, and silage, offer partial mitigation but remain limited in scalability, conversion efficiency, and environmental performance. In this study, fish processing residues were subjected to hydrothermal carbonization (HTC) under controlled subcritical conditions (180–220 °C), along with a high-severity catalytic run (325 °C) using sodium bicarbonate (NaHCO3) as an additive. The latter condition exceeded the typical HTC range and entered the subcritical hydrothermal liquefaction (HTL) regime. The resulting solid, liquid, and gaseous fractions were comprehensively characterized to assess their energy potential, chemical composition, and reactivity. Hydrochars achieved higher heating values (HHVs) ranging from 14.2 to 25.7 MJ/kg. These results underscore their suitability as renewable solid fuels. The gas products were dominated by CO2 under standard HTC conditions. In contrast, the catalytic run in the subcritical HTL regime achieved a hydrogen enrichment of up to 30 vol.%, demonstrating the efficacy of NaHCO3 in promoting the water-gas shift reaction. Subsequent air gasification confirmed the high reactivity of the hydrochars, producing syngas enriched in H2 and CO at elevated temperatures. Overall, this study demonstrates a scalable multiproduct valorization route for fishery residues, supporting circular bioeconomy strategies and contributing to the achievement of UN Sustainable Development Goals (SDGs 7, 12, and 13). Full article
Show Figures

Figure 1

13 pages, 1583 KB  
Article
Co-Gasification of Bio-Oil and Black Liquor as Renewable Gasification Feedstocks
by Jae Gyu Hwang, Seong Wan Hong, Myung Kyu Choi and Hang Seok Choi
Appl. Sci. 2026, 16(1), 359; https://doi.org/10.3390/app16010359 - 29 Dec 2025
Viewed by 141
Abstract
The co-gasification of bio-oil produced via fast pyrolysis and black liquor from the pulp industry may yield a valuable feedstock for renewable gasification. This study investigated the synergistic potential of this co-gasification process. Experiments were conducted in a miniature conical spouted-bed reactor at [...] Read more.
The co-gasification of bio-oil produced via fast pyrolysis and black liquor from the pulp industry may yield a valuable feedstock for renewable gasification. This study investigated the synergistic potential of this co-gasification process. Experiments were conducted in a miniature conical spouted-bed reactor at 800 °C using bio-oil/black liquor mixing ratios ranging from 1:9 to 9:1 under equivalence ratios (ER) of 0.1, 0.3, and 0.5. Syngas characteristics and gasification performance were assessed using the lower heating value (LHV), H2/CO ratio, cold gas efficiency (CGE), and carbon conversion ratio (CCR). Increasing the bio-oil fraction increased CO and CH4 concentrations due to its higher carbon content and lower moisture content, whereas black liquor promoted H2 formation through moisture-driven water–gas shift reactions. Higher ER values intensified combustion, increasing CO2 while reducing combustible gases. The most energy-rich syngas, with the highest LHV and CGE, was obtained using a 9:1 mixture at ER = 0.1. The CCR was greatest for pure bio-oil and the 5:5 ratio among mixtures, reflecting the catalytic effects of alkali species in black liquor. These results demonstrate that co-gasification can improve syngas quality and carbon utilization, with optimal performance depending on the intended application. Full article
Show Figures

Figure 1

35 pages, 7939 KB  
Article
Techno-Enviro-Economic Assessment of Long-Term Strategic Capacity Expansion for Dubai’s Clean Energy Future Using PLEXOS
by Ahmed Yousry and Mutasim Nour
Energies 2026, 19(1), 173; https://doi.org/10.3390/en19010173 - 28 Dec 2025
Viewed by 515
Abstract
With global energy systems shifting toward sustainable solutions, Dubai faces the challenge of meeting rising energy needs while minimizing environmental impacts. This study explores long-term (LT) strategic planning for Dubai’s power sector through a techno-environmental–economic lens. Using PLEXOS® modelling software (Version 9.20.0001) [...] Read more.
With global energy systems shifting toward sustainable solutions, Dubai faces the challenge of meeting rising energy needs while minimizing environmental impacts. This study explores long-term (LT) strategic planning for Dubai’s power sector through a techno-environmental–economic lens. Using PLEXOS® modelling software (Version 9.20.0001) and official data from Dubai’s main utility provider, a comprehensive model examines medium- and LT energy pathways. The analysis identifies solar photovoltaic (PV) technology as central to achieving Dubai’s goal of 100% clean energy by 2050. It also highlights the need to cut emissions from natural gas (NG) infrastructure, targeting a goal of 14.5% retirement of NG energy generation capacities by the mid-century. Achieving zero-emission goals will require complementary technologies such as carbon capture (CC), nuclear energy, and energy storage as part of a broader decarbonization strategy. This study further assesses the economic effects of climate policy, showing that moderate carbon pricing could increase the Levelized Cost of Energy (LCOE) by an average of 6% across the forecast horizon. These findings offer valuable guidance for decision-makers and stakeholders, particularly the Dubai Electricity and Water Authority (DEWA), in advancing a carbon-neutral energy system. By 2050, Dubai’s total installed generation capacity is projected to reach 53.3 GW, reflecting the scale of transformation needed to meet its clean energy ambitions. Full article
(This article belongs to the Special Issue Policy and Economic Analysis of Energy Systems: 2nd Edition)
Show Figures

Figure 1

26 pages, 2450 KB  
Article
Canopy Design Drives Photosynthetic Performance, Light Environment, and Fruit Quality in Peach (Prunus persica L. Batsch)
by Ioannis Chatzieffraimidis, Dimos Stouris, Marina-Rafailia Kyrou, Fokion Papathanasiou and Evangelos Karagiannis
Plants 2026, 15(1), 29; https://doi.org/10.3390/plants15010029 - 21 Dec 2025
Viewed by 489
Abstract
Training system selection critically influences peach orchard productivity through its effects on canopy light environment, physiological responses, and fruit quality. This study evaluated two contrasting training systems: a 2D planar fruiting wall system (Four-Axis, 1020 trees ha−1) versus a 3D Quad-V [...] Read more.
Training system selection critically influences peach orchard productivity through its effects on canopy light environment, physiological responses, and fruit quality. This study evaluated two contrasting training systems: a 2D planar fruiting wall system (Four-Axis, 1020 trees ha−1) versus a 3D Quad-V system (590 trees ha−1) using two peach cultivars, fresh table ‘Platibelle’ and clingstone ‘Mirel’ in Central Macedonia, Greece. Comprehensive physiological measurements including leaf gas exchange, chlorophyll fluorescence, and fruit quality parameters were assessed across two canopy zones (lower 0–1.2 m vs. upper 1.8–3.3 m) during the 2023 and 2024 growing seasons. Results demonstrated that the 2D system achieved superior leaf area index (LAI), but lower light interception, leading to enhanced photosynthetic performance with 15–20% higher net photosynthetic rates and improved water-use efficiency compared to the 3D system. Notably, the photosynthetic apparatus of fruiting wall trees maintained significantly greater efficiency (6.26 μmol CO2 m−2 s−1) in the lower canopy zone than in Quad-V trees (3.6 μmol CO2 m−2 s−1), indicating a more uniform and functional light environment. The 2D system produced fruits with improved flesh firmness and color development in ‘Mirel’, while higher dry matter in ‘Platibelle’. Correlation analysis revealed that Four-Axis trees enhanced the interdependence among thermal, gas exchange, and compositional traits, reflecting a shift from morphology-driven to metabolically integrated canopy function. In terms of yield, fruiting walls achieved higher efficiency and total production (Mt ha−1) in ‘Mirel’, supporting their adoption to enhance productivity and peach fruit quality in Mediterranean conditions. Full article
(This article belongs to the Special Issue Advances in Planting Techniques and Production of Horticultural Crops)
Show Figures

Figure 1

21 pages, 9580 KB  
Article
Water and Nitrogen Regulation of Tea Leaf Volatiles Influences Ectropis grisescens Olfaction
by Wei Xie, Qiumei Shi, Chuanhua Yin, Dongliang Li, Pumo Cai, Jizhou Wang and Shan Jin
Agronomy 2026, 16(1), 18; https://doi.org/10.3390/agronomy16010018 - 21 Dec 2025
Viewed by 317
Abstract
Global warming has increased outbreaks of the tea pest Ectropis grisescens. However, how water and nitrogen management modulates tea plant resistance against this pest through induced volatile organic compounds (VOCs) remains unclear. This study aimed to (1) characterize how water–nitrogen interactions alter [...] Read more.
Global warming has increased outbreaks of the tea pest Ectropis grisescens. However, how water and nitrogen management modulates tea plant resistance against this pest through induced volatile organic compounds (VOCs) remains unclear. This study aimed to (1) characterize how water–nitrogen interactions alter the composition of VOCs in fresh leaves of Camellia sinensis cv. Rougui, and (2) identify key VOCs that mediate repellence against E. grisescens. Using gas chromatography–mass spectrometry (GC–MS) and olfactometry under three water and three nitrogen levels, we found that nitrogen effects on VOCs were contingent on water status. Four terpenoids—(+)-dihydrocarvone, myrcene, linalool, and β-ocimene—and one green-leaf volatile ((E)-3-hexenoic acid) significantly repelled E. grisescens, whereas hexanoic acid, 3-oxo-, ethyl ester acted as an attractant. Mechanistically, low-water–moderate-nitrogen and high-water–high-nitrogen treatments reduced repellent terpenoids and increased attractant VOCs, thereby elevating pest preference. These results demonstrate that water–nitrogen coupling shifts the balance between repellent and attractant volatiles, providing a physiological basis for manipulating tea plant resistance through agronomic management. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

31 pages, 5865 KB  
Review
AI–Remote Sensing for Soil Variability Mapping and Precision Agrochemical Management: A Comprehensive Review of Methods, Limitations, and Climate-Smart Applications
by Fares Howari
Agrochemicals 2026, 5(1), 1; https://doi.org/10.3390/agrochemicals5010001 - 20 Dec 2025
Viewed by 789
Abstract
Uniform application of fertilizers and pesticides continues to dominate global agriculture despite significant spatial variability in soil and crop conditions. This mismatch results in avoidable yield gaps, excessive chemical waste, and environmental pressures, including nutrient leaching and greenhouse gas emissions. The integration of [...] Read more.
Uniform application of fertilizers and pesticides continues to dominate global agriculture despite significant spatial variability in soil and crop conditions. This mismatch results in avoidable yield gaps, excessive chemical waste, and environmental pressures, including nutrient leaching and greenhouse gas emissions. The integration of Artificial Intelligence (AI) and Remote Sensing (RS) has emerged as a transformative framework for diagnosing this variability and enabling site-specific, climate-responsive management. This systematic synthesis reviews evidence from 2000–2025 to assess how AI–RS technologies optimize agrochemical efficiency. A comprehensive search across Scopus, Web of Science, IEEE Xplore, ScienceDirect, and Google Scholar were used. Following rigorous screening and quality assessment, 142 studies were selected for detailed analysis. Data extraction focused on sensor platforms (Landsat-8/9, Sentinel-1/2, UAVs), AI approaches (Random Forests, CNNs, Physics-Informed Neural Networks), and operational outcomes. The synthesized data demonstrate that AI–RS systems can predict critical soil attributes, specifically salinity, moisture, and nutrient levels, with 80–97% accuracy in some cases, depending on spectral resolution and algorithm choice. Operational implementations of Variable-Rate Application (VRA) guided by these predictive maps resulted in fertilizer reductions of 15–30%, pesticide use reductions of 20–40%, and improvements in water-use efficiency of 25–40%. In fields with high soil heterogeneity, these precision strategies delivered yield gains of 8–15%. AI–RS technologies have matured from experimental methods into robust tools capable of shifting agrochemical science from reactive, uniform practices to predictive, precise strategies. However, widespread adoption is currently limited by challenges in data standardization, model transferability, and regulatory alignment. Future progress requires the development of interoperable data infrastructures, digital soil twins, and multi-sensor fusion pipelines to position these technologies as central pillars of sustainable agricultural intensification. Full article
(This article belongs to the Section Fertilizers and Soil Improvement Agents)
Show Figures

Figure 1

16 pages, 6944 KB  
Article
Water Shutoff with Polymer Gels in a High-Temperature Gas Reservoir in China: A Success Story
by Tao Song, Hongjun Wu, Pingde Liu, Junyi Wu, Chunlei Wang, Hualing Zhang, Song Zhang, Mantian Li, Junlei Wang, Bin Ding, Weidong Liu, Jianyun Peng, Yingting Zhu and Falin Wei
Energies 2025, 18(24), 6554; https://doi.org/10.3390/en18246554 - 15 Dec 2025
Viewed by 377
Abstract
Gel treatments have been widely applied to control water production in oil and gas reservoirs. However, for water shutoff in dense gas reservoirs, most gel-based treatments focus on individual wells rather than the entire reservoir, exhibiting limited treatment depth, poor durability, and inadequate [...] Read more.
Gel treatments have been widely applied to control water production in oil and gas reservoirs. However, for water shutoff in dense gas reservoirs, most gel-based treatments focus on individual wells rather than the entire reservoir, exhibiting limited treatment depth, poor durability, and inadequate repeatability Notably, formation damage is a primary consideration in treatment design—most dense gas reservoirs have a permeability of less than 1 mD, making them highly susceptible to damage by formation water, let alone viscous polymer gels. Constrained by well completion methods, gelant can only be bullheaded into deep gas wells in most scenarios. Due to the poor gas/water selective plugging capability of conventional gels, the injected gelant tends to enter both gas and water zones, simultaneously plugging fluid flow in both. Although several techniques have been developed to re-establish gas flow paths post-treatment, treating gas-producing zones remains risky when no effective barrier exists between water and gas strata. Additionally, most water/gas selective plugging materials lack sufficient thermal stability under high-temperature and high-salinity (HTHS) gas reservoir conditions, and their injectivity and field feasibility still require further optimization. To address these challenges, treatment design should be optimized using non-selective gel materials, shifting the focus from directly preventing formation water invasion into individual wells to mitigating or slowing water invasion across the entire gas reservoir. This approach can be achieved by placing large-volume gels along major water flow paths via fully watered-out wells located at structurally lower positions. Furthermore, the drainage capacity of these wells can be preserved by displacing the gel slug to the far-wellbore region, thereby dissipating water-driven energy. This study evaluates the viability of placing gels in fully watered-out wells at structurally lower positions in an edge-water drive gas reservoir to slow water invasion into structurally higher production wells interconnected via numerous microfractures and high-permeability streaks. The gel system primarily comprises polyethyleneimine (PEI), a terpolymer, and nanofibers. Key properties of the gel system are as follows: Static gelation time: 6 h; Elastic modulus of fully crosslinked gel: 8.6 Pa; Thermal stability: Stable in formation water at 130 °C for over 3 months; Injectivity: Easily placed in a 219 mD rock matrix with an injection pressure gradient of 0.8 MPa/m at an injection rate of 1 mL/min; and Plugging performance: Excellent sealing effect on microfractures, with a water breakthrough pressure gradient of 2.25 MPa/m in 0.1 mm fractures. During field implementation, cyclic gelant injections combined with over-displacement techniques were employed to push the gel slug deep into the reservoir while maintaining well drainage capacity. The total volumes of injected fluid and gelant were 2865 m3 and 1400 m3, respectively. Production data and tracer test results from adjacent wells confirmed that the water invasion rate was successfully reduced from 59 m/d to 35 m/d. The pilot test results validate that placing gels in fully watered-out wells at structurally lower positions is a viable strategy to protect the production of gas wells at structurally higher positions. Full article
(This article belongs to the Special Issue New Advances in Oil, Gas and Geothermal Reservoirs—3rd Edition)
Show Figures

Figure 1

23 pages, 15659 KB  
Article
Depositional Environment and Biological Activity Implications of the Jining BIF, Western Shandong Province, China: Evidence from Elements and C-O Isotopic Compositions
by Rongzhen Tang, Xinkai Chen, Jiashuo Cao and Yanjing Chen
Minerals 2025, 15(12), 1298; https://doi.org/10.3390/min15121298 - 11 Dec 2025
Viewed by 302
Abstract
In the early Paleoproterozoic, the Earth’s atmosphere–ocean system shifted from a reducing to an oxidizing state, triggering the extensive deposition of banded iron formations (BIFs) in the Siderian period (2.5–2.3 Ga). As a key sedimentary formed during the hydrospheric oxidation stage, BIFs are [...] Read more.
In the early Paleoproterozoic, the Earth’s atmosphere–ocean system shifted from a reducing to an oxidizing state, triggering the extensive deposition of banded iron formations (BIFs) in the Siderian period (2.5–2.3 Ga). As a key sedimentary formed during the hydrospheric oxidation stage, BIFs are expected to preserve abundant microbial fossils or organic carbon. However, evidence for contemporaneous widespread biological activity remains limited. This paper focuses on C-O isotopes and the trace element geochemistry of the 2.5 Ga Jining BIF to constrain the redox state of paleo-oceans and associated biogeochemical cycling during BIF deposition. The δ13Ccarb values of the BIF samples range from −18.6‰ to −9.6‰, with an average of −12.7‰, exhibiting a notable negative value, and TOC contents (0.04–0.19 wt.%) are extremely low. This suggests the incorporation of oxidized organic carbon to pore water via ferrihydrite reduction during early diagenesis process. The globally negative δ13Ccarb value of BIFs and iron-rich carbonates reflect enhanced biological activity at ~2.5 Ga. REE patterns reveal negative Ce/Ce*(SN) and Eu/Eu*(CN) anomalies, and the presence of primary hematite mesobands together indicate that the Jining BIF records a redox transition in seawater from reducing to oxidizing conditions. Full article
(This article belongs to the Special Issue Geochemical, Isotopic, and Biotic Records of Banded Iron Formations)
Show Figures

Figure 1

35 pages, 9460 KB  
Article
Advancing Riverine–Lacustrine Ecosystem Vulnerability Prediction Using Multi-Sensor Satellite Data, Attention-Based Deep Learning, and Evolutionary Metaheuristics
by Zhou Zheng, Xuexia Shi, Fuchu Zhang and Xinlin He
Water 2025, 17(24), 3456; https://doi.org/10.3390/w17243456 - 5 Dec 2025
Viewed by 556
Abstract
Riverine–lacustrine ecosystems in river–lake continua face increasing threats, yet conventional vulnerability maps often overlook local degradation drivers. This study presents an advanced satellite-based mapping framework using Deep Attention Networks (DANets) for accurate, interpretable vulnerability assessment. In the Ebinur Lake Basin, a representative dryland [...] Read more.
Riverine–lacustrine ecosystems in river–lake continua face increasing threats, yet conventional vulnerability maps often overlook local degradation drivers. This study presents an advanced satellite-based mapping framework using Deep Attention Networks (DANets) for accurate, interpretable vulnerability assessment. In the Ebinur Lake Basin, a representative dryland river system, we first built a satellite-derived evidence map of ecosystem stress aligned with the IPCC’s vulnerability definition. We then optimized DANets via two nature-inspired algorithms: Genetic Algorithm (GA) and Grey Wolf Optimizer (GWO). The optimized models demonstrated strong predictive capacity, explaining a large share of vulnerability variance (R2 = 0.78 for GA-DANets; R2 = 0.76 for GWO-DANets). For high/low-vulnerability discrimination, GWO-DANets was most effective and stable, with a mean AUC = 0.960 ± 0.044. Factor importance analysis identified soil organic carbon (SOC; 0.29), precipitation seasonality (0.24), and aridity (0.22) as dominant drivers. Two distinct pathways emerged: chronic degradation in arid plains, driven by low SOC and poor water retention; and acute hydrological stress in wetlands, where carbon-rich soils are sensitive to drying. This insight shifts management from uniform to targeted approaches: soil restoration in plains and water-flow protection in wetlands. By integrating metaheuristically optimized deep learning with multi-sensor satellite data, the framework offers a scalable decision-support tool for safeguarding water-dependent ecosystems. The study confirms that vulnerability in the basin follows two predictable, process-based trajectories, which can be directly linked to measurable soil and hydrological conditions. These clear patterns allow managers to prioritize interventions where they will have the greatest effect under ongoing climate pressure. Full article
(This article belongs to the Special Issue Applications of Remote Sensing and GISs in River Basin Ecosystems)
Show Figures

Figure 1

20 pages, 5111 KB  
Article
Hydrates Formed with Binary CH4/C2H6 Mixtures: Effects of Adding 25–75 vol% Ethane on the Quantity of Hydrates Formed, Growth Mechanism and Structure Preservation
by Alberto Maria Gambelli, Daniela Pezzolla, Federico Rossi and Giovanni Gigliotti
C 2025, 11(4), 88; https://doi.org/10.3390/c11040088 - 20 Nov 2025
Viewed by 1017
Abstract
This study explores the production of hydrates with binary (CH4/C2H6) gaseous mixtures, varying the concentration of each species from 25 to 75 vol%. The thermodynamics of this process are explored in detail, and the achieved results are [...] Read more.
This study explores the production of hydrates with binary (CH4/C2H6) gaseous mixtures, varying the concentration of each species from 25 to 75 vol%. The thermodynamics of this process are explored in detail, and the achieved results are explained in terms of cage occupancy and compared with the phase boundary equilibrium conditions of pure methane and pure ethane hydrates. The addition of ethane is found to not contribute significantly to the quantity of gas captured in hydrates. Conversely, it delays the massive growth of hydrates, shifting the process towards conditions supporting the formation of pure methane hydrates. The presence of C2H6 molecules within the hydrate lattices improved their overall stability and avoided the dissociation of water cages even under temperature increases (from the conditions measured at the end of formation) up to 14.40 °C. This latter property makes ethane a viable support species for the solid storage of energy gases in the form of hydrates. Full article
(This article belongs to the Special Issue 10th Anniversary of C — Journal of Carbon Research)
Show Figures

Figure 1

18 pages, 3332 KB  
Article
Effect of Mn/Cu Ratio on the Structure–Performance Relationship of Spinel-Type Mn–Cu/Al2Ox Catalysts for Methanol Steam Reforming
by Qiang Zhang, Shiming Qiu, Yanfei Zheng and Yingying Huang
Catalysts 2025, 15(11), 1091; https://doi.org/10.3390/catal15111091 - 20 Nov 2025
Cited by 1 | Viewed by 780
Abstract
The development of highly active, thermally stable, and low-CO-selective catalysts is critical for practical methanol steam reforming (MSR) to produce high-purity hydrogen for fuel cell applications. In this work, a series of Mn–Cu/Al2Ox catalysts with varying Mn/Cu/Al molar ratios were [...] Read more.
The development of highly active, thermally stable, and low-CO-selective catalysts is critical for practical methanol steam reforming (MSR) to produce high-purity hydrogen for fuel cell applications. In this work, a series of Mn–Cu/Al2Ox catalysts with varying Mn/Cu/Al molar ratios were synthesized via co-precipitation and systematically investigated to establish the relationship between composition, structure, and catalytic performance. XRD analysis revealed the formation of spinel-type CuAl2O4 and MnAl2O4 phases, with Mn preferentially occupying octahedral B-sites to form MnAl2O4, thereby inducing lattice distortion and inhibiting grain growth. SEM and TEM–EDS mapping confirmed uniform elemental distribution and a porous nanoscale morphology, while H2-TPR results suggested that increasing the Mn/Cu ratio strengthens Mn–Cu interactions, shifts Cu2+ reduction to higher temperatures, and enhances Cu dispersion (up to 26.11 m2/g). XPS analysis indicated that Mn doping enriches Mn3+ species and facilitates oxygen vacancy formation, which promotes water–gas shift (WGS) activity and suppresses CO formation. Catalytic testing (240–300 °C) showed that Mn2Cu2Al4Ox achieved the highest methanol conversion while maintaining low CO selectivity; in contrast, reducing the Mn/Cu ratio increased CO selectivity, detrimental to hydrogen purification. Stability tests under continuous steam exposure for 24 h demonstrated minimal activity loss (~2%) and negligible increase in CO selectivity (<1%), confirming excellent hydrothermal stability. The results indicate that tailoring the Mn/Cu ratio optimizes the balance between redox properties and metallic Cu dispersion, offering a promising route to design low-CO, durable catalysts for on-site hydrogen generation via MSR. Full article
Show Figures

Graphical abstract

30 pages, 20231 KB  
Article
Effect of Sedimentary Environment on Mudrock Lithofacies and Organic Matter Enrichment in a Freshwater Lacustrine Basin: Insight from the Triassic Chang 7 Member in the Ordos Basin, China
by Meizhou Zhang, Xiaomin Zhu, Wenming Ji, Xingyue Lin and Lei Ye
Sustainability 2025, 17(22), 10248; https://doi.org/10.3390/su172210248 - 16 Nov 2025
Cited by 1 | Viewed by 502
Abstract
Gradually replacing fossil fuels with renewable energy constitutes a long-term strategy for achieving sustainable development. In the short term, it is necessary to explore unconventional oil and gas resources to support current economic sustainability and to secure essential time for the energy transition. [...] Read more.
Gradually replacing fossil fuels with renewable energy constitutes a long-term strategy for achieving sustainable development. In the short term, it is necessary to explore unconventional oil and gas resources to support current economic sustainability and to secure essential time for the energy transition. With the continuous growth in global energy demand, unconventional resources such as shale oil and shale gas have become important alternative energy sources. Lacustrine mudrock successions demonstrate significant potential for unconventional oil and gas resources. However, the unclear understanding of how paleoenvironmental evolution influences lithofacies and organic matter enrichment restricts the optimization of shale oil reservoirs and evaluation of shale oil resources, thereby hindering the progress of lacustrine shale oil exploration and development. The mudrocks in the Chang 7 Member of the Triassic Yanchang Formation, Ordos Basin, were deposited in a pro-delta to a deep lacustrine environment and are rich in shale oil resources. Through petrographic, sedimentological, sequence stratigraphic, and geochemical analyses, this study reveals how the evolution of the paleoenvironment controlled the development of mudrocks and the enrichment of organic matter, and establishes a sedimentary model for freshwater lacustrine systems. Six lithofacies have been identified within the mudrock interval of the Chang 7 Member. According to the T-R (transgressive–regressive) sequence model, the Chang 7 Member can be subdivided into three fourth-order sequences, termed Parasequence Set 1–3 (PPS1–3). Mudrock is predominantly developed in the fourth-order sequences PSS1 and PSS2. The PSS1 and the lower part of PSS2 consist of lithofacies 1–4, representing semi-deep to deep lacustrine deposits. The upper part of PSS2 develops lithofacies 5, representing shallow lacustrine to pro-delta deposits. Fluctuations of the lake level controlled the vertical stacking of lithofacies and the transition in depositional mechanisms. During lake-level rise, bottom currents shifted to suspension settling, whereas the opposite occurred during lake-level fall. The organic matter is derived from algae, and its enrichment is jointly controlled by productivity and the redox conditions. Volcanic–hydrothermal activity and a humid climate promoted high productivity in the water body. This high productivity promotes dyoxic conditions in the bottom water. Fourth-order relative lake-level fluctuations also influence organic matter enrichment. During lake-level rise, increased productivity coupled with reduced consumption and dilution favors organic matter enrichment. Conversely, organic matter accumulation is inhibited during lake-level fall. Ultimately, a depositional model for a freshwater lacustrine basin under a humid to semi-humid climatic background was established. This paper elucidates the influence of sedimentary environment on mudrock lithofacies and organic matter enrichment, providing a theoretical basis for optimizing shale oil reservoir selection and resource assessment, thereby promoting efficient exploration and low-carbon development of shale oil in lacustrine basins. Full article
Show Figures

Figure 1

Back to TopTop