Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (892)

Search Parameters:
Keywords = water fluoridation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 516 KB  
Article
Water Absorption and Solubility of Fluoride-Based Restorative Materials Exposed to Ionizing Radiation
by Sara Čekalović Agović, Eva Klarić, Ana Ivanišević, Majana Soče, Timor Grego and Irena Radin Nujić
Polymers 2025, 17(20), 2736; https://doi.org/10.3390/polym17202736 - 13 Oct 2025
Abstract
Background: Radiotherapy is a key treatment for head and neck cancers but often compromises oral health, partly through its impact on restorative materials. A specific concern is whether ionizing radiation alters the water absorption and solubility of fluoride-releasing restoratives, potentially affecting their durability. [...] Read more.
Background: Radiotherapy is a key treatment for head and neck cancers but often compromises oral health, partly through its impact on restorative materials. A specific concern is whether ionizing radiation alters the water absorption and solubility of fluoride-releasing restoratives, potentially affecting their durability. This study aimed to evaluate these properties following clinically relevant radiation exposure. Methods: Seven contemporary fluoride-releasing restorative materials (Fuji IX, Equia Forte HT, Fuji Triage, Activa Presto, Cention, Luminos, and Beautifil II) were tested (n = 10 per group). Specimens were either irradiated with 70 Gy in 35 fractions using a clinical linear accelerator or maintained as non-irradiated controls. Water absorption and solubility were measured over 35 days according to ISO 4049 protocols, and data were analyzed with repeated-measures ANOVA. Results: Across all materials, irradiated specimens exhibited slightly higher water absorption and solubility values compared to controls; however, differences were not statistically significant (p > 0.05). Material-specific trends were observed, with Fuji IX, Fuji Triage, Beautifil II, and Equia Forte showing relatively higher absolute values. Conclusions: Clinically relevant ionizing radiation did not significantly affect the water absorption or solubility of the tested fluoride-releasing restorative materials, suggesting preserved physicochemical stability under therapeutic conditions. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

17 pages, 1640 KB  
Article
Exposure to Fluoride During Pregnancy and Lactation Induces Metabolic Imbalance in Pancreas: A Toxicological Insight Using the Rat Model
by Marta Skórka-Majewicz, Wojciech Żwierełło, Arleta Drozd, Irena Baranowska-Bosiacka, Donata Simińska, Agata Wszołek and Izabela Gutowska
Int. J. Mol. Sci. 2025, 26(19), 9817; https://doi.org/10.3390/ijms26199817 - 9 Oct 2025
Viewed by 133
Abstract
Fluoride is a widespread environmental toxin that disrupts metabolic and endocrine functions, but its impact on pancreatic inflammation and hormone secretion remains unclear. This study examined how chronic fluoride exposure affects pancreatic inflammation and secretory function in rats. Pregnant Wistar rats received sodium [...] Read more.
Fluoride is a widespread environmental toxin that disrupts metabolic and endocrine functions, but its impact on pancreatic inflammation and hormone secretion remains unclear. This study examined how chronic fluoride exposure affects pancreatic inflammation and secretory function in rats. Pregnant Wistar rats received sodium fluoride (NaF) at 50 mg/L in drinking water during gestation and lactation. Male offspring continued exposure until 3 months old. Controls received fluoride-free water. Pancreatic tissue and serum were collected. Fluoride levels were measured potentiometrically. Eicosanoids were quantified by SPE and HPLC. Serum insulin, glucagon, and somatostatin were measured by ELISA. Histological and biochemical markers of inflammation and oxidative stress were assessed. Fluoride exposure did not lead to significant accumulation in the pancreas or serum. However, fluoride-exposed rats exhibited a significant decrease in serum insulin and somatostatin concentrations, while glucagon levels remained unchanged. Additionally, the pancreas of fluoride-treated animals showed markedly elevated levels of pro-inflammatory eicosanoids, including prostaglandin E2, leukotrienes A4 and B4, and HETE/HODE derivatives, indicating activation of cyclooxygenase and lipoxygenase pathways. Sustained low-dose fluoride exposure induced pancreatic inflammation and disrupted endocrine homeostasis in rats. These findings suggest that chronic fluoride intake may impair insulin secretion and promote pre-diabetic alterations, warranting further research. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

18 pages, 2770 KB  
Article
Distribution Characteristics and Enrichment Mechanisms of Fluoride in Alluvial–Lacustrine Facies Clayey Sediments in the Land Subsidence Area of Cangzhou Plain, China
by Juyan Zhu, Rui Liu, Haipeng Guo, Juan Chen, Di Ning and Xisheng Zang
Water 2025, 17(19), 2887; https://doi.org/10.3390/w17192887 - 3 Oct 2025
Viewed by 398
Abstract
Compression of clayey sediments not only causes land subsidence but also results in geogenic high fluoride groundwater. The distribution characteristics and enrichment mechanisms of fluoride in alluvial−lacustrine facies clayey sediments in the land subsidence area of Cangzhou Plain, China, were investigated using sample [...] Read more.
Compression of clayey sediments not only causes land subsidence but also results in geogenic high fluoride groundwater. The distribution characteristics and enrichment mechanisms of fluoride in alluvial−lacustrine facies clayey sediments in the land subsidence area of Cangzhou Plain, China, were investigated using sample collection, mineralogical research, and hydrogeochemical and isotopic analysis. The results show that F concentration of groundwater samples ranged from 0.31 to 5.54 mg/L in aquifers. The total fluoride content of clayey sediments ranged from 440 to 792 mg/kg and porewater F concentration ranged from 0.77 to 4.18 mg/L. Clay minerals containing fine particles, such as muscovite, facilitate the enrichment of fluoride in clayey sediments, resulting in higher total fluoride levels than those in sandy sediments. The clay porewater F predominantly originated from the dissolution of water-soluble F and the desorption of exchangeable F from sediments. The F concentration in porewater was further influenced by ionic interactions such as cation exchange. The stable sedimentary environment and intense compression promoted the dissolution of F–bearing minerals and the desorption of adsorbed F in deep clayey sediments. The similar composition feature of δ2H−δ18O in deep groundwater and clay porewater samples suggests a significant mixing effect. These findings highlight the joint effects of hydrogeochemical and mineralogical processes on F behavior in clayey sediments. Full article
Show Figures

Figure 1

35 pages, 5230 KB  
Article
Electrochemical Performances of Li-Ion Batteries Based on LiFePO4 Cathodes Supported by Bio-Sourced Activated Carbon from Millet Cob (MC) and Water Hyacinth (WH)
by Wend-Waoga Anthelme Zemane and Oumarou Savadogo
Batteries 2025, 11(10), 361; https://doi.org/10.3390/batteries11100361 - 30 Sep 2025
Viewed by 427
Abstract
The electrochemical performance of Li-ion batteries employing LiFePO4 (LFP) cathodes supported by bio-sourced activated carbon derived from millet cob (MC) and water hyacinth (WH) were systematically investigated. Carbon activation was carried out using potassium hydroxide (KOH) at varying mass ratios of KOH [...] Read more.
The electrochemical performance of Li-ion batteries employing LiFePO4 (LFP) cathodes supported by bio-sourced activated carbon derived from millet cob (MC) and water hyacinth (WH) were systematically investigated. Carbon activation was carried out using potassium hydroxide (KOH) at varying mass ratios of KOH to precursor material: 1:1, 2:1, and 5:1 for both WH and MC-derived carbon. The physical properties (X-ray diffraction patterns, BET surface area, micropore and mesopore volume, conductivity, etc.) and electrochemical performance (specific capacity, discharge at various current rates, electrochemical impedance measurement, etc.) were determined. Material characterization revealed that the activated carbon derived from MC exhibits an amorphous structure, whereas that obtained from WH is predominantly crystalline. High specific surface areas were achieved with activated carbons synthesized using a low KOH-to-carbon mass ratio (1:1), reaching 413.03 m2·g−1 for WH and 216.34 m2·g−1 for MC. However, larger average pore diameters were observed at higher activation ratios (5:1), measuring 8.38 nm for KOH/WH and 5.28 nm for KOH/MC. For both biomass-derived carbons, optimal electrical conductivity was obtained at a 2:1 activation ratio, with values of 14.7 × 10−3 S·cm−1 for KOH/WH and 8.42 × 10−3 S·cm−1 for KOH/MC. The electrochemical performance of coin cells based on cathodes composed of 85% LiFePO4, 8% of these activated carbons, and 7% polyvinylidene fluoride (PVDF) as a binder, with lithium metal as the anode were studied. The LiFePO4/C (LFP/C) cathodes exhibited specific capacities of up to 160 mAh·g−1 at a current rate of C/12 and 110 mAh·g−1 at 5C. Both LFP/MC and LFP/WH cathodes exhibit optimal energy density at specific values of pore size, pore volume, charge transfer resistance (Rct), and diffusion coefficient (DLi), reflecting a favorable balance between ionic transport, accessible surface area, and charge conduction. Maximum energy densities relative to active mass were recorded at 544 mWh·g−1 for LFP/MC 2:1, 554 mWh·g−1 for LFP/WH 2:1, and 568 mWh·g−1 for the reference LFP/graphite system. These performance results demonstrate that the development of high-performing bio-sourced activated carbon depends on the optimization of various parameters, including chemical composition, specific surface area, pore volume and size distribution, as well as electrical conductivity. Full article
Show Figures

Figure 1

28 pages, 1140 KB  
Article
Fluoride Levels in Austrian Drinking Water Are Insufficient for Effective Caries Prevention
by Alice Blufstein, Elias Salzmann, Bledar Lilaj, Rinet Dauti, Oleh Andrukhov and Andrea Nell
Dent. J. 2025, 13(10), 446; https://doi.org/10.3390/dj13100446 - 29 Sep 2025
Viewed by 323
Abstract
Background/Objectives: Fluorides play a well-established role in preventing dental caries, primarily by enhancing enamel resistance and inhibiting demineralization. Drinking water is among the most important sources of systemic fluoride intake. In 1993 and 2007, national analyses of Austrian drinking water revealed fluoride [...] Read more.
Background/Objectives: Fluorides play a well-established role in preventing dental caries, primarily by enhancing enamel resistance and inhibiting demineralization. Drinking water is among the most important sources of systemic fluoride intake. In 1993 and 2007, national analyses of Austrian drinking water revealed fluoride levels below 0.5 mg/L in almost all regions, which is insufficient for effective caries prevention. The present study aimed to re-examine the fluoride concentration in Austrian drinking water. Methods: Drinking water was collected in a total of 1985 Austrian municipalities. Fluoride concentration was measured by a fluoride-selective electrode. Results: The average fluoride concentration in the measured water samples ranged between 0.1 and 0.27 mg/L, depending on the region. The analysis revealed that 98% of the municipal drinking water samples contained fluoride at concentrations below 0.5 mg/L. In almost one quarter of Austrian municipalities, the fluoride levels amounted to less than 0.1 mg/L. The fluoride concentration in the drinking water of one Tyrolean municipality exceeded the recommended threshold. Conclusions: The results of the study reveal that the fluoride concentration in Austrian drinking water is generally too low to provide effective prevention against dental caries, affecting nearly all municipalities. Notably, the drinking water of one municipality reached potentially harmful fluoride levels. These findings could be used as a basis for targeted and individual fluoride supplementation, as well as for national or area-specific guidelines. Full article
Show Figures

Graphical abstract

14 pages, 2778 KB  
Article
Evaluation of Fluoride Adsorptive Removal by Metallic Phosphates
by Ruijie Wang, Yingpeng Gu, Mengfei Ma and Yue Sun
Appl. Sci. 2025, 15(19), 10454; https://doi.org/10.3390/app151910454 - 26 Sep 2025
Viewed by 268
Abstract
Currently, various techniques are efficient in eliminating high quantities of fluoride from water, while the deep treatment of a low concentration of fluoridated water is inadequate. In this work, four metallic phosphates were synthesized, including YP, ZrP, CeP, and LaP, to enhance the [...] Read more.
Currently, various techniques are efficient in eliminating high quantities of fluoride from water, while the deep treatment of a low concentration of fluoridated water is inadequate. In this work, four metallic phosphates were synthesized, including YP, ZrP, CeP, and LaP, to enhance the elimination of fluoride. The X-ray diffractometer data demonstrated that ZrP was amorphous, while CeP, LaP, and YP were highly crystalline. YP had a strong fluoride removal ability in a neutral environment, and ZrP exhibited a superior fluoride adsorption effect in acidic media. The adsorption kinetic results suggested that YP, CeP, and LaP could achieve the adsorption equilibrium within 150 min, which was faster than ZrP. YP had the largest fluoride adsorption capacity fitted by Langmuir of 31.61 mg/g at 298 K, followed by ZrP, which was greater than those of CeP and LaP. All four metallic phosphates showed high selectivity in the interference of competing anions and organics, with YP and ZrP exhibiting superior selectivity than CeP and LaP. The adsorption mechanism was ligand exchange between metallic phosphate particles and fluoride, which was validated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The adsorption rate of metallic phosphates remained essentially stable in five consecutive adsorption–desorption cycles. Overall, metallic phosphates, especially YP and ZrP, have enormous potential in enhancing fluoride removal in the treatment of fluoridated water. Full article
(This article belongs to the Special Issue Innovative Approaches and Materials for Water Treatment)
Show Figures

Figure 1

13 pages, 2146 KB  
Article
PVDF/Polypyrrole Composite Ultrafiltration Membrane with Enhanced Hydrophilicity, Permeability, and Antifouling Properties for Efficient Crude Oil Wastewater Separation
by Banan Hudaib, Rund Abu-Zurayk, Asma Eskhan and Muayad Esaifan
Polymers 2025, 17(19), 2566; https://doi.org/10.3390/polym17192566 - 23 Sep 2025
Viewed by 374
Abstract
The treatment of oily wastewater poses a significant environmental challenge, creating a demand for advanced separation technologies. Membrane technologies, especially ultrafiltration (UF), offer a promising solution. A novel composite polyvinylidene fluoride (PVDF) and polypyrrole (PPy) membrane was created via an in situ polymerization [...] Read more.
The treatment of oily wastewater poses a significant environmental challenge, creating a demand for advanced separation technologies. Membrane technologies, especially ultrafiltration (UF), offer a promising solution. A novel composite polyvinylidene fluoride (PVDF) and polypyrrole (PPy) membrane was created via an in situ polymerization method, which enhances the membrane’s functionality by combining the chemical stability of PVDF with the outstanding properties of PPy, through a simple two-step process that decreases manufacturing costs. The PPy content in the PVDF matrix varies from 0 to 1.5 wt%. The membranes were analyzed for their structure, morphology, hydrophilicity, porosity, mechanical strength, flux, oil rejection, and antifouling performance. Fourier-transform infrared spectroscopy (FTIR) confirmed the successful integration of PPy, which increased hydrophilicity; the contact angle dropped from 68° for pure PVDF to 55.6° at a 1.5% PPy concentration. Scanning electron microscopy (SEM) images showed an evident increase in surface porosity and macrovoid formation; calculated porosity increased from 59.5% to 79.9%, and the hydraulic pore size increased from 2.8 nm to 28.5 nm with 1.5% PPy. Although porosity improved, mechanical strength decreased due to the formation of voids. The enhancement in hydrophilicity and porosity resulted in improved flux recovery (FR), with the PP-1 membrane achieving 93% FR and 93% fouling resistance (Rt), indicating an optimal balance for practical use. These modified membranes successfully reduce fouling, making them easier to clean in oil–water separation applications. PP-1 showed only a reduction in flux but maintained an oil rejection rate over 99%, demonstrating high stability. This combination of PVDF’s durability and PPy’s functionality makes a cost-effective, high-performance membrane that transforms oil/water separation processes for sustainable water security. Full article
Show Figures

Figure 1

12 pages, 1452 KB  
Article
Fluoride Release, Recharge, and Mass Stability of Restorative Dental Materials: An In Vitro Study
by Md Sofiqul Islam, Vivek Padmanabhan, Ghaid Koniali, Mohannad Zain Alabdin, Smriti Aryal Ac, Nada Tawfig Hashim, Mohamed Ahmed Elsayed and Muhammed Mustahsen Rahman
Dent. J. 2025, 13(10), 438; https://doi.org/10.3390/dj13100438 - 23 Sep 2025
Cited by 1 | Viewed by 760
Abstract
Background/Objectives: Fluoride ion plays a crucial role in protecting teeth against caries by re-mineralizing the caries lesion. The objective of this study was to quantify and compare the fluoride release and recharge of restorative dental materials and their correlation with mass stability. [...] Read more.
Background/Objectives: Fluoride ion plays a crucial role in protecting teeth against caries by re-mineralizing the caries lesion. The objective of this study was to quantify and compare the fluoride release and recharge of restorative dental materials and their correlation with mass stability. Methods: For this study, 5 × 5 × 2 mm blocks were prepared from GIC, RMGI L, GIOMER, Resin Composite, and RMGI R using a customized silicone index. The amount of fluoride released from each material was quantified using a fluoride electrode at 0 h, 1 day, 3 days, 1-week, and 2-week periods. The fluoride recharge of each material was calculated by quantifying the amount of fluoride uptake from high concentration fluoride solution over a period of 1-week. The mass stability of the materials was measured be quantifying the weight loss/weight gain during fluoride release and recharge phase. The correlation of fluoride release/recharge with weight loss/gain were analyzed using Pearson correlation. Results: One-way ANOVA showed a statistically significant difference in the amount of fluoride released from each group (p < 0.05). The maximum amount of fluoride release was observed on the 3rd day in all the groups except the GIC group, which showed an ascending concentration of fluoride release till 2 weeks. One-way ANOVA showed statistically significant differences in weight loss/gain among the rested group (p < 0.05). GIC showed the highest amount of weight loss and weight gain among the tested materials. Conclusions: The GIC material has the highest fluoride release and RMGI L has the highest fluoride recharge capability. The conventional GIC showed the least mass stability during fluoride release/recharge. Full article
Show Figures

Graphical abstract

16 pages, 14433 KB  
Article
Groundwater Fluoride Prediction for Sustainable Water Management: A Comparative Evaluation of Machine Learning Approaches Enhanced by Satellite Embeddings
by Yunbo Wei, Rongfu Zhong and Yun Yang
Sustainability 2025, 17(18), 8505; https://doi.org/10.3390/su17188505 - 22 Sep 2025
Cited by 1 | Viewed by 381
Abstract
Groundwater fluoride contamination poses a significant threat to sustainable water resources and public health, yet conventional water quality analysis is both time-consuming and costly, making large-scale, sustainable monitoring challenging. Machine learning methods offer a promising, cost-effective, and sustainable alternative for assessing the spatial [...] Read more.
Groundwater fluoride contamination poses a significant threat to sustainable water resources and public health, yet conventional water quality analysis is both time-consuming and costly, making large-scale, sustainable monitoring challenging. Machine learning methods offer a promising, cost-effective, and sustainable alternative for assessing the spatial distribution of fluoride. This study aimed to develop and compare the performance of Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN) models for predicting groundwater fluoride contamination in the Datong Basin with the help of satellite embeddings from the AlphaEarth Foundation. Data from 391 groundwater sampling points were utilized, with the dataset partitioned into training (80%) and testing (20%) sets. The ANOVA F-value of each feature was calculated for feature selection, identifying surface elevation, pollution, population, evaporation, vertical distance to the rivers, distance to the Sanggan river, and nine extra bands from the satellite embeddings as the most relevant input variables. Model performance was evaluated using the confusion matrix and the area under the receiver operating characteristic curve (ROC-AUC). The results showed that the SVM model demonstrated the highest ROC-AUC (0.82), outperforming the RF (0.80) and MLP (0.77) models. The introduction of satellite embeddings improved the performance of all three models significantly, with the prediction errors decreasing by 13.8% to 23.3%. The SVM model enhanced by satellite embeddings proved to be a robust and reliable tool for predicting groundwater fluoride contamination, highlighting its potential for use in sustainable groundwater management. Full article
(This article belongs to the Topic Water Management in the Age of Climate Change)
Show Figures

Figure 1

18 pages, 3240 KB  
Article
Zn2+-Mediated Co-Deposition of Dopamine/Tannic Acid/ZIF-8 on PVDF Hollow Fiber Membranes for Enhanced Antifouling Performance and Protein Separation
by Lei Ni, Qiancheng Cui, Zhe Wang, Xueting Zhang, Jun Ma, Wenjuan Zhang and Caihong Liu
Membranes 2025, 15(9), 277; https://doi.org/10.3390/membranes15090277 - 15 Sep 2025
Viewed by 709
Abstract
The inherent hydrophobicity of poly(vinylidene fluoride) (PVDF) ultrafiltration membranes leads to severe membrane fouling when processing proteinaceous solutions and organic contaminants, significantly limiting their practical applications. This study presents a novel metal-ion mediated co-deposition strategy for fabricating high-performance antifouling poly(vinylidene fluoride) (PVDF) hollow [...] Read more.
The inherent hydrophobicity of poly(vinylidene fluoride) (PVDF) ultrafiltration membranes leads to severe membrane fouling when processing proteinaceous solutions and organic contaminants, significantly limiting their practical applications. This study presents a novel metal-ion mediated co-deposition strategy for fabricating high-performance antifouling poly(vinylidene fluoride) (PVDF) hollow fiber ultrafiltration membranes. Through Zn2+ coordination-driven self-assembly, a uniform and stable composite coating of dopamine (DA), tannic acid (TA), and ZIF-8 nanoparticles was successfully constructed on the membrane surface under mild conditions. The modified membrane exhibited significantly enhanced hydrophilicity, with a water contact angle of 21° and zeta potential of −29.68 mV, facilitating the formation of a dense hydration layer that effectively prevented protein adhesion. The membrane demonstrated exceptional separation performance, achieving a pure water permeability of 771 L/(m2∙h∙bar) and bovine serum albumin (BSA) rejection of 97.7%. Furthermore, it showed outstanding antifouling capability with flux recovery rates exceeding 83.6%, 74.7%, and 71.5% after fouling by BSA, lysozyme, and ovalbumin, respectively. xDLVO analysis revealed substantially increased interfacial free energy and stronger repulsive interactions between the modified surface and protein foulants. The antifouling mechanism was attributed to the synergistic effects of hydration layer formation, optimized pore structure, additional water transport pathways from ZIF-8 incorporation, and electrostatic repulsion from negatively charged surface groups. This work provides valuable insights into the rational design of high-performance antifouling membranes for sustainable water treatment and protein separation applications. Full article
Show Figures

Figure 1

22 pages, 327 KB  
Review
Fluoride in Dental Caries Prevention and Treatment: Mechanisms, Clinical Evidence, and Public Health Perspectives
by Chin-Hsuan Yeh, Yung-Li Wang, Thi Thuy Tien Vo, Yi-Ching Lee and I-Ta Lee
Healthcare 2025, 13(17), 2246; https://doi.org/10.3390/healthcare13172246 - 8 Sep 2025
Viewed by 1880
Abstract
Background: Dental caries remains one of the most prevalent chronic diseases worldwide. Fluoride has long been recognized as a cornerstone of caries prevention through enamel remineralization, inhibition of demineralization, and antibacterial activity. However, controversies persist regarding systemic exposure, potential health risks, and ethical [...] Read more.
Background: Dental caries remains one of the most prevalent chronic diseases worldwide. Fluoride has long been recognized as a cornerstone of caries prevention through enamel remineralization, inhibition of demineralization, and antibacterial activity. However, controversies persist regarding systemic exposure, potential health risks, and ethical debates over community water fluoridation. Previous reviews often focused on isolated interventions, whereas a critical synthesis of mechanisms, clinical efficacy, safety, and public health perspectives is still lacking. Methods: This narrative review synthesized peer-reviewed publications from 2000 to 2025 retrieved from PubMed, Scopus, Web of Science, and leading dental journals. Emphasis was placed on randomized controlled trials, systematic reviews, meta-analyses, and major policy documents. Evidence was thematically appraised across mechanisms of action, clinical applications, comparative efficacy, safety, and sociocultural considerations. Results: Fluoride consistently shows preventive and therapeutic benefits across multiple delivery forms, including toothpaste, varnishes, mouthrinses, supplements, and silver diamine fluoride, with particular advantages for high-risk groups such as children, orthodontic patients, and older adults. Nonetheless, study heterogeneity, variations in protocols, and concerns regarding fluorosis and possible neurodevelopmental effects highlight persistent uncertainties. Comparative analyses reveal trade-offs between efficacy and acceptance, for example, the high caries-arrest rate of silver diamine fluoride compared with its esthetic drawback. Emerging alternatives such as nano-hydroxyapatite, fluoride-containing bioactive glass, and probiotic-based approaches are promising but currently supported by limited clinical data. Conclusions: Fluoride remains central to caries prevention, yet its optimal use requires balancing benefits against risks, addressing cultural and socioeconomic barriers, and tailoring strategies to individual and community contexts. This narrative synthesis underscores the need for well-designed multicenter randomized controlled trials, longitudinal studies to refine safe exposure thresholds, evaluations of novel biomaterials and delivery systems, and the incorporation of patient-reported outcomes to guide future evidence-based policies and clinical practices. Full article
(This article belongs to the Special Issue Oral Healthcare: Diagnosis, Prevention and Treatment—2nd Edition)
17 pages, 7046 KB  
Article
Hydrogeochemical Processes and Sustainability Challenges of Arsenic- and Fluoride-Contaminated Groundwater in Arid Regions: Evidence from the Tarim Basin, China
by Yunfei Chen, Jun Hou, Jinlong Zhou, Jiawen Yu, Jie Zhang and Jiangtao Zhao
Sustainability 2025, 17(17), 7971; https://doi.org/10.3390/su17177971 - 4 Sep 2025
Cited by 1 | Viewed by 793
Abstract
The anomalous enrichment of arsenic (As) and fluoride (F) in groundwater in the oasis area at the southern margin of the Tarim Basin has become a critical environmental and sustainability challenge. It poses not only potential health risks but also profound socio-economic impacts [...] Read more.
The anomalous enrichment of arsenic (As) and fluoride (F) in groundwater in the oasis area at the southern margin of the Tarim Basin has become a critical environmental and sustainability challenge. It poses not only potential health risks but also profound socio-economic impacts on local communities, threatening the long-term security of water resources in arid regions. Therefore, an in-depth investigation of the hydrochemical characteristics of groundwater and the co-enrichment mechanism of As and F is essential for advancing sustainable groundwater management. In this study, 110 phreatic water samples and 50 confined water samples were collected, and mathematical and statistical methods were applied to analyze the hydrochemical characteristics, sources, and co-enrichment mechanisms of As and F. The results show that (1) the groundwater chemistry types are mainly Cl·SO4-Na, SO4·Cl-Na·Mg, Cl·SO4-Na·Mg, and Cl-Na, and the chemistry is primarily controlled by evaporation and concentration processes, with additional influence from human activities and cation exchange; (2) As and F mainly originate from soils and minerals, and are released through dissolution; (3) As and F enrichment is positively correlated with pH, Na+, and HCO3, but negatively correlated with Ca2+, Mg2+, and SO42−, indicating that a weakly alkaline hydrochemical environment with high HCO3 and Na+, and low Ca2+ promotes their enrichment; (4) strong evaporative concentration in retention zones, combined with artificial groundwater extraction, further intensifies As and F accumulation. This study not only provides an innovative theoretical and methodological framework for exploring trace element enrichment mechanisms in groundwater under arid conditions but also delivers critical scientific evidence for developing sustainable water resource management strategies, mitigating water-related health risks, and supporting regional socio-economic resilience under global climate change. Full article
(This article belongs to the Special Issue (Re)Designing Processes for Improving Supply Chain Sustainability)
Show Figures

Figure 1

18 pages, 2415 KB  
Article
Fluoride Sorption Performance of a Layered Double-Hydroxide–Based Adsorbent Using Soil Extract Solution as the Solvent
by Miu Nishikata, Yohey Hashimoto, Kazumi Fujii, Tomohiro Kato and Tetsuo Yasutaka
Minerals 2025, 15(9), 937; https://doi.org/10.3390/min15090937 - 2 Sep 2025
Viewed by 444
Abstract
Rocks and soil excavated at construction sites can contain naturally occurring toxic substances. One low-cost means of managing the environmental burden posed by leaching of these substances is the attenuation layer method, which uses an adsorbent positioned between the fill and ground. Evaluation [...] Read more.
Rocks and soil excavated at construction sites can contain naturally occurring toxic substances. One low-cost means of managing the environmental burden posed by leaching of these substances is the attenuation layer method, which uses an adsorbent positioned between the fill and ground. Evaluation of adsorbent performance based on sorption tests is important for designing and optimizing attenuation layer methods; however, few studies have examined the effect of coexisting ions on sorption performance. Here, we examined the effects of these ions contained in soil extract solutions on the fluoride sorption performance of a commercial layered double-hydroxide (LDH)–based adsorbent used in the attenuation layer method. Batch and column sorption tests showed that the distribution coefficients in the presence of coexisting ions were 29%–72% lower than those in tests conducted without coexisting ions. Furthermore, the results of a solid-state analysis and various ion analyses suggest that competition for the sorption sites of LDH by sulfate ions in the soil extract solution was the cause of the reduced sorption performance. These findings imply that reliance only on deionized water-based sorption tests may overestimate the real-world sorption performance of LDH-based adsorbents. Full article
Show Figures

Figure 1

17 pages, 13988 KB  
Article
Efficient Removal of Pb(II) Ions from Aqueous Solutions Using an HFO-PVDF Composite Adsorption Membrane
by Shuhang Lu, Qianhui Xu, Mei-Ling Liu, Dong Zou and Guangze Nie
Membranes 2025, 15(9), 264; https://doi.org/10.3390/membranes15090264 - 1 Sep 2025
Viewed by 703
Abstract
The efficient purification of Pb(II)-containing wastewater is essential for safeguarding public health and maintaining the aquatic environment. In this study, novel hydrous ferric oxide (HFO) nanoparticle-embedded poly(vinylidene fluoride) (PVDF) composite adsorption membranes were developed through a simple blending method for efficient Pb(II) removal. [...] Read more.
The efficient purification of Pb(II)-containing wastewater is essential for safeguarding public health and maintaining the aquatic environment. In this study, novel hydrous ferric oxide (HFO) nanoparticle-embedded poly(vinylidene fluoride) (PVDF) composite adsorption membranes were developed through a simple blending method for efficient Pb(II) removal. This composite membrane (denoted as HFO-PVDF) combines the excellent selectivity of HFO nanoparticles for Pb(II) with the membrane’s advantage of easy scalability. The optimized HFO-PVDF(1.5) membrane achieved adsorption equilibrium within 20 h and exhibited excellent adsorption capacity. Moreover, adsorption capacity markedly enhanced with increasing temperature, confirming the endothermic nature of the process. The developed HFO-PVDF membranes demonstrate significant potential for real-world wastewater treatment applications, exhibiting exceptional selectivity for Pb(II) in complex ionic matrices and could be effectively regenerated via a relatively straightforward process. Furthermore, filtration and dynamic regeneration tests demonstrated that at an initial Pb(II) concentration of 5 mg/L, the membrane operated continuously for 10–13 h before regeneration, treating up to 200 L/m2 of wastewater before breakthrough, highlighting potential for cost-effective industrial wastewater treatment. This study not only demonstrates the high efficiency of the HFO-PVDF membrane for heavy metal ion removal but also provides a theoretical foundation and technical support for its practical application in water treatment. Full article
Show Figures

Figure 1

20 pages, 4438 KB  
Article
Fluoride Release and Biological Properties of Resin-Modified Glass Ionomer Cement Doped with Copper
by Aleksandra Piszko, Paweł J. Piszko, Michał J. Kulus, Magdalena Pajączkowska, Joanna Nowicka, Aleksandra Chwirot, Agnieszka Rusak, Grzegorz Chodaczek, Maria Szymonowicz and Maciej Dobrzyński
Appl. Sci. 2025, 15(17), 9506; https://doi.org/10.3390/app15179506 - 29 Aug 2025
Viewed by 663
Abstract
Glass ionomers are utilized extensively within the domain of dentistry, for instance, as provisional restorations, liners, or bases, in addition to their application as pit and fissure sealers. It is imperative that this type of material exhibits favorable physico-chemical and biological properties. The [...] Read more.
Glass ionomers are utilized extensively within the domain of dentistry, for instance, as provisional restorations, liners, or bases, in addition to their application as pit and fissure sealers. It is imperative that this type of material exhibits favorable physico-chemical and biological properties. The primary objective of the presented study is to modify commercial resin-modified glass ionomer (Riva Light Cure, RMGIC) by doping it with copper particles (RMGIC + Cu) and to evaluate its properties in terms of potential beneficial clinical applications. Susceptibility to adhesion of microbial species and potential antimicrobial activity was evaluated against the Candida albicans, Streptococcus mutans, and Lactobacillus rhamnosus strains. Antiviral properties were evaluated against two viruses: Herpes simplex virus type 1 and human Adenovirus 5. Cytotoxicity of the materials was assessed using Balb/3T3 mouse fibroblast cell line. Temporal fluoride release up to 168 h in water and artificial saliva of different pH levels were also measured and assessed using statistical analysis. Samples were also subjected to Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy and Fourier-Transform Raman Spectroscopy. The findings of the present study demonstrate that RMGIC + Cu displays reduced biofilm formation against the tested strains when compared to non-modified material. The influence of the Cu presence on fluoride release is most pronounced in artificial saliva with a low pH (4.5), where the difference is significantly higher in samples with Cu than in samples without it. No reduction in herpes simplex 1 titers under the influence of either material was observed, whereas both materials exhibited virucidal properties against human adenovirus 5. Commercial glass ionomer presented no cytotoxicity, while the modified biomaterial caused changes in the fibroblast culture only under the sample (slight cytotoxicity, grade 1). Considering all the acquired results, doping glass ionomer with copper may be an interesting modification enhancing antimicrobial properties of the biomaterial, but it requires further evaluation in terms of long-term cytotoxicity before further in vivo studies. Full article
(This article belongs to the Section Applied Dentistry and Oral Sciences)
Show Figures

Figure 1

Back to TopTop