Hydrogeochemical Processes and Sustainability Challenges of Arsenic- and Fluoride-Contaminated Groundwater in Arid Regions: Evidence from the Tarim Basin, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Testing
3. Results
3.1. Groundwater Chemistry
3.2. Co-Occurrence of As and F in the Groundwater
3.3. Relationship Between As and F in Groundwater and Other Chemical Components
4. Discussion
4.1. Main Controlling Factors of Water Chemistry
4.2. Hydrogeochemical Processes of Groundwater Containing As and F
4.3. Sources and Enrichment Mechanisms of As and F in Groundwater
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alharbi, S.; Felemban, A.; Abdelrahim, A.; Al-Dakhil, M. Agricultural and Technology-Based Strategies to Improve Water-Use Efficiency in Arid and Semiarid Areas. Water 2024, 16, 1842. [Google Scholar] [CrossRef]
- Ahmadi, A.; Keshavarz, M.; Ejlali, F. Resilience to Climate Change in Agricultural Water-Scarce Areas: The Major Obstacles and Adaptive Strategies. Water Resour. Manag. 2024, 39, 1195–1214. [Google Scholar] [CrossRef]
- Ahn, J.S. Geochemical occurrences of arsenic and fluoride in bedrock groundwater: A case study in Geumsan County, Korea. Environ. Geochem. Health 2012, 34 (Suppl. 1), 43–54. [Google Scholar] [CrossRef]
- Alarcón-Herrera, M.T.; Bundschuh, J.; Nath, B.; Nicolli, H.B.; Gutierrez, M.; Reyes-Gomez, V.M.; Nuñez, D.; Martín-Dominguez, I.R.; Sracek, O. Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: Genesis, mobility and remediation. J. Hazard. Mater. 2013, 262, 960–969. [Google Scholar] [CrossRef]
- Gomez, M.L.; Blarasin, M.T.; Martinez, D.E. Arsenic And Fluoride In A Loess Aquifer In The Central Area Of Argentina. Environ. Geol. 2009, 57, 143–155. [Google Scholar] [CrossRef]
- Armendariz, C.A.R.; Benavides, A.C.; Badenszki, E.; Banning, A. Multimethod characterization of geogenic sources of fluoride, arsenic, and uranium in Mexican groundwater. Appl. Geochem. 2024, 175, 106184. [Google Scholar] [CrossRef]
- Podgorski, J.; Berg, M.J.S. Global threat of arsenic in groundwater. Science 2020, 368, 845–850. [Google Scholar] [CrossRef]
- Jha, P.K.; Tripathi, P. Arsenic and fluoride contamination in groundwater: A review of global scenarios with special reference to India. TERI Inf. Dig. Energy Environ. (TIDEE) 2021, 20, 234. [Google Scholar] [CrossRef]
- Wen, D.; Zhang, F.; Zhang, E.; Wang, C.; Han, S.; Zheng, Y. Arsenic, fluoride and iodine in groundwater of China. J. Geochem. Explor. 2013, 135, 1–21. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, D.; Wen, D.; Wu, Y.; Ni, P.; Jiang, Y.; Guo, Q.; Li, F.; Zheng, H.; Zhou, Y. Arsenic mobilization in aquifers of the southwest Songnen basin, P.R. China: Evidences from chemical and isotopic characteristics. Sci. Total. Environ. 2014, 490, 590–602. [Google Scholar] [CrossRef] [PubMed]
- Jianmin, B.; Yue, G.; Yu, W. Hydrogeochemical Characteristics of Areas with Arsenic Poisoning from Drinking Water and Arsenic Enrichment in Groundwater in Songnen Plain of China. Asian J. Chem. 2015, 27, 713–721. [Google Scholar] [CrossRef]
- Gao, X.; Su, C.; Wang, Y.; Hu, Q. Mobility of arsenic in aquifer sediments at Datong Basin, northern China: Effect of bicarbonate and phosphate. J. Geochem. Explor. 2013, 135, 93–103. [Google Scholar] [CrossRef]
- Khair, A.M.; Li, C.; Hu, Q.; Gao, X.; Wanga, Y. Fluoride and arsenic hydrogeochemistry of groundwater at Yuncheng basin, Northern China. Geochem. Int. 2014, 52, 868–881. [Google Scholar] [CrossRef]
- Ji, Y.; Zhou, Y.; Zhao, X.; Zhou, J.; Sun, Y.; Lei, M. Distribution and Co-Enrichment Factors of Arsenic and Fluoride in the Groundwater of the Plain Area of the Aksu River Basin, Xinjiang, PR China. Water 2024, 16, 3201. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, J.; Yang, F.; Ji, Y. Distribution and co-enrichment genesis of arsenic, fluorine and iodine in groundwater of the oasis belt in the southern margin of Tarim Basin. Earth Sci. Front. 2022, 29, 99–114. [Google Scholar]
- Chen, L.; Ma, T.; Wang, Y.; Zheng, J. Health risks associated with multiple metal(loid)s in groundwater: A case study at Hetao Plain, northern China. Environ. Pollut. 2020, 263 Pt B, 114562. [Google Scholar] [CrossRef]
- Zhou, Y.; Zeng, Y.; Zhou, J.; Guo, H.; Li, Q.; Jia, R.; Chen, Y.; Zhao, J. Distribution of groundwater arsenic in Xinjiang, P.R. China. Appl. Geochem. 2017, 77, 116–125. [Google Scholar] [CrossRef]
- Rodríguez-Lado, L.; Sun, G.; Berg, M.; Zhang, Q.; Xue, H.; Zheng, Q.; Johnson, C.A. Groundwater Arsenic Contamination Throughout China. Science 2013, 341, 866–868. [Google Scholar] [CrossRef]
- Lan, Y.; He, Y.; Yu, Q.; Song, Q. Delineating Sources of Groundwater Recharge in an Arsenic-Affected Aquifer in Jianghan Plain Using Stable Isotopes. Hydrol. Process. 2025, 39, e70050. [Google Scholar] [CrossRef]
- Madhukar, M.; Murthy, S.; Udayashankara, T.H. Sources of Arsenic in Groundwater and its Health Significance—A Review. Nat. Environ. Pollut. Technol. 2016, 15, 971–979. [Google Scholar]
- Yadav, S.; Varshney, G.; Yadav, M.; Kaur, R. Geochemical Characterization and Assessment of Fluoride Sources in Groundwater. In Fluorides in Drinking Water; Sharma, K., Ed.; Springer: Cham, Switzerland, 2025. [Google Scholar]
- Saha, S.; Selim, A.H.; Roy, M.K. The geological setting of arsenic enrichment in groundwater of the shallow aquifers of the Tista Floodplain, Rangpur, Bangladesh. Int. J. Adv. Geosci. 2020, 8, 231–236. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, M.; Ma, B.; Wang, J. Hydrogeology journal, Distribution and migration mechanism of fluoride in groundwater in the Manas River Basin, Northwest China. Hydrogeol. J. 2018, 26, 1527–1546. [Google Scholar] [CrossRef]
- Fan, W.; Zhou, J.; Zhou, Y.; Zeng, Y.; Chen, Y.; Sun, Y. Water quality and health risk assessment of shallow groundwater in the southern margin of the Tarim Basin in Xinjiang, P.R. China. Hum. Ecol. Risk Assess. Int. J. 2020, 27, 483–503. [Google Scholar] [CrossRef]
- Chen, Y.F.; Zhou, J.L.; Zeng, Y.Y.; Wang, S.T.; Du, J.Y.; Sun, Y.; Gu, S.B. Spatial Distribution of Soil Arsenic and Arsenic Enrichment in Crops in the Oasis Region of the Southeastern Tarim Basin. Huan Jing Ke Xue= Huanjing Kexue 2020, 41, 438–448. [Google Scholar]
- Mao, D.; Lei, J.; Zeng, F.; Rahmutulla, Z.; Wang, C.; Zhou, J. Characteristics of wind erosion and deposition in oasis-desert ecotone in southern margin of Tarim Basin, China. Chin. Geogr. Sci. 2014, 24, 658–673. [Google Scholar] [CrossRef]
- Zhu, B.; Yang, X. Bulletin, The ion chemistry of surface and ground waters in the Taklimakan Desert of Tarim Basin, western China. Chin. Sci. Bull. 2007, 52, 2123–2129. [Google Scholar] [CrossRef]
- Zihua, T.; Guijin, M.; Dongmei, C. Palaeoenvironment of mid- to late Holocene loess deposit of the southern margin of the Tarim Basin, NW China. Environ. Geol. 2009, 58, 1703–1711. [Google Scholar] [CrossRef]
- Getahun, G.A.; Moges, A.; Tekleab, S. Hydro-chemical characterization of groundwater using multivariate statistics in Hawassa City, Southern Ethiopia. Water Pract. Technol. 2024, 19, 4311–4327. [Google Scholar] [CrossRef]
- Camara, A.; Ngom, F.D.; Diaw, M.; Wade, C.T.; Mall, I. Hydrogeochemical Characterization of Aquifer Systems and Surface Water/Groundwater Relations in the Lower Senegal River Valley. J. Geosci. Environ. Prot. 2024, 12, 232–254. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Liu, J. Hydrochemical characteristics of groundwater in Tongchuan City, China. Sci. Res. Essay 2014, 9, 343–351. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, J.; Long, A.; Xu, S.; Guo, T.; Gu, X.; Deng, X.; Zhang, P. Hydrochemical Characteristics and Formation Mechanism of Quaternary Groundwater in Baoshan Basin, Western Yunnan, China. Water 2023, 15, 2736. [Google Scholar] [CrossRef]
- Elumalai, V.; Rajmohan, N.; Sithole, B.; Li, P.; Uthandi, S.; van Tol, J. Geochemical evolution and the processes controlling groundwater chemistry using ionic ratios, geochemical modelling and chemometric analysis in uMhlathuze catchment, KwaZulu-Natal, South Africa. Chemosphere 2023, 312 Pt 1, 137179. [Google Scholar] [CrossRef]
- Deshmukh, K.K. Impact of Human Activities on the Quality of Groundwater from Sangamner Area, Ahmednagar District, Maharashtra, India. Int. Res. J. Environ. Sci. 2013, 2, 66–74. [Google Scholar]
- Li, M.; Wang, H.; Gu, H.; Sun, J.; Chi, B. Assessment of processes controlling the regional distribution of fluoride and arsenic in groundwater of the Western Jilin Province, Northeast China. Environ. Earth Sci. 2024, 83, 686. [Google Scholar] [CrossRef]
- Wang, Z.; Jin, J.; Liu, W.; Zhang, Z.; Yu, X.; Deng, T.; Liu, T.; Jia, Y.; Millet, M. Occurrence and Health Risk Assessment of Fluoride and Nitrate in the Groundwater of the Xilin Gol Grassland in the Inner Mongolian Plateau: A Case Study of the Shengli Basin, China. J. Chem. 2024, 2024, 9930501. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, C.; Yang, W.; Liang, X.; Zhang, L.; Zhang, J. Analysis of the quality, source identification and apportionment of the groundwater in a typical arid and semi-arid region. J. Hydrol. 2023, 625 Pt B, 130169. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, H.; Adimalla, N.; Pei, J.; Zhang, Z.; Liu, H. Co-occurrence of arsenic and fluoride in groundwater of Guide basin in China: Genesis, mobility and enrichment mechanism. Environ. Res. 2024, 244, 117920. [Google Scholar] [CrossRef]
- Kumar, M.; Das, N.; Goswami, R.; Sarma, K.P.; Bhattacharya, P.; Ramanathan, A. Coupling fractionation and batch desorption to understand arsenic and fluoride co-contamination in the aquifer system. Chemosphere 2016, 164, 657–667. [Google Scholar] [CrossRef]
- Guo, H.; Li, Y.; Zhao, K.; Ren, Y.; Wei, C. Removal of arsenite from water by synthetic siderite: Behaviors and mechanisms. J. Hazard. Mater. 2011, 186, 1847–1854. [Google Scholar] [CrossRef] [PubMed]
- Pi, K.; Wang, Y.; Xie, X.; Su, C.; Ma, T.; Li, J.; Liu, Y. Hydrogeochemistry of co-occurring geogenic arsenic, fluoride and iodine in groundwater at Datong Basin, northern China. J. Hazard. Mater. 2015, 300, 652–661. [Google Scholar] [CrossRef]
- Bauer, M.; Blodau, C. Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments. Sci. Total Environ. 2006, 354, 179–190. [Google Scholar] [CrossRef]
- Jiang, Y.; Gao, X.; Yang, X.; Gong, P.; Pan, Z.; Yi, L.; Ma, S.; Li, C.; Kong, S.; Wang, Y. Sulfate-reducing bacteria (SRB) mediated carbonate dissolution and arsenic release: Behavior and mechanisms. Sci. Total. Environ. 2024, 929, 172572. [Google Scholar] [CrossRef]
- Fischer, A.; Saunders, J.; Speetjens, S.; Marks, J.; Redwine, J.; Rogers, S.R.; Ojeda, A.S.; Rahman, M.M.; Billor, Z.M.; Lee, M.K. Long-Term Arsenic Sequestration in Biogenic Pyrite from Contaminated Groundwater: Insights from Field and Laboratory Studies. Minerals 2021, 11, 537. [Google Scholar] [CrossRef]
- Mai, N.T.H.; Postma, D.; Trang, P.T.K.; Jessen, S.; Viet, P.H.; Larsen, F. Adsorption and desorption of arsenic to aquifer sediment on the Red River floodplain at Nam Du, Vietnam. Geochim. Cosmochim. Acta 2014, 142, 587–600. [Google Scholar] [CrossRef] [PubMed]
- Stollenwerk, K.G. Geochemical Processes Controlling Transport of Arsenic in Groundwater: A Review of Adsorption. In Arsenic in Ground Water; Welch, A.H., Stollenwerk, K.G., Eds.; Springer: Boston, MA, USA, 2003; pp. 67–100. [Google Scholar]
- Jia, L.; Cai, C.; Li, K.; Liu, L.; Chen, Z.; Tan, X. Impact of fluorine-bearing hydrothermal fluid on deep burial carbonate reservoirs: A case study from the Tazhong area of Tarim Basin, northwest China. Mar. Pet. Geol. 2022, 139, 105579. [Google Scholar] [CrossRef]
- Li, C.; Gao, X.; Wang, Y. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China—ScienceDirect. Sci. Total Environ. 2015, 508, 155–165. [Google Scholar] [CrossRef]
- Biedunkova, O.; Kuznietsov, P. Integration of water management in the assessment of the impact of heavy metals discharge from the power plant with mitigation strategies. Ecol. Indic. 2025, 175, 113618. [Google Scholar] [CrossRef]
- Li, X.; Lyu, X. Study on the treatment of fluorine-containing wastewater by precipitation-adsorption process. Environ. Prot. Eng. 2023, 49, 55–73. [Google Scholar]
Indicators | Phreatic Water Samples (n = 110) | Confined Water Samples (n = 50) | ||||||
---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Cv | Min | Max | Mean | Cv | |
pH | 7.11 | 8.90 | 8.05 | 0.05 | 6.30 | 8.34 | 7.68 | 0.06 |
K+ | 4.20 | 776.41 | 75.56 | 2.21 | 8.37 | 17,898.07 | 790.57 | 3.28 |
Na+ | 27.58 | 13,582.08 | 1024.13 | 2.19 | 108.94 | 115,620.81 | 17,491.58 | 1.80 |
Ca2+ | 15.88 | 702.10 | 118.27 | 1.09 | 32.07 | 1102.46 | 315.68 | 0.96 |
Mg2+ | 3.66 | 1307.97 | 150.78 | 1.71 | 27.48 | 25,366.14 | 1593.87 | 2.45 |
Cl− | 35.43 | 14,348.64 | 1377.51 | 2.18 | 127.65 | 172,922.44 | 23,967.61 | 1.86 |
SO42− | 55.48 | 9889.67 | 1080.88 | 1.69 | 140.68 | 54,147.68 | 9876.22 | 1.58 |
HCO3− | 36.62 | 3954.03 | 365.88 | 1.43 | 96.47 | 1428.15 | 302.69 | 0.79 |
NO3− | 0.06 | 78.60 | 8.74 | 1.26 | 0.06 | 138.44 | 15.03 | 1.48 |
F | 0.10 | 28.31 | 2.78 | 1.76 | 0.07 | 8.27 | 1.45 | 0.99 |
As | 0.001 | 0.09 | 0.18 | 1.33 | 0.001 | 0.07 | 0.02 | 1.25 |
TH | 81.06 | 6549.30 | 911.12 | 1.47 | 202.20 | 106,956.45 | 7584.70 | 2.18 |
TDS | 285.89 | 41,282.73 | 4027.42 | 1.89 | 536.17 | 358,693.98 | 57,782.18 | 1.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Hou, J.; Zhou, J.; Yu, J.; Zhang, J.; Zhao, J. Hydrogeochemical Processes and Sustainability Challenges of Arsenic- and Fluoride-Contaminated Groundwater in Arid Regions: Evidence from the Tarim Basin, China. Sustainability 2025, 17, 7971. https://doi.org/10.3390/su17177971
Chen Y, Hou J, Zhou J, Yu J, Zhang J, Zhao J. Hydrogeochemical Processes and Sustainability Challenges of Arsenic- and Fluoride-Contaminated Groundwater in Arid Regions: Evidence from the Tarim Basin, China. Sustainability. 2025; 17(17):7971. https://doi.org/10.3390/su17177971
Chicago/Turabian StyleChen, Yunfei, Jun Hou, Jinlong Zhou, Jiawen Yu, Jie Zhang, and Jiangtao Zhao. 2025. "Hydrogeochemical Processes and Sustainability Challenges of Arsenic- and Fluoride-Contaminated Groundwater in Arid Regions: Evidence from the Tarim Basin, China" Sustainability 17, no. 17: 7971. https://doi.org/10.3390/su17177971
APA StyleChen, Y., Hou, J., Zhou, J., Yu, J., Zhang, J., & Zhao, J. (2025). Hydrogeochemical Processes and Sustainability Challenges of Arsenic- and Fluoride-Contaminated Groundwater in Arid Regions: Evidence from the Tarim Basin, China. Sustainability, 17(17), 7971. https://doi.org/10.3390/su17177971