Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,552)

Search Parameters:
Keywords = water behaviours

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1981 KiB  
Article
Computational Design of Mineral-Based Materials: Iron Oxide Nanoparticle-Functionalized Polymeric Films for Enhanced Public Water Purification
by Iustina Popescu, Alina Ruxandra Caramitu, Adriana Mariana Borș, Mihaela-Amalia Diminescu and Liliana Irina Stoian
Polymers 2025, 17(15), 2106; https://doi.org/10.3390/polym17152106 - 31 Jul 2025
Viewed by 262
Abstract
Heavy metal contamination in natural waters and soils poses a significant environmental challenge, necessitating efficient and sustainable water treatment solutions. This study presents the computational design of low-density polyethylene (LDPE) films functionalized with iron oxide (Fe3O4) nanoparticles (NPs) for [...] Read more.
Heavy metal contamination in natural waters and soils poses a significant environmental challenge, necessitating efficient and sustainable water treatment solutions. This study presents the computational design of low-density polyethylene (LDPE) films functionalized with iron oxide (Fe3O4) nanoparticles (NPs) for enhanced water purification applications. Composite materials containing 5%, 10%, and 15% were synthesized and characterized in terms of adsorption efficiency, surface morphology, and reusability. Advanced molecular modeling using BIOVIA Pipeline was employed to investigate charge distribution, functional group behaviour, and atomic-scale interactions between polymer chains and metal ions. The computational results revealed structure–property relationships crucial for optimizing adsorption performance and understanding geochemically driven interaction mechanisms. The LDPE/Fe3O4 composites demonstrated significant removal efficiency of Cu2+ and Ni2+ ions, along with favourable mechanical properties and regeneration potential. These findings highlight the synergistic role of mineral–polymer interfaces in water remediation, presenting a scalable approach to designing multifunctional polymeric materials for environmental applications. This study contributes to the growing field of polymer-based adsorbents, reinforcing their value in sustainable water treatment technologies and environmental protection efforts. Full article
(This article belongs to the Special Issue Polymer-Based Coatings: Principles, Development and Applications)
Show Figures

Graphical abstract

23 pages, 6014 KiB  
Article
Modeling Water Table Response in Apulia (Southern Italy) with Global and Local LSTM-Based Groundwater Forecasting
by Lorenzo Di Taranto, Antonio Fiorentino, Angelo Doglioni and Vincenzo Simeone
Water 2025, 17(15), 2268; https://doi.org/10.3390/w17152268 - 30 Jul 2025
Viewed by 272
Abstract
For effective groundwater resource management, it is essential to model the dynamic behaviour of aquifers in response to rainfall. Here, a methodological approach using a recurrent neural network, specifically a Long Short-Term Memory (LSTM) network, is used to model groundwater levels of the [...] Read more.
For effective groundwater resource management, it is essential to model the dynamic behaviour of aquifers in response to rainfall. Here, a methodological approach using a recurrent neural network, specifically a Long Short-Term Memory (LSTM) network, is used to model groundwater levels of the shallow porous aquifer in Southern Italy. This aquifer is recharged by local rainfall, which exhibits minimal variation across the catchment in terms of volume and temporal distribution. To gain a deeper understanding of the complex interactions between precipitation and groundwater levels within the aquifer, we used water level data from six wells. Although these wells were not directly correlated in terms of individual measurements, they were geographically located within the same shallow aquifer and exhibited a similar hydrogeological response. The trained model uses two variables, rainfall and groundwater levels, which are usually easily available. This approach allowed the model, during the training phase, to capture the general relationships and common dynamics present across the different time series of wells. This methodology was employed despite the geographical distinctions between the wells within the aquifer and the variable duration of their observed time series (ranging from 27 to 45 years). The results obtained were significant: the global model, trained with the simultaneous integration of data from all six wells, not only led to superior performance metrics but also highlighted its remarkable generalization capability in representing the hydrogeological system. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

24 pages, 5270 KiB  
Article
Ecophysiological Keys to the Success of a Native-Expansive Mediterranean Species in Threatened Coastal Dune Habitats
by Mario Fernández-Martínez, Carmen Jiménez-Carrasco, Mari Cruz Díaz Barradas, Juan B. Gallego-Fernández and María Zunzunegui
Plants 2025, 14(15), 2342; https://doi.org/10.3390/plants14152342 - 29 Jul 2025
Viewed by 204
Abstract
Range-expanding species, or neonatives, are native plants that spread beyond their original range due to recent climate or human-induced environmental changes. Retama monosperma was initially planted near the Guadalquivir estuary for dune stabilisation. However, changes in the sedimentary regime and animal-mediated dispersal have [...] Read more.
Range-expanding species, or neonatives, are native plants that spread beyond their original range due to recent climate or human-induced environmental changes. Retama monosperma was initially planted near the Guadalquivir estuary for dune stabilisation. However, changes in the sedimentary regime and animal-mediated dispersal have facilitated its exponential expansion, threatening endemic species and critical dune habitats. The main objective of this study was to identify the key functional traits that may explain the competitive advantage and rapid spread of R. monosperma in coastal dune ecosystems. We compared its seasonal responses with those of three co-occurring woody species, two native (Juniperus phoenicea and J. macrocarpa) and one naturalised (Pinus pinea), at two sites differing in groundwater availability within a coastal dune area (Doñana National Park, Spain). We measured water relations, leaf traits, stomatal conductance, photochemical efficiency, stable isotopes, and shoot elongation in 12 individuals per species. Repeated-measures ANOVA showed significant effects of species and species × season interaction for relative water content, shoot elongation, effective photochemical efficiency, and stable isotopes. R. monosperma showed significantly higher shoot elongation, relative water content, and photochemical efficiency in summer compared with the other species. Stable isotope data confirmed its nitrogen-fixing capacity. This characteristic, along with the higher seasonal plasticity, contributes to its competitive advantage. Given the ecological fragility of coastal dunes, understanding the functional traits favouring the success of neonatives such as R. monosperma is essential for biodiversity conservation and ecosystem management. Full article
Show Figures

Figure 1

28 pages, 671 KiB  
Article
How Cooperative Are Games in River Sharing Models?
by Marcus Franz Konrad Pisch and David Müller
Water 2025, 17(15), 2252; https://doi.org/10.3390/w17152252 - 28 Jul 2025
Viewed by 230
Abstract
There is a long tradition of studying river sharing problems. A central question frequently examined and addressed is how common benefits or costs can be distributed fairly. In this context, axiomatic approaches of cooperative game theory often use contradictory principles of international water [...] Read more.
There is a long tradition of studying river sharing problems. A central question frequently examined and addressed is how common benefits or costs can be distributed fairly. In this context, axiomatic approaches of cooperative game theory often use contradictory principles of international water law, which are strictly rejected in practice. That leads to the question: Are these methods suitable for a real-world application? First, we conduct a systematic literature review based on the PRISMA approach to categorise the river sharing problems. We identified several articles describing a variety of methods and real-world applications, highlighting interdisciplinary interest. Second, we evaluate the identified axiomatic literature related to TU games with regard to their suitability for real-world applications. We exclude those “standalone” methods that exclusively follow extreme principles and/or do not describe cooperative behaviour. This is essential for a fair distribution. Third, we propose to use the traditional game-theoretical approach of airport games in the context of river protection measures to ensure a better economic interpretation and to enforce future cooperation in the joint implementation of protective measures. Full article
Show Figures

Figure 1

11 pages, 1292 KiB  
Article
Flotation Behaviours of Ilmenite and Associated Solution Chemistry Properties Using Saturated Fatty Acids as the Collector
by Jihua Zhai, Hao He, Pan Chen, Lin Song, Xiaohai Yao and Hongxian Zhang
Separations 2025, 12(8), 191; https://doi.org/10.3390/separations12080191 - 24 Jul 2025
Viewed by 172
Abstract
A series of homologous saturated fatty acids were introduced and evaluated as collectors for ilmenite flotation using a combination of micro-flotation tests and surface tension measurements. The results showed that ilmenite exhibited good flotation behaviour when decanoic and dodecanoic acids were used as [...] Read more.
A series of homologous saturated fatty acids were introduced and evaluated as collectors for ilmenite flotation using a combination of micro-flotation tests and surface tension measurements. The results showed that ilmenite exhibited good flotation behaviour when decanoic and dodecanoic acids were used as collectors; however, saturated fatty acids with shorter or longer carbon chains were not suitable for ilmenite flotation (caused either by poor collection ability or limited solubility in water). The optimum flotation pH range was also dependent on the carbon chain length of saturated fatty acids, and the solution surface tension did not always match well with the ilmenite flotation behaviour when using a series of saturated fatty acids as the collector. The associated solution chemistry properties under series saturated fatty acid flotation systems were discussed, and the adsorption mechanism of decanoic acid onto the ilmenite surface was also investigated via FTIR, zeta potential, and contact angle measurements. Full article
(This article belongs to the Section Separation Engineering)
Show Figures

Figure 1

16 pages, 722 KiB  
Article
From Desalination to Governance: A Comparative Study of Water Reuse Strategies in Southern European Hospitality
by Eleonora Santos
Sustainability 2025, 17(15), 6725; https://doi.org/10.3390/su17156725 - 24 Jul 2025
Viewed by 311
Abstract
As climate change intensified water scarcity in Southern Europe, tourism-dependent regions such as Portugal’s Algarve faced growing pressure to adapt their water management systems. This study investigated how hotel groups in the Algarve have adopted and communicated water reuse technologies—specifically desalination and greywater [...] Read more.
As climate change intensified water scarcity in Southern Europe, tourism-dependent regions such as Portugal’s Algarve faced growing pressure to adapt their water management systems. This study investigated how hotel groups in the Algarve have adopted and communicated water reuse technologies—specifically desalination and greywater recycling—under environmental, institutional, and reputational constraints. A comparative qualitative case study was conducted involving three hotel groups—Vila Vita Parc, Pestana Group, and Vila Galé—selected through purposive sampling based on organizational capacity and technology adoption stage. The analysis was supported by a supplementary mini-case from Mallorca, Spain. Publicly accessible documents, including sustainability reports, media coverage, and policy frameworks, were thematically coded using organizational environmental behavior theory and the OECD Principles on Water Governance. The results demonstrated that (1) higher organizational capacity was associated with greater maturity in water reuse implementation; (2) communication transparency increased alongside technological advancement; and (3) early-stage adopters encountered stronger financial, regulatory, and operational barriers. These findings culminated in the development of the Maturity–Communication–Governance (MCG) Framework, which elucidates how internal resources, stakeholder signaling, and institutional alignment influence sustainable infrastructure uptake. This research offered policy recommendations to scale water reuse in tourism through financial incentives, regulatory simplification, and public–private partnerships. The study contributed to the literature on sustainable tourism and decentralized climate adaptation, aligning with UN Sustainable Development Goals 6.4, 12.6, and 13. Full article
Show Figures

Figure 1

20 pages, 3274 KiB  
Article
Investigation of the Influence of Process Parameters on the Physicochemical and Functional Properties of Oil-Based Composites
by Anita Zawadzka and Magda Kijania-Kontak
Materials 2025, 18(15), 3447; https://doi.org/10.3390/ma18153447 - 23 Jul 2025
Viewed by 261
Abstract
The increasing consumption of edible oils has resulted in a parallel rise in waste cooking oil (WCO), a harmful waste stream but one that also represents a promising raw material. In this study, oil-based binders were synthesised from WCO using various reagents: Sulfuric(VI) [...] Read more.
The increasing consumption of edible oils has resulted in a parallel rise in waste cooking oil (WCO), a harmful waste stream but one that also represents a promising raw material. In this study, oil-based binders were synthesised from WCO using various reagents: Sulfuric(VI) acid, hydrobromic acid, acetic acid, salicylic acid, glycolic acid, zinc acetate, ethanol, hydrogen peroxide, and their selected mixtures. The manufacturing process was optimised, and the composites were evaluated for physicochemical and mechanical properties, including compressive strength, bending strength, and water absorption. The best performance was observed for composites catalysed with a mixture of sulfuric(VI) acid and 20% hydrogen peroxide, cured at 240 °C, yielding compressive and bending strengths of 5.20 MPa and 1.34 MPa, respectively. Under modified curing conditions, a compressive strength of 5.70 MPa and a bending strength of 0.75 MPa were obtained. The composite modified with glycolic acid showed the lowest water absorption (3%). These findings demonstrate how catalyst type and curing parameters influence composite structure, porosity, and mechanical behaviour. The study provides new insights into the process–structure–property relationships in oil-based materials and supports the development of environmentally friendly composites from waste feedstocks. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

26 pages, 24382 KiB  
Article
Carboxylated Mesoporous Carbon Nanoparticles as Bicalutamide Carriers with Improved Biopharmaceutical and Chemo-Photothermal Characteristics
by Teodora Popova, Borislav Tzankov, Marta Slavkova, Yordan Yordanov, Denitsa Stefanova, Virginia Tzankova, Diana Tzankova, Ivanka Spassova, Daniela Kovacheva and Christina Voycheva
Molecules 2025, 30(15), 3055; https://doi.org/10.3390/molecules30153055 - 22 Jul 2025
Viewed by 312
Abstract
Prostate cancer is a serious, life-threatening condition among men, usually requiring long-term chemotherapy. Due to its high efficacy, bicalutamide, a non-steroidal anti-androgen, has widespread use. However, its poor water solubility, low oral bioavailability, and nonspecific systemic exposure limit its application. To overcome these [...] Read more.
Prostate cancer is a serious, life-threatening condition among men, usually requiring long-term chemotherapy. Due to its high efficacy, bicalutamide, a non-steroidal anti-androgen, has widespread use. However, its poor water solubility, low oral bioavailability, and nonspecific systemic exposure limit its application. To overcome these obstacles, our study explored the potential of non-carboxylated and carboxylated mesoporous carbon nanoparticles (MCN) as advanced drug carriers for bicalutamide (MCN/B and MCN-COOH/B). The physicochemical properties and release behaviour were thoroughly characterized. Functionalization with carboxylic groups significantly improved wettability, dispersion stability, as well as loading efficiency due to enhanced hydrogen bonding and π–π stacking interactions. Moreover, all systems exhibited sustained and near-infrared (NIR) triggered drug release with reduced burst-effect, compared to the release of free bicalutamide. Higher particle size and stronger drug–carrier interactions determined a zero-order kinetics and notably slower release rate of MCN-COOH/B compared to non-functionalized MCN. Cytotoxicity assays on LNCaP prostate cancer cells demonstrated that both MCN/B and MCN-COOH/B possessed comparable antiproliferative activity as free bicalutamide, where MCN-COOH/B exhibited superior efficacy, especially under NIR exposure. These findings suggest that MCN-COOH nanoparticles could be considered as a prospective platform for controlled, NIR-accelerated delivery of bicalutamide in prostate cancer treatment. Full article
Show Figures

Graphical abstract

23 pages, 2572 KiB  
Article
Drivers and Barriers for Edible Streets: A Case Study in Oxford, UK
by Kuhu Gupta, Mohammad Javad Seddighi, Emma L. Davies, Pariyarath Sangeetha Thondre and Mina Samangooei
Sustainability 2025, 17(14), 6538; https://doi.org/10.3390/su17146538 - 17 Jul 2025
Viewed by 337
Abstract
This study introduces Edible Streets as a distinct and scalable model of community-led urban food growing, specifically investigating the drivers and barriers to the initiative. Unlike traditional urban food-growing initiatives, Edible Streets explores the integration of edible plants into street verges and footpaths [...] Read more.
This study introduces Edible Streets as a distinct and scalable model of community-led urban food growing, specifically investigating the drivers and barriers to the initiative. Unlike traditional urban food-growing initiatives, Edible Streets explores the integration of edible plants into street verges and footpaths with direct community involvement of the people who live/work in a street. This study contributes new knowledge by evaluating Edible Streets through the COM-B model of behavioural change, through policy and governance in addition to behaviour change, and by developing practical frameworks to facilitate its implementation. Focusing on Oxford, the research engaged residents through 17 in-person interviews and 18 online surveys, alongside a stakeholder workshop with 21 policymakers, community leaders, and NGO representatives. Findings revealed strong motivation for Edible Streets, driven by values of sustainability, community resilience, and improved well-being. However, capability barriers, including knowledge gaps in gardening, land-use policies, and food preservation, as well as opportunity constraints related to land access, water availability, and environmental challenges, hindered participation. To address these, a How-to Guide was developed, and a pilot Edible Street project was launched. Future steps include establishing a licensing application model to facilitate urban food growing and conducting a Post-Use Evaluation and Impact Study. Nationally, this model could support Right to Grow policies, while globally, it aligns with climate resilience and food security goals. Locally grown food enhances biodiversity, reduces carbon footprints, and strengthens social cohesion. By tackling key barriers and scaling solutions, this study provides actionable insights for policymakers and practitioners to create resilient, equitable urban food systems. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

21 pages, 3097 KiB  
Article
Hydrodynamic Characterisation of the Inland Valley Soils of the Niger Delta Area for Sustainable Agricultural Water Management
by Peter Uloho Osame and Taimoor Asim
Sensors 2025, 25(14), 4349; https://doi.org/10.3390/s25144349 - 11 Jul 2025
Viewed by 304
Abstract
Since farmers in the inland valley region of the Niger Delta mostly rely on experience rather than empirical evidence when it comes to irrigation, flood irrigation being the most popular technique, the region’s agricultural sector needs more efficient water management. In order to [...] Read more.
Since farmers in the inland valley region of the Niger Delta mostly rely on experience rather than empirical evidence when it comes to irrigation, flood irrigation being the most popular technique, the region’s agricultural sector needs more efficient water management. In order to better understand the intricate hydrodynamics of water flow through the soil subsurface, this study aimed to develop a soil column laboratory experimental setup for soil water infiltration. The objective was to measure the soil water content and soil matric potential at 10 cm intervals to study the soil water characteristic curve as a relationship between the two hydraulic parameters, mimicking drip soil subsurface micro-irrigation. A specially designed cylindrical vertical soil column rig was built, and an EQ3 equitensiometer of Delta-T Devices was used in the laboratory as a precision sensor to measure the soil matric potential Ψ (kPa), and the volumetric soil water content θ (%) was measured using a WET150 sensor of Delta-T Devices. The relationship between the volumetric soil water content and the soil matric potential resulted in the generation of the soil water characteristic curve. Two separate monoliths of undisturbed soil samples from Ivrogbo and Oleh in the Nigerian inland valley of the Niger Delta, as well as a uniformly packed sample of soil from Aberdeen, UK, for comparison, were used in gravity-driven flow experiments. In each case, tests were performed once on the monoliths of undisturbed soil samples. In contrast, the packed sample was subjected to an experiment before being further agitated to simulate ploughing and then subjected to an infiltration experiment, resulting in a total of four samples. The Van Genuchten model of the soil water characteristic curve was used for the verification of the experimental results. Comparing the four samples’ volumetric soil water contents and soil matric potentials at various depths revealed a significant variation in their behaviour. However, compared to the predicted curve, the range of values was narrower. Compared to n = 2 in the Van Genuchten curve, the value of n at 200 mm depth was found to be 15, with θr of 0.046 and θs of 0.23 for the packed soil sample, resulting in a percentage difference of 86.7%. Additionally, n = 10 for the ploughed sample resulted in an 80% difference, yet θr = 0.03 and θs = 0.23. For the Ivrogbo sample and the Oleh sample, the range of the matric potential was relatively too small for the comparison. The pre-experiment moisture content of the soil samples was part of the cause of this, in addition to differences in the soil types. Furthermore, the data revealed a remarkable agreement between the measured behaviour and the projected technique of the soil water characteristic curve. Full article
(This article belongs to the Special Issue Smart Sensors for Sustainable Agriculture)
Show Figures

Figure 1

21 pages, 3527 KiB  
Article
Effects of Environmental Temperature Variation on the Spatio-Temporal Shoaling Behaviour of Adult Zebrafish (Danio rerio): A Two- and Three-Dimensional Analysis
by Mattia Toni, Flavia Frabetti, Gabriella Tedeschi and Enrico Alleva
Animals 2025, 15(14), 2006; https://doi.org/10.3390/ani15142006 - 8 Jul 2025
Viewed by 345
Abstract
Global warming is driving significant changes in aquatic ecosystems, where temperature fluctuations influence biological processes across multiple levels of organisation. As ectothermic organisms, fish are particularly susceptible, with even minor thermal shifts affecting their metabolism, behaviour, and overall fitness. Understanding these responses is [...] Read more.
Global warming is driving significant changes in aquatic ecosystems, where temperature fluctuations influence biological processes across multiple levels of organisation. As ectothermic organisms, fish are particularly susceptible, with even minor thermal shifts affecting their metabolism, behaviour, and overall fitness. Understanding these responses is essential for evaluating the ecological and evolutionary consequences of climate change. This study investigates the effects of acute (4-day) and chronic (21-day) exposure to three temperature regimes—18 °C (low), 26 °C (control), and 34 °C (high)—on the spatio-temporal shoaling behaviour of adult zebrafish (Danio rerio). Groups of four fish were tested for six minutes in water maintained at the same temperature as their prior acclimation. Shoaling behaviour was assessed by analysing shoal structure—encompassing shoal dimensions and cohesion—as well as spatial positioning. Parameters measured included inter-fish distance, shoal volume, shoal area, homogeneity index, distance to the centroid, and the shoal’s vertical and horizontal distribution. Results revealed complex behavioural changes influenced by both temperature and duration of exposure. At 18 °C, zebrafish showed a marked preference for the bottom zone and exhibited no significant temporal modulation in exploratory behaviour—patterns indicative of heightened anxiety-like responses. In contrast, exposure to 34 °C resulted in increased shoal cohesion, particularly under chronic conditions, and a progressive increase in environmental exploration over the six-minute test period. This enhancement in exploratory activity was especially evident when compared to the first minute of the test and was characterised by greater vertical movement—reflected in the increased use of the upper zone—and broader horizontal exploration, including more frequent occupation of peripheral areas. These findings align with previous research linking thermal variation to neurobiological and proteomic alterations in zebrafish. By elucidating how temperature modulates social behaviour in ectotherms, this study offers valuable insights into the potential behavioural impacts of climate change on aquatic ecosystems. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

31 pages, 859 KiB  
Review
A Review of Persistent Soil Contaminants: Assessment and Remediation Strategies
by António Alberto S. Correia and Maria Graça Rasteiro
Environments 2025, 12(7), 229; https://doi.org/10.3390/environments12070229 - 5 Jul 2025
Viewed by 1229
Abstract
The presence of persistent contaminants in soils is of growing concern around the world. Contaminated soils can affect numerous ecological environments and lead to significant health risks to humans, affecting soil biodiversity, structure and geomechanical behaviour and agricultural sustainability. Additionally, soil contaminants can [...] Read more.
The presence of persistent contaminants in soils is of growing concern around the world. Contaminated soils can affect numerous ecological environments and lead to significant health risks to humans, affecting soil biodiversity, structure and geomechanical behaviour and agricultural sustainability. Additionally, soil contaminants can also leach into water flows, which is another concern. In general, soil contamination can be attributed to natural sources or to anthropogenic sources associated with human activity. Soil contaminants are usually classified in the following categories: biological, radioactive, organic and inorganic contaminants. State of the art information regarding some of the most common persistent soil contaminants, including possible sources and prevalence, and monitoring approaches and information about their effects on soil characteristics, including usability, as well as information on possible mobility to other environmental media is presented in this review paper. Finally, a comprehensive overview of remediation strategies which are being developed, including the more traditional ones as well as novel strategies that have been proposed lately by the scientific community, is provided. This includes physicochemical and biological technologies, as well as mixed remediation technologies aimed at enhancing remediation efficiency. Full article
(This article belongs to the Special Issue Monitoring of Contaminated Water and Soil)
Show Figures

Figure 1

28 pages, 12839 KiB  
Systematic Review
A Review of Flood Mitigation Performance and Numerical Representation of Leaky Barriers
by Wuyi Zhuang, Jun Ma, Rupal Mandania and Jack Chen
Water 2025, 17(13), 2023; https://doi.org/10.3390/w17132023 - 5 Jul 2025
Viewed by 515
Abstract
Leaky barriers mimic the natural accumulation of large wood in watercourses to effectively slow and store runoff and flow. Their role in flood management has attracted increasing attention due to their potential to reduce downstream risk. Numerous field studies have demonstrated the effectiveness [...] Read more.
Leaky barriers mimic the natural accumulation of large wood in watercourses to effectively slow and store runoff and flow. Their role in flood management has attracted increasing attention due to their potential to reduce downstream risk. Numerous field studies have demonstrated the effectiveness of leaky barriers in retaining flood water in upstream catchment. However, their hydraulic behaviour remains poorly quantified due to limited empirical data and the modelling challenges. This review systematically investigates and synthesises research conducted over the past five years on the hydraulic behaviour and numerical representation of leaky barriers, while also drawing on earlier relevant studies to provide broader context. Additionally, it summarizes key hydraulic parameters, empirical equations, and modelling approaches that are used to characterise these structures. Furthermore, this review highlights the challenges of modelling individual leaky barriers in the field, which complicate their structural design and implementation. Future research should investigate the long-term performance of leaky barriers and explore optimal placement strategies to enhance flood mitigation within a catchment. Full article
Show Figures

Figure 1

26 pages, 4558 KiB  
Article
Enrichment of Rice Flour with Almond Bagasse Powder: The Impact on the Physicochemical and Functional Properties of Gluten-Free Bread
by Stevens Duarte, Janaina Sánchez-García, Joanna Harasym and Noelia Betoret
Foods 2025, 14(13), 2382; https://doi.org/10.3390/foods14132382 - 5 Jul 2025
Viewed by 431
Abstract
Almond bagasse, a by-product of almond milk production, is rich in fibre, protein, polyunsaturated fatty acids, and bioactive compounds. Its incorporation into food products provides a sustainable approach to reducing food waste while improving nutritional quality. This study explored the impact of enriching [...] Read more.
Almond bagasse, a by-product of almond milk production, is rich in fibre, protein, polyunsaturated fatty acids, and bioactive compounds. Its incorporation into food products provides a sustainable approach to reducing food waste while improving nutritional quality. This study explored the impact of enriching rice flour with almond bagasse powders—either hot air-dried (HAD60) or lyophilised (LYO)—at substitution levels of 5%, 10%, 15%, 20%, 25%, and 30% (w/w), to assess effects on gluten-free bread quality. The resulting flour blends were analysed for their physicochemical, techno-functional, rheological, and antioxidant properties. Gluten-free breads were then prepared using these blends and evaluated fresh and after seven days of refrigerated storage. The addition of almond bagasse powders reduced moisture and water absorption capacities, while also darkening the bread colour, particularly in HAD60, due to browning from thermal drying. The LYO powder led to softer bread by disrupting the starch structure more than HAD60. All breads hardened after storage due to starch retrogradation. The incorporation of almond bagasse powder reduced the pasting behaviour—particularly at substitution levels of ≥ 25%—as well as the viscoelastic moduli of the flour blends, due to fibre competing for water and thereby limiting starch gelatinisation. Antioxidant capacity was significantly enhanced in HAD60 breads, particularly in the crust and at higher substitution levels, due to Maillard reactions. Furthermore, antioxidant degradation over time was less pronounced in formulations with higher substitution levels, with HAD60 proving more stable than LYO. Overall, almond bagasse powder improves the antioxidant profile and shelf-life of gluten-free bread, highlighting its value as a functional and sustainable ingredient. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

15 pages, 2654 KiB  
Article
Presence and Potential Effect of Microplastics Associated with Anthropic Activity in Two Benthic Fishes Serranus scriba and Lithognathus mormyrus
by Amanda Cohen-Sánchez, Juan Alejandro Sanz, Montserrat Compa, Maria Magdalena Quetglas-Llabrés, Maria del Mar Ribas-Taberner, Lorenzo Gil, Silvia Tejada, Samuel Pinya and Antoni Sureda
Fishes 2025, 10(7), 323; https://doi.org/10.3390/fishes10070323 - 3 Jul 2025
Viewed by 371
Abstract
Plastic pollution poses a massive problem to the environment, particularly seas and oceans. Microplastics (MPs) ingestion by marine species can generate many adverse effects, including causing oxidative stress. This study evaluated the effects of anthropic activity-related MP presence in two coastal fish species— [...] Read more.
Plastic pollution poses a massive problem to the environment, particularly seas and oceans. Microplastics (MPs) ingestion by marine species can generate many adverse effects, including causing oxidative stress. This study evaluated the effects of anthropic activity-related MP presence in two coastal fish species—Serranus scriba (more related to rocky bottoms) and Lithognathus mormyrus (more related to sandy bottoms)—in two areas of Mallorca Island (Western Mediterranean) with varying anthropic pressures with similar mixed rocky/sandy bottoms. A total of eight fish samples per species and per area (total n = 32), as well as three water samples (500 mL each) and three sediment samples per area, were collected and analyzed. The results showed that despite plastic presence in both areas, the area with higher tourism affluence was also the most polluted. Fourier transform infrared spectroscopy analysis confirmed that the majority of recovered polymers were polyethylene and polypropylene. The pattern of MPs presence was reflected in the biomarker analysis, which showed higher values of antioxidants, namely catalase (CAT) and superoxide dismutase (SOD); detoxification, namely glutathione s-transferase (GST); and inflammation, namely myeloperoxidase (MPO)—enzymes in the gastrointestinal tract of fish from the more polluted area. However, no statistical differences were found for malondialdehyde (MDA) as a marker of lipid peroxidation. As for differences between species, S. scriba presented a higher presence of MPs and measured biomarkers than in L. Mormyrus, suggesting higher exposure. In conclusion, these results showed that increased anthropic activity is associated with a higher presence of MPs which, in turn, induces an adaptative response in exposed fish. Moreover, species living in the same area could be differentially affected by MPs, which is probably associated with different behavioural and feeding habits. Full article
(This article belongs to the Section Environment and Climate Change)
Show Figures

Figure 1

Back to TopTop