Carboxylated Mesoporous Carbon Nanoparticles as Bicalutamide Carriers with Improved Biopharmaceutical and Chemo-Photothermal Characteristics
Abstract
1. Introduction
2. Results and Discussion
2.1. Determination of Encapsulation Efficiency (EE%) and Loading Capacity (LC%)
2.2. Fourier-Transform Attenuated Total Reflection Infrared (ATR-FTIR) Spectroscopy
2.3. Dispersion Study of MCN and MCN-COOH
2.4. Dynamic Light Scattering (DLS) Analysis
2.5. X-Ray Diffraction Analysis (XRD)
2.6. Nitrogen Adsorption
2.7. Transmission Electron Microscopy (TEM)
2.8. In Vitro Drug Release Study
2.9. Release Kinetics Study
2.10. In Vitro Cell Viability Assays
3. Materials and Methods
3.1. Materials
3.2. Carboxylation of Mesoporous Carbon Nanoparticles
3.3. Bicalutamide Loading into Non-Carboxylated and Carboxylated MCN
3.4. Determination of Encapsulation Efficiency (EE%) and Loading Capacity (LC%)
3.5. Fourier-Transform Attenuated Total Reflection Infrared (ATR-FTIR) Spectroscopy
3.6. Dispersion Study of MCN and MCN-COOH
3.7. Dynamic Light Scattering (DLS) Analysis
3.8. X-Ray Diffraction Analysis (XRD)
3.9. Nitrogen Adsorption
3.10. Transmission Electron Microscopy (TEM)
3.11. In Vitro Drug Release Study
3.12. Release Kinetics Study
3.13. In Vitro Cell Viability Study
3.13.1. Cell Culture and Treatment
3.13.2. Cytotoxicity Assay
3.13.3. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
API | Active Pharmaceutical Ingredient |
ATR-FTIR | Fourier-Transform Attenuated Total Reflection Infrared |
B | Bicalutamide |
BCS | Biopharmaceutic Classification System |
BET | Brunauer Emmett Teller |
DLS | Dynamic Light Scattering |
DMSO | Dimethylsulfoxide |
EDTA | Ethylenediaminetetraacetic Acid |
EE | Encapsulation efficiency |
FBS | Fetal Bovine Serum |
LC | Loading capacity |
LNCaP | Androgen-Sensitive Human Prostate Adenocarcinoma Cells |
MCN | Mesoporous Carbon Nanoparticles |
NIR | Near-Infrared |
PDI | Polydispersity Index |
PEG | Polyethylene Glycol |
PTT | Photothermal Therapy |
PVP | Polyvinylpyrrolidone |
SLS | Sodium Lauryl Sulphate |
TEM | Transmission Electron Microscopy |
XRD | X-ray Diffraction |
Z-potential | Zeta-potential |
References
- Wang, C.; Li, M.; Yang, T.; Ding, X.; Bao, X.; Ding, Y.; Xiong, H.; Wu, Y.; Wang, W.; Zhou, J. A Self-Assembled System for Tumor-Targeted Co-Delivery of Drug and Gene. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 56, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Dong, K.; Chen, Z.; Ren, J.; Qu, X. Near-Infrared Absorbing Mesoporous Carbon Nanoparticle as an Intelligent Drug Carrier for Dual-Triggered Synergistic Cancer Therapy. Carbon 2015, 82, 479–488. [Google Scholar] [CrossRef]
- Li, X.; Yan, Y.; Lin, Y.; Jiao, J.; Wang, D.; Di, D.; Zhang, Y.; Jiang, T.; Zhao, Q.; Wang, S. Hollow Mesoporous Carbon as a Near-Infrared Absorbing Carrier Compared with Mesoporous Carbon Nanoparticles for Chemo-Photothermal Therapy. J. Colloid Interface Sci. 2017, 494, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Tu, X.; Wang, L.; Cao, Y.; Ma, Y.; Shen, H.; Zhang, M.; Zhang, Z. Efficient Cancer Ablation by Combined Photothermal and Enhanced Chemo-Therapy Based on Carbon Nanoparticles/Doxorubicin@SiO2 Nanocomposites. Carbon 2016, 97, 35–44. [Google Scholar] [CrossRef]
- Zhou, M.; Zhao, Q.; Wu, Y.; Feng, S.; Wang, D.; Zhang, Y.; Wang, S. Mesoporous Carbon Nanoparticles as Multi-Functional Carriers for Cancer Therapy Compared with Mesoporous Silica Nanoparticles. AAPS Pharmscitech 2020, 21, 42. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Liu, S.; Niu, H.; Lv, W.; Wu, R. Functionalized Mesoporous Carbon Nanoparticles for Targeted Chemo-Photothermal Therapy of Cancer Cells under near-Infrared Irradiation. RSC Adv. 2014, 4, 33986–33997. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Sha, L.; Wang, D.; Shi, W.; Zhao, Q.; Wang, S. Thermosensitive Lipid Bilayer-Coated Mesoporous Carbon Nanoparticles for Synergistic Thermochemotherapy of Tumor. ACS Appl. Mater. Interfaces 2018, 10, 19386–19397. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Yang, C.; Li, J.; Ding, Y.; Zhang, L.; Yousaf, M.Z.; Lin, J.; Pang, R.; Wei, L.; Xu, L.; et al. Multifunctional Fe5C2 Nanoparticles: A Targeted Theranostic Platform for Magnetic Resonance Imaging and Photoacoustic Tomography-Guided Photothermal Therapy. Adv. Mater. 2014, 26, 4114–4120. [Google Scholar] [CrossRef] [PubMed]
- Salim, N.V.; Mateti, S.; Cizek, P.; Hameed, N.; Parameswaranpillai, J.; Fox, B. Large, Mesoporous Carbon Nanoparticles with Tunable Architectures for Energy Storage. ACS Appl. Nano Mater. 2019, 2, 1727–1736. [Google Scholar] [CrossRef]
- Gisbert-Garzarán, M.; Manzano, M.; Vallet-Regí, M. PH-Responsive Mesoporous Silica and Carbon Nanoparticles for Drug Delivery. Bioengineering 2017, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wu, S.; Du, X. Gated Mesoporous Carbon Nanoparticles as Drug Delivery System for Stimuli-Responsive Controlled Release. Carbon 2016, 101, 135–142. [Google Scholar] [CrossRef]
- Gisbert-Garzarán, M.; Berkmann, J.C.; Giasafaki, D.; Lozano, D.; Spyrou, K.; Manzano, M.; Steriotis, T.; Duda, G.N.; Schmidt-Bleek, K.; Charalambopoulou, G.; et al. Engineered PH-Responsive Mesoporous Carbon Nanoparticles for Drug Delivery. ACS Appl. Mater. Interfaces 2020, 12, 14946–14957. [Google Scholar] [CrossRef] [PubMed]
- Ran, F.; Lei, W.; Cui, Y.; Jiao, J.; Mao, Y.; Wang, S.; Wang, S. Size Effect on Oral Absorption in Polymer-Functionalized Mesoporous Carbon Nanoparticles. J. Colloid Interface Sci. 2018, 511, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Jiao, J.; Cui, Y.; Guo, J.; Han, N.; Di, D.; Chang, D.; Wang, P.; Jiang, T.; Wang, S. Hyaluronic Acid Modified Mesoporous Carbon Nanoparticles for Targeted Drug Delivery to CD44-Overexpressing Cancer Cells. Nanotechnology 2016, 27, 135102. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Jing, Y.; Liu, Y.; Liu, Z.; Gao, D.; Chen, H.; Song, W.; Wang, T.; Fang, X.; Qin, W.; et al. Mesoporous Carbon Nanospheres as a Multifunctional Carrier for Cancer Theranostics. Theranostics 2018, 8, 663–675. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Yang, G.; Ran, F.; Gao, T.; Sun, C.; Zhao, Q.; Wang, S. Polymer-Functionalized Mesoporous Carbon Nanoparticles on Overcoming Multiple Barriers and Improving Oral Bioavailability of Probucol. Carbohydr. Polym. 2020, 229, 115508. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Liu, N.; Sun, T.; Liu, Z.; Luo, X.; Zhao, Q.; Wang, S. Release Kinetics Study of Fatty Acids Eutectic Mixture Gated Mesoporous Carbon Nanoparticles for Chemo-Photothermal Therapy. Colloids Surf. A Physicochem. Eng. Asp. 2023, 669, 131450. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Lin, K.-S.; Mdlovu, N.V.; Kung, P.-Y.; Jeng, U.-S. Thermal-/PH-Triggered Hollow Mesoporous Carbon Nanocarrier for NIR-Responsive Drug Release. Biomater. Adv. 2023, 151, 213477. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Zhao, Q.; He, Y.; Wang, S.; Yang, Y.; Li, Y.; Feng, S.; Wang, S. Different Mesoporous Carbon Carriers for the Improvement of Solubility and Physical Stability of Poorly Soluble Drugs. Colloids Surf. B Biointerfaces 2025, 247, 114436. [Google Scholar] [CrossRef] [PubMed]
- Eleftheriadis, G.K.; Filippousi, M.; Tsachouridou, V.; Darda, M.-A.; Sygellou, L.; Kontopoulou, I.; Bouropoulos, N.; Steriotis, T.; Charalambopoulou, G.; Vizirianakis, I.S.; et al. Evaluation of Mesoporous Carbon Aerogels as Carriers of the Non-Steroidal Anti-Inflammatory Drug Ibuprofen. Int. J. Pharm. 2016, 515, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Xu, J.; Shan, W.; Liu, M.; Cui, Y.; Li, L.; Liu, C.; Huang, Y. The Transport Mechanism of Integrin Avβ3 Receptor Targeting Nanoparticles in Caco-2 Cells. Int. J. Pharm. 2016, 500, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, T.; Shen, H.; Zhou, X.; Han, Q.; Li, L.; Zhang, L.; Wang, C.; Dong, X. Tumor Microenvironment-Responsive MnOx-Mesoporous Carbon Nanoparticles for Enhanced Chemodynamic Synergistic Antitumor Therapy. ACS Appl. Nano Mater. 2025, 8, 2763–2773. [Google Scholar] [CrossRef]
- Chen, H. Design and Application of Mesoporous Carbon Nano-Drug Delivery Systems in Cancer Therapy. BIO Web Conf. 2025, 174, 02004. [Google Scholar] [CrossRef]
- Arean, C.O.; Vesga, M.J.; Parra, J.B.; Delgado, M.R. Effect of Amine and Carboxyl Functionalization of Sub-Micrometric MCM-41 Spheres on Controlled Release of Cisplatin. Ceram. Int. 2013, 39, 7407–7414. [Google Scholar] [CrossRef]
- Pourmadadi, M.; Askari, N.; Ghaemi, A.; Khanizadeh, A.; Barghamadi, F.; Yazdian, F.; Rahdar, A.; Fathi-karkan, S.; Romanholo Ferreira, L.F. Revolutionizing Cancer Treatment: Exploring the Latest Breakthroughs in Bicalutamide Delivery and Co-Delivery Nanoformulations for Cancer Therapy. J. Drug Deliv. Sci. Technol. 2024, 101, 106201. [Google Scholar] [CrossRef]
- Saroj, S.; Rajput, S. Bioavailability and Dissolution Rate Enhancement of an Anticancer Drug Bicalutamide by Encapsulation into Mesoporous Silica Nanoparticles: Effects of Amine Functionalization and Caco-2 Cell Permeability Study. Indian J. Pharm. Educ. Res. 2020, 54, 590–601. [Google Scholar] [CrossRef]
- Saroj, S.; Rajput, S.J. Facile Development, Characterization, and Evaluation of Novel Bicalutamide Loaded PH-Sensitive Mesoporous Silica Nanoparticles for Enhanced Prostate Cancer Therapy. Drug Dev. Ind. Pharm. 2019, 45, 532–547. [Google Scholar] [CrossRef] [PubMed]
- Volkova, T.V.; Simonova, O.R.; Perlovich, G.L. Physicochemical Profile of Antiandrogen Drug Bicalutamide: Solubility, Distribution, Permeability. Pharmaceutics 2022, 14, 674. [Google Scholar] [CrossRef] [PubMed]
- Pencheva, V.; Margaritova, E.; Borinarova, M.; Slavkova, M.; Momekova, D.; Petrov, P.D. A Novel Approach for Fabricating Nanocomposite Materials by Embedding Stabilized Core-Shell Micelles into Polysaccharide Cryogel Matrix. Carbohydr. Polym. 2018, 183, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, D.; Das, M.; Thakore, S.; Patel, A.; Kumar, S.; Seshadri, S. Development of a Controlled Sustainable Anticancer Drug Delivery Nanosystem Comprising Doxorubicin and Functionalized MCM-48. J. Drug Deliv. Sci. Technol. 2022, 72, 103419. [Google Scholar] [CrossRef]
- Ronhovde, C.J.; Baer, J.; Larsen, S.C. Effects of Pore Topology and Iron Oxide Core on Doxorubicin Loading and Release from Mesoporous Silica Nanoparticles. J. Nanopart Res. 2017, 19, 215. [Google Scholar] [CrossRef]
- Zaharudin, N.S.; Mohamed Isa, E.D.; Ahmad, H.; Abdul Rahman, M.B.; Jumbri, K. Functionalized Mesoporous Silica Nanoparticles Templated by Pyridinium Ionic Liquid for Hydrophilic and Hydrophobic Drug Release Application. J. Saudi Chem. Soc. 2020, 24, 289–302. [Google Scholar] [CrossRef]
- Wang, Z.; Ji, Y.; Zhang, H.; Liu, G. Mesoporous Carbon Nanospheres-Assisted Amplified Electrochemiluminescence for l-Cysteine Detection. Anal. Biochem. 2025, 699, 115764. [Google Scholar] [CrossRef] [PubMed]
- Pore, Y.V.; Late, S.G.; Patil, A.L.; Kuchekar, B.S. Solid-State Characterization and Dissolution Properties of Bucalutamide-ß-Cyclodextrin Inclusion Complex. Pharmazie 2008, 63, 282–285. [Google Scholar] [CrossRef]
- Yang, C.; Di, P.; Fu, J.; Xiong, H.; Jing, Q.; Ren, G.; Tang, Y.; Zheng, W.; Liu, G.; Ren, F. Improving the Physicochemical Properties of Bicalutamide by Complex Formation with Bovine Serum Albumin. Eur. J. Pharm. Sci. 2017, 106, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Venkata Ramana, P.; Rama Krishna, Y.; Chandra Mouli, K. Experimental (FT-IR, UV-Vis) Spectroscopic Analysis and Molecular Docking Investigations of Anti-Cancer Drugs Alkeran and Bicalutamide. J. Mol. Struct. 2022, 1270, 133984. [Google Scholar] [CrossRef]
- Smith, A.A.; Kannan, K.; Manavalan, R.; Rajendiran, N. Spectral Characteristics of Bicalutamide Drug in Different Solvents and β-Cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2007, 58, 161–167. [Google Scholar] [CrossRef]
- Zhuang, W.-R.; Wang, Y.; Cui, P.-F.; Xing, L.; Lee, J.; Kim, D.; Jiang, H.-L.; Oh, Y.-K. Applications of π-π Stacking Interactions in the Design of Drug-Delivery Systems. J. Control. Release 2019, 294, 311–326. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Lu, J.; Wang, K.; Di, D.; Shi, Z.; Zhao, Q.; Wang, S. Advances in Smart Mesoporous Carbon Nanoplatforms for Photothermal–Enhanced Synergistic Cancer Therapy. Chem. Eng. J. 2022, 435, 134886. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; She, L.; Sun, L.; Ma, Z.; Chen, M.; Hu, P.; Wang, D.; Yang, F. Immunotoxicity Assessment of Ordered Mesoporous Carbon Nanoparticles Modified with PVP/PEG. Colloids Surf. B Biointerfaces 2018, 171, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Hutin, A.; Lima, N.; Lopez, F.; Carvalho, M. Stability of Silica Nanofluids at High Salinity and High Temperature. Powders 2022, 2, 1–20. [Google Scholar] [CrossRef]
- Zhong, H.; Cardenas, H.E. Monitoring Tools and Strategies for Effective Electrokinetic Nanoparticle Treatment. Nanomaterials 2023, 13, 3045. [Google Scholar] [CrossRef] [PubMed]
- Alade, O.S.; Mahmoud, M.; Al Shehri, D.A.; Sultan, A.S. Rapid Determination of Emulsion Stability Using Turbidity Measurement Incorporating Artificial Neural Network (ANN): Experimental Validation Using Video/Optical Microscopy and Kinetic Modeling. ACS Omega 2021, 6, 5910–5920. [Google Scholar] [CrossRef] [PubMed]
- Aspiazu, U.O.; Hamzehlou, S.; Palombo Blascetta, N.; Paulis, M.; Leiza, J.R. Wavelength Exponent Based Calibration for Turbidity Spectroscopy: Monitoring the Particle Size during Emulsion Polymerization Reactions. J. Colloid Interface Sci. 2023, 652, 1685–1692. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, K.; Kaplan, M.; Çalış, S. Effects of Nanoparticle Size, Shape, and Zeta Potential on Drug Delivery. Int. J. Pharm. 2024, 666, 124799. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Jung, K.; Yoo, W.C.; Chung, J.; Lee, Y.-W. Dispersion Stability of 14 Manufactured Nanomaterials for Ecotoxicity Tests Using Raphidocelis Subcapitata. Int. J. Environ. Res. Public Health 2022, 19, 7140. [Google Scholar] [CrossRef] [PubMed]
- Ray, T.R.; Lettiere, B.; De Rutte, J.; Pennathur, S. Quantitative Characterization of the Colloidal Stability of Metallic Nanoparticles Using UV–Vis Absorbance Spectroscopy. Langmuir 2015, 31, 3577–3586. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S. DLS and Zeta Potential–What They Are and What They Are Not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, W.; Zhang, Q.; Zhang, Z.; Guo, J.; Yan, F. Oxygen-Supplied Mesoporous Carbon Nanoparticles for Enhanced Photothermal/Photodynamic Synergetic Therapy against Antibiotic-Resistant Bacterial Infections. Chem. Sci. 2022, 13, 6967–6981. [Google Scholar] [CrossRef] [PubMed]
- Dzhardimalieva, G.; Bondarenko, L.; Illés, E.; Tombácz, E.; Tropskaya, N.; Magomedov, I.; Orekhov, A.; Kydralieva, K. Colloidal Stability of Silica-Modified Magnetite Nanoparticles: Comparison of Various Dispersion Techniques. Nanomaterials 2021, 11, 3295. [Google Scholar] [CrossRef] [PubMed]
- Sábio, R.; Meneguin, A.; Martins dos Santos, A.; Monteiro, A.; Chorilli, M. Exploiting Mesoporous Silica Nanoparticles as Versatile Drug Carriers for Several Routes of Administration. Microporous Mesoporous Mater. 2021, 312, 110774. [Google Scholar] [CrossRef]
- Gontijo, L.A.P.; Raphael, E.; Ferrari, D.P.S.; Ferrari, J.L.; Lyon, J.P.; Schiavon, M.A. PH Effect on the Synthesis of Different Size Silver Nanoparticles Evaluated by DLS and Their Size-Dependent Antimicrobial Activity. Matéria 2020, 25, e-12845. [Google Scholar] [CrossRef]
- Chen, K.L.; Smith, B.A.; Ball, W.P.; Fairbrother, D.H. Assessing the Colloidal Properties of Engineered Nanoparticles in Water: Case Studies from Fullerene C60 Nanoparticles and Carbon Nanotubes. Environ. Chem. 2010, 7, 10–27. [Google Scholar] [CrossRef]
- Szekeres, M.; Tóth, I.Y.; Illés, E.; Hajdú, A.; Zupkó, I.; Farkas, K.; Oszlánczi, G.; Tiszlavicz, L.; Tombácz, E. Chemical and Colloidal Stability of Carboxylated Core-Shell Magnetite Nanoparticles Designed for Biomedical Applications. Int. J. Mol. Sci. 2013, 14, 14550–14574. [Google Scholar] [CrossRef] [PubMed]
- Vega, D.R.; Polla, G.; Martinez, A.; Mendioroz, E.; Reinoso, M. Conformational Polymorphism in Bicalutamide. Int. J. Pharm. 2007, 328, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Michen, B.; Geers, C.; Vanhecke, D.; Endes, C.; Rothen-Rutishauser, B.; Balog, S.; Petri-Fink, A. Avoiding Drying-Artifacts in Transmission Electron Microscopy: Characterizing the Size and Colloidal State of Nanoparticles. Sci. Rep. 2015, 5, 9793. [Google Scholar] [CrossRef] [PubMed]
- Nadkarni, A.; Rana, D.; Desai, N.; Benival, D.; Joshi, V.; Salave, S.; Khunt, D. Advanced Characterization and Sample Preparation Strategies for Nanoformulations. J. Nanotheranostics 2024, 5, 104–127. [Google Scholar] [CrossRef]
- TEM Sample Preparation of Nanoparticles in Suspensions-2014-Wiley Analytical Science. Available online: https://analyticalscience.wiley.com/content/article-do/tem-sample-preparation-nanoparticles-suspensions (accessed on 3 July 2025).
- Bonevich, J.E.; Haller, W.K. Measuring the Size of Nanoparticles Using Transmission Electron Microscopy (TEM): Version 1.1. In National Cancer Institute’s Nanotechnology Characterization Laboratory Assay Cascade Protocols; National Cancer Institute (US): Bethesda, MD, USA, 2005. [Google Scholar]
- Imani, R.; Emami, S.H.; Faghihi, S. Nano-Graphene Oxide Carboxylation for Efficient Bioconjugation Applications: A Quantitative Optimization Approach. J. Nanopart. Res. 2015, 17, 88. [Google Scholar] [CrossRef]
- Rud, A.D.; Kornienko, N.E.; Polunkin, I.V.; Boguslavskii, L.Z.; Vinnichenko, D.V.; Kirian, I.M.; Kolomys, O.F.; Kuskova, N.I. Structure of Carbon Nanospheres Modified with Oxygen-Containing Groups and Halogens. Appl. Nanosci. 2023, 13, 6929–6937. [Google Scholar] [CrossRef]
- Pokharkar, V.B.; Malhi, T.; Mandpe, L. Bicalutamide Nanocrystals with Improved Oral Bioavailability: In Vitro and in Vivo Evaluation. Pharm. Dev. Technol. 2013, 18, 660–666. [Google Scholar] [CrossRef] [PubMed]
- Maghsoudi, M.; Abbasian, M.; Farhadi, K.; Mahmoodzadeh, F.; Ghorbani, M.; Hoseinzadeh, M. Mesoporous Si-MCM-41/Polymer as a PH-Responsive Drug Delivery System for Cancer Therapy. ChemistrySelect 2020, 5, 11901–11909. [Google Scholar] [CrossRef]
- Liu, C.; Yu, M.; Li, Y.; Li, J.; Wang, J.; Yu, C.; Wang, L. Synthesis of Mesoporous Carbon Nanoparticles with Large and Tunable Pore Sizes. Nanoscale 2015, 7, 11580–11590. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Su, S.; Li, Y.; He, Q.; Shi, J. Hydrophilic Mesoporous Carbon Nanoparticles as Carriers for Sustained Release of Hydrophobic Anti-Cancer Drugs. Chem. Commun. 2011, 47, 2101–2103. [Google Scholar] [CrossRef] [PubMed]
- Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S.G.; Nel, A.E.; Tamanoi, F.; Zink, J.I. Multifunctional Inorganic Nanoparticles for Imaging, Targeting, and Drug Delivery. ACS Nano 2008, 2, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Venditto, V.J.; Simanek, E.E. Cancer Therapies Utilizing the Camptothecins: A Review of the in Vivo Literature. Mol. Pharm. 2010, 7, 307–349. [Google Scholar] [CrossRef] [PubMed]
- Popova, M.; Szegedi, Á.; Kolev, I.; Mihaly, J.; Tzankov, B.; Momekov, G.; Lambov, N.; Yoncheva, K. Carboxylic Modified Spherical Mesoporous Silicas s Drug Delivery Carriers. Int. J. Pharm. 2012, 436, 778–785. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic Modeling on Drug Release from Controlled Drug Delivery Systems. Acta Pol. Pharm. 2010, 67, 217–223. [Google Scholar] [PubMed]
- Higuchi, T. Mechanism of Sustained-action Medication. Theoretical Analysis of Rate of Release of Solid Drugs Dispersed in Solid Matrices. J. Pharm. Sci. 1963, 52, 1145–1149. [Google Scholar] [CrossRef] [PubMed]
- Korsmeyer, R.W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N.A. Mechanisms of Solute Release from Porous Hydrophilic Polymers. Int. J. Pharm. 1983, 15, 25–35. [Google Scholar] [CrossRef]
- Costa, P.; Sousa Lobo, J.M. Modeling and Comparison of Dissolution Profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Siepmann, J.; Peppas, N.A. Modeling of Drug Release from Delivery Systems Based on Hydroxypropyl Methylcellulose (HPMC). Adv. Drug Deliv. Rev. 2001, 48, 139–157. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Wu, S.-H.; Ren, W.-G.; Wang, X.-L.; Yang, A.-Q. Anticancer Activity of Bicalutamide-Loaded PLGA Nanoparticles in Prostate Cancers. Exp. Ther. Med. 2015, 10, 2305–2310. [Google Scholar] [CrossRef] [PubMed]
- Hodoniczky, J.; Sims, C.G.; Best, W.M.; Bentel, J.M.; Wilce, J.A. The Intracellular and Nuclear-Targeted Delivery of an Antiandrogen Drug by Carrier Peptides. Pept. Sci. 2008, 90, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Popova, T.; Tzankov, B.; Voycheva, C.; Spassova, I.; Kovacheva, D.; Tzankov, S.; Aluani, D.; Tzankova, V.; Lambov, N. Mesoporous Silica MCM-41 and HMS as Advanced Drug Delivery Carriers for Bicalutamide. J. Drug Deliv. Sci. Technol. 2021, 62, 102340. [Google Scholar] [CrossRef]
- Rahmani, S.; Durand, J.-O.; Charnay, C.; Lichon, L.; Férid, M.; Garcia, M.; Gary-Bobo, M. Synthesis of Mesoporous Silica Nanoparticles and Nanorods: Application to Doxorubicin Delivery. Solid State Sci. 2017, 68, 25–31. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Fan, N.; Li, J.; He, Z.; Sun, J. Multimodal Nanoporous Silica Nanoparticles Functionalized with Aminopropyl Groups for Improving Loading and Controlled Release of Doxorubicin Hydrochloride. Mater. Sci. Eng. C 2017, 78, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, M.M.A.; Cevc, G. Turbidity Spectroscopy for Characterization of Submicroscopic Drug Carriers, Such as Nanoparticles and Lipid Vesicles: Size Determination. Pharm. Res. 2011, 28, 2204–2222. [Google Scholar] [CrossRef] [PubMed]
Parameter | Sample Coding | |
---|---|---|
MCN/B | MCN-COOH/B | |
EE% | 84.15 ± 4.3 | 99.35 ± 3.1 |
LC% | 41.08 ± 2.5 | 48.53 ± 1.8 |
Functional Group Vibration | Sample Coding | ||||
---|---|---|---|---|---|
MCN | MCN-COOH | B | MCN/B | MCN-COOH/B | |
υ O-H /hydroxyl group/ | 3597 cm−1 | 3595 cm−1 | 3579 cm−1 | ||
υ N-H /amide group/ | 3336 cm−1 | 3334 cm−1 | 3327 cm−1 | ||
υ C–H /aromatic/ | 3070 cm−1 | 3070 cm−1 | 3070 cm−1 | ||
υ C–H /aliphatic/ | 2975 cm−1 | 2975 cm−1 | 2975 cm−1 | ||
υ C≡N /nitrile group/ | 2231 cm−1 | 2231 cm−1 | 2231 cm−1 | ||
υ C=O /carbonyl group/ | 1707 cm−1 | 1696 cm−1 | 1705 cm−1 | 1684 cm−1 | |
υ C=C /aromatic/ | 1597 cm−1 | 1598 cm−1 | 1602 cm−1 | 1579 cm−1 | 1581 cm−1 |
β C-H /aromatic/ | 1514 cm−1 | 1514 cm−1 | 1514 cm−1 | ||
υ S=O /sulfonyl group/ | 1327 cm−1 | 1327 cm−1 | 1325 cm−1 | ||
υ C–O | 1256 cm−1 | 1258 cm−1 | 1257 cm−1 | 1253 cm−1 | |
υ C–F /monofluorinated benzene/ | 1231 cm−1 | 1230 cm−1 | 1228 cm−1 | ||
υ C–F /CF3/ | 1126 cm−1 | 1126 cm−1 | 1126 cm−1 |
Parameter | Sample Coding | ||||
---|---|---|---|---|---|
Media | MCN | MCN-COOH | MCN/B | MCN-COOH/B | |
Size, nm | Deionized water | 103.2 ± 5.8 | 174.8 ± 2.4 | 125.7 ± 6.1 | 198.2 ± 3.2 |
Buffer pH 1.2 | 120.4 ± 6.3 | 222.7 ± 6.5 | 137.4 ± 7.1 | 248.1 ± 6.4 | |
Buffer pH 5.0 | 109.7 ± 4.1 | 203.1 ± 5.9 | 131.7 ± 6.5 | 210.8 ± 5.7 | |
Buffer pH 6.8 | 105.4 ± 5.9 | 181.7 ± 3.2 | 129.1 ± 5.7 | 195.9 ± 6.2 | |
PDI | Deionized water | 0.451 | 0.157 | 0.567 | 0.225 |
Buffer pH 1.2 | 0.625 | 0.287 | 0.739 | 0.301 | |
Buffer pH 5.0 | 0.542 | 0.204 | 0.617 | 0.265 | |
Buffer pH 6.8 | 0.448 | 0.149 | 0.530 | 0.238 | |
Z-potential, mV | Deionized water | −9.02 ± 0.3 | −38.05 ± 0.4 | −7.03 ± 0.2 | −34.13 ± 0.6 |
Buffer pH 1.2 | −8.12 ± 0.6 | −30.25 ± 0.6 | −6.12 ± 0.3 | −29.78 ± 0.2 | |
Buffer pH 5.0 | −8.51 ± 0.5 | −34.48 ± 0.5 | −6.53 ± 0.4 | −31.74 ± 0.5 | |
Buffer pH 6.8 | −8.84 ± 0.3 | −39.11 ± 0.6 | −7.18 ± 0.2 | −33.65 ± 0.7 |
Sample Coding | Parameter | |||||
---|---|---|---|---|---|---|
SBET, m2/g | Vt, cm3/g | Dav, nm | Vmi, cm3/g | Smi, m2/g | Sext, m2/g | |
B | 11 | 0.02 | 6.0 | - | - | 11 |
MCN | 246 | 0.49 | 7.9 | 0.02 | 49 | 197 |
MCN/B | 54 | 0.29 | 21.8 | - | - | 54 |
MCN-COOH | 16 | 0.06 | 14.5 | - | - | 16 |
MCN-COOH/B | 17 | 0.09 | 21.0 | - | - | 17 |
Sample Coding | T50 of Bicalutamide, h | ||
---|---|---|---|
pH 1.2 | pH 5.0 | pH 6.8 | |
B | 0.49 ± 0.05 | 0.45 ± 0.02 | 0.42 ± 0.01 |
B + NIR | 0.47 ± 0.03 | 0.46 ± 0.01 | 0.44 ± 0.03 |
MCN/B | 3.85 ± 0.31 | 3.71 ± 0.21 | 3.68 ± 0.34 |
MCN/B + NIR | 3.03 ± 0.26 | 2.94 ± 0.36 | 2.79 ± 0.21 |
MCN-COOH/B | 12.09 ± 0.43 | 10.87 ± 0.57 | 10.15 ± 0.71 |
MCN-COOH/B + NIR | 7.96 ± 0.57 | 6.76 ± 0.49 | 6.03 ± 0.35 |
Sample Coding | Kinetics Model | |||||||
---|---|---|---|---|---|---|---|---|
Zero-Order | First-Order Kinetics | Higuchi Model | Korsmeyer–Peppas Model | |||||
Qt = Q0 + k0t | lnQt = lnQ0 − k1t | Qt = kHt1/2 | Qt/Q∞ = kPtn | |||||
R2 | k | R2 | k | R2 | k | R2 | n | |
MCN/B | 0.9515 | 0.0015 | 0.6145 | 0.0051 | 0.9959 | 3.8098 | 0.6800 | −0.4342 |
MCN/B + NIR | 0.9385 | 0.0016 | 0.5739 | 0.0050 | 0.9980 | 3.9936 | 0.6815 | −0.4458 |
MCN-COOH/B | 0.9673 | 0.0009 | 0.9224 | 0.0075 | 0.8224 | 2.0711 | 0.5638 | −0.8572 |
MCN-COOH/B + NIR | 0.9967 | 0.0012 | 0.8386 | 0.0069 | 0.9298 | 2.9128 | 0.5033 | −1.0811 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popova, T.; Tzankov, B.; Slavkova, M.; Yordanov, Y.; Stefanova, D.; Tzankova, V.; Tzankova, D.; Spassova, I.; Kovacheva, D.; Voycheva, C. Carboxylated Mesoporous Carbon Nanoparticles as Bicalutamide Carriers with Improved Biopharmaceutical and Chemo-Photothermal Characteristics. Molecules 2025, 30, 3055. https://doi.org/10.3390/molecules30153055
Popova T, Tzankov B, Slavkova M, Yordanov Y, Stefanova D, Tzankova V, Tzankova D, Spassova I, Kovacheva D, Voycheva C. Carboxylated Mesoporous Carbon Nanoparticles as Bicalutamide Carriers with Improved Biopharmaceutical and Chemo-Photothermal Characteristics. Molecules. 2025; 30(15):3055. https://doi.org/10.3390/molecules30153055
Chicago/Turabian StylePopova, Teodora, Borislav Tzankov, Marta Slavkova, Yordan Yordanov, Denitsa Stefanova, Virginia Tzankova, Diana Tzankova, Ivanka Spassova, Daniela Kovacheva, and Christina Voycheva. 2025. "Carboxylated Mesoporous Carbon Nanoparticles as Bicalutamide Carriers with Improved Biopharmaceutical and Chemo-Photothermal Characteristics" Molecules 30, no. 15: 3055. https://doi.org/10.3390/molecules30153055
APA StylePopova, T., Tzankov, B., Slavkova, M., Yordanov, Y., Stefanova, D., Tzankova, V., Tzankova, D., Spassova, I., Kovacheva, D., & Voycheva, C. (2025). Carboxylated Mesoporous Carbon Nanoparticles as Bicalutamide Carriers with Improved Biopharmaceutical and Chemo-Photothermal Characteristics. Molecules, 30(15), 3055. https://doi.org/10.3390/molecules30153055