Hydrodynamic Characterisation of the Inland Valley Soils of the Niger Delta Area for Sustainable Agricultural Water Management
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Column Experiments
2.2. Data Logging and Monitoring Devices
2.3. Testing Materials
2.4. Experimental Procedure and Sequence
2.5. Van Genuchten Correlation of the Soil Water Characteristics Curve
3. Results and Discussion
3.1. Results of Sieve Analysis
3.2. Measurement of the Soil Water Content
3.3. Measurement of the Soil Matric Potential
3.4. Measurement of the Soil Water Characteristic Curve
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kargas, G.; Kerkides, P.; Londra, P.A. Study of the Soil Water Movement in Irrigated Agriculture. Water 2023, 15, 127. [Google Scholar] [CrossRef]
- Fuentes, C.; Chávez, C. Analytic Representation of the Optimal Flow for Gravity Irrigation. Water 2020, 12, 2710. [Google Scholar] [CrossRef]
- Wang, C.; Bai, D.; Li, Y.; Wang, X.; Pei, Z.; Dong, Z. Infiltration characteristics and spatiotemporal distribution of soil moisture in layered soil under vertical tube irrigation. Water 2020, 12, 2725. [Google Scholar] [CrossRef]
- Osame, P.U. Hydrodynamic Characterisation of Soil Subsurface Flows for Water Conservation Purposes. Ph.D. Thesis, Robert Gordon University, Aberdeen, Scotland, 2024. [Google Scholar] [CrossRef]
- Lewis, J.; Sjöstrom, J. Optimizing the experimental design of soil columns in saturated and unsaturated transport experiments. J. Contam. Hydrol. 2010, 115, 1–13. [Google Scholar] [CrossRef]
- Morbidelli, R.; Saltalippi, C.; Flammini, A.; Cifrodelli, M.; Picciafuoco, T.; Corradini, C.; Govindaraju, R.S. In-Situ Measurements of Soil Saturated Hydraulic Conductivity: Assessment of Reliability Through Rainfall-Runoff Experiments: In-Situ Measurements of Soil Saturated Hydraulic Conductivity. Hydrol. Process. 2017, 31, 3084–3094. [Google Scholar] [CrossRef]
- Moret-Fernández, D.; González-Cebollada, C.; Latorre, B.; Pérez, V. A modified hood infiltrometer to estimate the soil hydraulic properties from the transient water flow measurements. J. Hydrol. 2015, 530, 554–560. [Google Scholar] [CrossRef]
- Gallage, C.; Kodikara, J.; Uchimura, T. Laboratory measurement of hydraulic conductivity functions of two unsaturated sandy soils during drying and wetting processes. Soils Found. 2013, 53, 417–430. [Google Scholar] [CrossRef]
- Bienvenue, T.; Xie, J.; Niu, Q. Developing a soil column system to measure hydrogeophysical properties of unconsolidated sediment. Vadose Zone J. 2022, 21, e20186. [Google Scholar] [CrossRef]
- Hou, X.; Vanapalli, S.; Li, T. Water flow in unsaturated soils subjected to multiple infiltration events. Can. Geotech. J. 2019, 57, 3. [Google Scholar] [CrossRef]
- Haria, A.H.; Hodnett, M.G.; Johnson, A.C. Mechanisms of groundwater recharge and pesticide penetration to a chalk aquifer in southern England. J. Hydrol. 2003, 275, 122–137. [Google Scholar] [CrossRef]
- Ronayne, M.J.; Houghton, T.B.; Stednick, J.D. Field characterization of hydraulic conductivity in a heterogeneous alpine glacial till. J. Hydrol. 2012, 458–459, 103–109. [Google Scholar] [CrossRef]
- Liu, Q.; Yasufuku, N.; Omine, K.; Hazarika, H. Automatic soil water retention test system with volume change measurement for sandy and silty soils. Soils Found. 2012, 52, 368–380. [Google Scholar] [CrossRef]
- Ritter, A.; Muñoz-Carpena, R.; Regalado, C.; Vanclooster, M.; Lambot, S. Analysis of alternative measurement strategies for the inverse optimization of the hydraulic properties of a volcanic soil. J. Hydrol. 2004, 295, 124–139. [Google Scholar] [CrossRef]
- Köhne, J.M.; Mohanty, B.P. Water flow processes in a soil column with a cylindrical macropore: Experiment and hierarchical modeling. Water Resour. Res. 2005, 41, W03010. [Google Scholar] [CrossRef]
- Aljoumani, B.; Sanchez-Espigares, J.; Wessolek, G. Estimating Pore Water Electrical Conductivity of Sandy Soil from Time Domain Reflectometry Records Using a Time-Varying Dynamic Linear Model. Sensors 2018, 18, 4403. [Google Scholar] [CrossRef]
- Karup, D.; Moldrup, P.; Tuller, M.; Arthur, E.; de Jonge, L. Prediction of the soil water retention curve for structured soil from saturation to oven-dryness. Eur. J. Soil Sci. 2017, 68, 57–65. [Google Scholar] [CrossRef]
- Fu, Y.; Lu, S.; Ren, T.; Horton, R.; Heitman, J. Estimating soil water retention curves from soil thermal conductivity measurements. J. Hydrol. 2021, 603, 127171. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Abbasi, Y.; Ghanbarian-Alavijeh, B.; Liaghat, A.; Shorafa, M. Evaluation of Pedotransfer Functions for Estimating Soil Water Retention Curve of Saline and Saline-Alkali Soils of Iran. Pedosphere 2011, 21, 230–237. [Google Scholar] [CrossRef]
- Tomasella, J.; Hodnett, M.G.; Rossato, L. Pedotransfer Functions for the Estimation of Soil Water Retention in Brazilian Soils. Soil Sci. Soc. Am. J. 2000, 64, 327–338. [Google Scholar] [CrossRef]
- Haghverdi, A.; Öztürk, H.S.; Durner, W. Measurement and estimation of the soil water retention curve using the evaporation method and the pseudo continuous pedotransfer function. J. Hydrol. 2018, 563, 251–259. [Google Scholar] [CrossRef]
- Tian, Z.; Chen, J.; Cai, C.; Gao, W.; Ren, T.; Heitman, J.L.; Horton, R. New pedotransfer functions for soil water retention curves that better account for bulk density effects. Soil Tillage Res. 2021, 205, 104812. [Google Scholar] [CrossRef]
- Obi, J.C.; Ogban, P.; Ituen, U.; Udoh, B. Development of pedotransfer functions for coastal plain soils using terrain attributes. Catena 2014, 123, 252–262. [Google Scholar] [CrossRef]
- Vereecken, H.; Maes, J.; Feyen, J.; Darius, P. Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Sci. 1989, 148, 389–403. [Google Scholar] [CrossRef]
- Rudiyanto; Minasny, B.; Chaney, N.W.; Maggi, F.; Giap, S.G.E.; Shah, R.M.; Fiantis, D.; Setiawan, B.I. Pedotransfer functions for estimating soil hydraulic properties from saturation to dryness. Geoderma 2021, 403, 115194. [Google Scholar] [CrossRef]
- Bayat, H.; Neyshaburi, M.R.; Mohammadi, K.; Nariman-Zadeh, N.; Irannejad, M.; Gregory, A.S. Combination of artificial neural networks and fractal theory to predict soil water retention curve. Comput. Electron. Agric. 2013, 92, 92–103. [Google Scholar] [CrossRef]
- Haghverdi, A.; Cornelis, W.M.; Ghahraman, B. A pseudo-continuous neural network approach for developing water retention pedotransfer functions with limited data. J. Hydrol. 2012, 442–443, 46–54. [Google Scholar] [CrossRef]
- He, H.; Aogu, K.; Li, M.; Xu, J.; Sheng, W.; Jones, S.B.; González-Teruel, J.D.; Robinson, D.A.; Horton, R.; Bristow, K.; et al. Chapter Three—A review of time domain reflectometry (TDR) applications in porous media. Adv. Agron. 2021, 168, 83–155. [Google Scholar]
- Luo, S.; Lu, N.; Zhang, C.; Likos, W. Soil water potential: A historical perspective and recent breakthroughs. Vadose Zone J. 2022, 21, e20203. [Google Scholar] [CrossRef]
- Lu, N. Linking soil water adsorption to geotechnical engineering properties. In Geotechnical Fundamentals for Addressing New World Challenges; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Tuller, M.; Or, D.; Dudley, L.M. Adsorption and capillary condensation in porous media: Liquid retention and interfacial configurations in angular pores. Water Resour. Res. 1999, 35, 1949–1964. [Google Scholar] [CrossRef]
- Or, D.; Tuller, M. Liquid retention and interfacial area in variably saturated porous media: Upscaling from single-pore to sample-scale model. Water Resour. Res. 1999, 35, 3591–3605. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, N. Unitary Definition of Matric Suction. J. Geotech. Geoenviron. Eng. 2019, 145, 02818004. [Google Scholar] [CrossRef]
- Eyo, E.U.; Ng, S.; Abbey, S.J. An overview of soil–water characteristic curves of stabilised soils and their influential factors. J. King Saud. Univ. Eng. Sci. 2022, 34, 31–45. [Google Scholar] [CrossRef]
- Fredlund, D.; Xing, A. Equations for the Soil–Water Characteristic Curve. Can. Geotech. J. 1994, 31, 521–532. [Google Scholar] [CrossRef]
- Koorevaar, P.; Dirksen, C.; Menelik, G. Elements of Soil Physics, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 1991; Available online: https://worldcat.org/title/246116088 (accessed on 3 November 2023).
- Brooks, R.H.A.T. Corey and Colorado State University Hydrology and Water, Resources Program. In Hydraulic Properties of Porous Media; Department of Energy: Washington, DC, USA, 1964; Available online: https://worldcat.org/title/3441493 (accessed on 8 July 2025).
- Vanapalli, S.K.; Fredlund, D.G.; Pufahl, D.E.; Clifton, A.W. Model for the prediction of shear strength with respect to soil suction. Can. Geotech. J. 1996, 33, 379–392. [Google Scholar] [CrossRef]
- Bromly, M.; Hinz, C.; Aylmore, L.A.G. Relation of dispersivity to properties of homogeneous saturated repacked soil columns. Eur. J. Soil Sci. 2007, 58, 293–301. [Google Scholar] [CrossRef]
- Ghodrati, M.; Chendorain, M.; Chang, Y.J. Characterization of Macropore Flow Mechanisms in Soil by Means of a Split Macropore Column. Soil Sci. Soc. Am. J. 1999, 63, 1093–1101. [Google Scholar] [CrossRef]
- Hrapovic, L.; Sleep, B.E.; Major, D.J.; Hood, E.D. Laboratory Study of Treatment of Trichloroethene by Chemical Oxidation Followed by Bioremediation. Environ. Sci. Technol. 2005, 39, 2888–2897. [Google Scholar] [CrossRef]
- Communar, G.; Keren, R.; Li, F. Deriving Boron Adsorption Isotherms from Soil Column Displacement Experiments. Soil Sci. Soc. Am. J. SSSAJ 2004, 68, 481–488. [Google Scholar] [CrossRef]
- Moreno-Maroto, J.M.; Alonso-Azcárate, J.; O’Kelly, B.C. Review and critical examination of fine-grained soil classification systems based on plasticity. Appl. Clay. Sci. 2021, 200, 105955. [Google Scholar] [CrossRef]
- Moreno-Maroto, J.M.; Alonso-Azcárate, J. Evaluation of the USDA soil texture triangle through Atterberg limits and an alternative classification system. Appl. Clay. Sci. 2022, 229, 106689. [Google Scholar] [CrossRef]
- Irmak, S.; Pareyo, J.O.; VanDeWalle, B.; Rees, J.; Zoubek, G.; Martin, D.L.; Kranz, W.L.; Eisenhauer, D.E.; Leininger, D. Principles and Operational Characteristics of Watermark Granular Matrix Sensor to Measure Soil Water Status and Its Practical Applications for Irrigation Management in Various Soil Textures; Nebraska Extension Publications: Lincoin, Nebraska, 2014. [Google Scholar]
- Li, D.; Gao, G.; Shao, M.; Fu, B. Predicting available water of soil from particle-size distribution and bulk density in an oasis–desert transect in northwestern China. J. Hydrol. 2016, 538, 539–550. [Google Scholar] [CrossRef]
- Kargas, G.; Koka, D.; Londra, P.A. Determination of Soil Hydraulic Properties from Infiltration Data Using Various Methods. Land 2022, 11, 2022. [Google Scholar] [CrossRef]
- O’Green, A.T. Soil Water Dynamics. Nat. Educ. Knowl. 2013, 4, 9. [Google Scholar]
- Robertson, J.; Thomas, C.; Caddy, B.; Lewis, A.J. Particle size analysis of soils—A comparison of dry and wet sieving techniques. Forensic Sci. Int. 1984, 24, 209–217. [Google Scholar] [CrossRef]
- Taylor, S.A.; Ashcroft, G.L. Physical Edaphology: The Physics of Irrigated and Nonirrigated Soils; Wiley: Hoboken, NJ, USA, 1972; Available online: https://books.google.co.uk/books?id=P1eEQgAACAAJ (accessed on 4 April 2024).
- Yang, C.; Wu, J.; Li, P.; Wang, Y.; Yang, N. Evaluation of Soil-Water Characteristic Curves for Different Textural Soils Using Fractal Analysis. Water 2023, 15, 772. [Google Scholar] [CrossRef]
Type of Material: Lateritic Material | Ivrogbo | Oleh |
---|---|---|
Container volume (V) | 3232 | 3423 |
Net container weight | 186 | 188 |
Container weight + sample | 5500 | 5814 |
Material weight (W) | 5314 | 5626 |
Density = W/V | 1.64 | 1.64 |
Average density | 1.64 g/cm3 | 1.64 g/cm3 |
Parameters | Ivrogbo | Oleh |
---|---|---|
Calcium, meq/100 g | 4.20 | 4.86 |
Magnesium, meq/100 g | 2.56 | 2.47 |
Potassium, meq/100 g | 1.52 | 1.39 |
Sodium, meq/100 g | 1.98 | 2.15 |
TOC, % | 0.02 | 0.03 |
Total nitrogen, mg/kg | 59.27 | 79.07 |
Total phosphate, mg/kg | 9.69 | 13.05 |
Exchangeable acidity, meq/100 g | 0.25 | 0.30 |
Electrical conductivity, μS/cm | 86.30 | 104.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osame, P.U.; Asim, T. Hydrodynamic Characterisation of the Inland Valley Soils of the Niger Delta Area for Sustainable Agricultural Water Management. Sensors 2025, 25, 4349. https://doi.org/10.3390/s25144349
Osame PU, Asim T. Hydrodynamic Characterisation of the Inland Valley Soils of the Niger Delta Area for Sustainable Agricultural Water Management. Sensors. 2025; 25(14):4349. https://doi.org/10.3390/s25144349
Chicago/Turabian StyleOsame, Peter Uloho, and Taimoor Asim. 2025. "Hydrodynamic Characterisation of the Inland Valley Soils of the Niger Delta Area for Sustainable Agricultural Water Management" Sensors 25, no. 14: 4349. https://doi.org/10.3390/s25144349
APA StyleOsame, P. U., & Asim, T. (2025). Hydrodynamic Characterisation of the Inland Valley Soils of the Niger Delta Area for Sustainable Agricultural Water Management. Sensors, 25(14), 4349. https://doi.org/10.3390/s25144349