Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = water balance closure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7111 KiB  
Article
Seasonal Variation in Energy Balance, Evapotranspiration and Net Ecosystem Production in a Desert Ecosystem of Dengkou, Inner Mongolia, China
by Muhammad Zain Ul Abidin, Huijie Xiao, Sanaullah Magsi, Fang Hongxin, Komal Muskan, Phuocthoi Hoang and Muhammad Azher Hassan
Water 2025, 17(15), 2307; https://doi.org/10.3390/w17152307 - 3 Aug 2025
Viewed by 209
Abstract
This study investigates the seasonal dynamics of energy balance, evapotranspiration (ET), and Net Ecosystem Production (NEP) in the Dengkou desert ecosystem of Inner Mongolia, China. Using eddy covariance and meteorological data from 2019 to 2022, the research focuses on understanding how these processes [...] Read more.
This study investigates the seasonal dynamics of energy balance, evapotranspiration (ET), and Net Ecosystem Production (NEP) in the Dengkou desert ecosystem of Inner Mongolia, China. Using eddy covariance and meteorological data from 2019 to 2022, the research focuses on understanding how these processes interact in one of the world’s most water-limited environments. This arid research area received an average of 109.35 mm per annum precipitation over the studied period, classifying the region as a typical arid ecosystem. Seasonal patterns were observed in daily air temperature, with extremes ranging from −20.6 °C to 29.6 °C. Temporal variations in sensible heat flux (H), latent heat flux (LE), and net radiation (Rn) peaked during summer season. The average ground heat flux (G) was mostly positive throughout the observation period, indicating heat transmission from atmosphere to soil, but showed negative values during the winter season. The energy balance ratio for the studied period was in the range of 0.61 to 0.80, indicating challenges in achieving energy closure and ecological shifts. ET exhibited two annual peaks influenced by vegetation growth and climate change, with annual ET exceeding annual precipitation, except in 2021. Net ecosystem production (NEP) from 2019 to 2020 revealed that the Dengkou desert were a net source of carbon, indicating the carbon loss from the ecosystem. In 2021, the Dengkou ecosystem shifted to become a net carbon sink, effectively sequestrating carbon. However, this was sharply reversed in 2022, resulting in a significant net release of carbon. The study findings highlight the complex interactions between energy balance components, ET, and NEP in desert ecosystems, providing insights into sustainable water management and carbon neutrality strategies in arid regions under climate change effect. Full article
(This article belongs to the Special Issue The Observation and Modeling of Surface Air Hydrological Factors)
Show Figures

Graphical abstract

17 pages, 9014 KiB  
Article
Spatially Explicit Evaluation of the Suitability and Quality Improvement Potential of Forest and Grassland Habitat in the Yanhe River Basin
by Zhihong Yao, Xiaoyang Sun, Peiqing Xiao, Zhuangzhuang Liu, Menghao Yang and Peng Jiao
Land 2025, 14(5), 1049; https://doi.org/10.3390/land14051049 - 12 May 2025
Viewed by 454
Abstract
Habitat suitability assessment for forest and grassland ecosystems is a critical component of ecological restoration and land use planning in the Loess Plateau, aiming to advance soil and water conservation and foster sustainable ecological environment development. Despite progress in vegetation restoration, systematic evaluations [...] Read more.
Habitat suitability assessment for forest and grassland ecosystems is a critical component of ecological restoration and land use planning in the Loess Plateau, aiming to advance soil and water conservation and foster sustainable ecological environment development. Despite progress in vegetation restoration, systematic evaluations of habitat suitability in complex geomorphic regions like the Loess Plateau remain scarce, particularly in balancing hydrological and ecological trade-offs. The Yanhe River Basin (7725 km2), a sediment-prone tributary of the Yellow River, exemplifies the challenges of soil erosion and semi-arid climatic constraints, making it a critical case for evaluating restoration strategies. This study employed a comprehensive approach utilizing Analytic Hierarchy Process (AHP), Geographic Detector, mathematical statistics, and other methods. An evaluation indicator system and methodology were established to assess the suitability of forest and grassland habitats in the Yanhe River Basin, evaluating the suitability and quality improvement potential under the current land use conditions. The results indicate: (1) The dominant factors influencing the suitable distribution of forests include photosynthetically active radiation (PAR), soil total phosphorus content, annual precipitation, and elevation. For grasslands, the dominant factors include photosynthetically active radiation, annual average temperature, elevation, and annual precipitation. (2) In the watershed, forestland and grassland areas classified as moderately suitable or higher cover 1064.9 km2 and 4196.9 km2, accounting for 91.9% and 94.7% of their total respective areas, indicating a generally rational spatial allocation of forest and grassland ecosystems. (3) The improvable area for forests measures 366 km2 (34.4% of moderately or higher suitability zones), with most already meeting coverage thresholds. In contrast, grasslands have an improvable area of 2491.6 km2 (59.4% of moderately or higher suitability zones), where over half of the area remains below coverage thresholds corresponding to their habitat conditions. (4) Forests can adopt natural restoration-focused low-intensity interventions through strengthened closure management, while grasslands require spatially tailored measures—such as precipitation interception and enhanced stewardship—targeting suitability-based potential grades, collectively achieving overall improvement in grassland vegetation coverage. This study represents the first systematic evaluation of forest–grassland habitat suitability in the Yanhe River Basin, elucidating its spatial distribution patterns and providing critical insights for watershed-scale ecological restoration. Full article
Show Figures

Figure 1

23 pages, 6633 KiB  
Article
Investigating Catching Hotspots of Fishing Boats: A Framework Using BeiDou Big Data and Deep Learning Algorithms
by Fen Wang, Xingyu Liu, Tanxue Chen, Hongxiang Feng and Qin Lin
J. Mar. Sci. Eng. 2025, 13(5), 905; https://doi.org/10.3390/jmse13050905 - 1 May 2025
Viewed by 429
Abstract
Illegal, unreported, and unregulated (IUU) fishing significantly threatens marine ecosystems, disrupts the ecological balance of the oceans, and poses serious challenges to global fisheries management. This contribution presents the efficacy of China’s summer fishing moratorium using BeiDou vessel monitoring system (VMS) data from [...] Read more.
Illegal, unreported, and unregulated (IUU) fishing significantly threatens marine ecosystems, disrupts the ecological balance of the oceans, and poses serious challenges to global fisheries management. This contribution presents the efficacy of China’s summer fishing moratorium using BeiDou vessel monitoring system (VMS) data from 2805 fishing vessels in the East China Sea and Yellow Sea, integrated with a deep learning framework for spatiotemporal analysis. A preprocessing protocol addressing multidimensional noise in raw VMS datasets was developed, incorporating velocity normalization and gap filling to ensure data reliability. The CNN-BiLSTM hybrid model emerged as optimal for fishing behavior classification, achieving 89.98% accuracy and an 87.72% F1 score through synergistic spatiotemporal feature extraction. Spatial analysis revealed significant policy-driven reductions in fishing intensity during the moratorium (May–August), with hotspot areas suppressed to sporadic coastal distributions. However, concentrated vessel activity in Zhejiang’s nearshore waters suggested potential illegal fishing. Post-moratorium, fishing hotspots expanded explosively, peaking in October and clustering in Yushan, Zhoushan, and Yangtze River estuary fishing grounds. Quarterly patterns identified autumn–winter 2021 as peak fishing seasons, with hotspots covering >80% of East China Sea grounds. The framework enables real-time fishing state detection and adaptive spatial management via dynamic closure policies. The findings underscore the need for strengthened surveillance during moratoriums and post-ban catch regulation to mitigate overfishing risks. Full article
(This article belongs to the Special Issue Resilience and Capacity of Waterway Transportation)
Show Figures

Figure 1

11 pages, 4227 KiB  
Article
Numerical Study of Perforated Plate Balanced Flowmeter Performance for Liquid Hydrogen
by Feng Zhao, Jingcheng Song, Shiyao Peng and Xiaobin Zhang
Cryo 2025, 1(1), 3; https://doi.org/10.3390/cryo1010003 - 16 Feb 2025
Viewed by 513
Abstract
A balanced flowmeter not only inherits the advantages of orifice plate flowmeters but also stabilizes the flow field, reduces permanent pressure loss, and effectively increases the cavitation threshold. To perform an in-depth analysis of flow characteristics through the perforated plate and achieve performance [...] Read more.
A balanced flowmeter not only inherits the advantages of orifice plate flowmeters but also stabilizes the flow field, reduces permanent pressure loss, and effectively increases the cavitation threshold. To perform an in-depth analysis of flow characteristics through the perforated plate and achieve performance optimization for the liquid hydrogen (LH2) measurement, a numerical calculation framework is established based on the mixture model, realizable turbulence closure, and Schnerr–Sauer cavitation model. The model is first evaluated through comparison with the liquid nitrogen (LN2) experimental results of a self-developed balanced flowmeter as well as the measuring setup. The flow coefficient and pressure loss coefficient are especially considered, and a comparison is made with the orifice plane considering cavitation and non-cavitation conditions. The cavitation cloud and temperature contours are also presented to illustrate the difference in the upper limit of the Re between water, LN2, and LH2 flow. The results show that compared to LN2 and water, LH2 has a larger cavitation threshold, indicating a wider range of Re number measurements. Full article
(This article belongs to the Special Issue Efficient Production, Storage and Transportation of Liquid Hydrogen)
Show Figures

Figure 1

24 pages, 6171 KiB  
Article
Partitioning Green and Blue Evapotranspiration by Improving Budyko Equation Using Remote Sensing Observations in an Arid/Semi-Arid Inland River Basin in China
by Dingwang Zhou, Chaolei Zheng, Li Jia and Massimo Menenti
Remote Sens. 2025, 17(4), 612; https://doi.org/10.3390/rs17040612 - 11 Feb 2025
Cited by 1 | Viewed by 955
Abstract
The estimation of water requirements constitutes a critical prerequisite for delineating water scarcity hotspots and mitigating intersectoral competition, particularly in endorheic basins in arid or semi-arid regions where hydrological closure exacerbates resource allocation conflicts. Under conditions of water scarcity, water supplied locally by [...] Read more.
The estimation of water requirements constitutes a critical prerequisite for delineating water scarcity hotspots and mitigating intersectoral competition, particularly in endorheic basins in arid or semi-arid regions where hydrological closure exacerbates resource allocation conflicts. Under conditions of water scarcity, water supplied locally by precipitation and shallow groundwater bodies should be taken into account to estimate the net water requirements to be met with water conveyed from off-site sources. This concept is embodied in the distinction of blue ET (BET) and green ET (GET). In this study, the Budyko hypothesis (BH) method was optimized to partition the total ET into GET and BET during 2001–2018 in the Heihe River Basin. In this region, a better knowledge of net water requirements is even more important due to water allocation policies which reduced water supply to irrigated lands in the last 15 years. This study proposes a modified BH method based on a new vegetation-specific parameter (ωv) which was optimized for different vegetation types using precipitation and actual ET data obtained from remote sensing observations. The results show that the BH method partitioned GET and BET reasonably well, with a percent bias of 23.8% and 37.4% and a root mean square error of 84.8 mm/a and 113.6 mm/a, respectively, when compared with reported data, which are superior to that of the precipitation deficit and soil water balance methods. A sensitivity experiment showed that the BH method exhibits a low sensitivity to uncertainties of input data. The results documented differences in the contribution of GET and BET to total ET across different land cover types in the Heihe River Basin. As expected, rainfed forest and grassland ecosystems are predominantly governed by GET, with 81.3% and 87.2% of total ET, respectively. In contrast, croplands and shrublands are primarily regulated by BET, with contributions of 61.5% and 84.3% to total ET. The improved BH method developed in this study paves the way for further analyses of the net water requirements in arid and semi-arid regions. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

26 pages, 4030 KiB  
Review
Below Water Table Mining, Pit Lake Formation, and Management Considerations for the Pilbara Mining Region of Western Australia
by Cherie D. McCullough
Mining 2024, 4(4), 863-888; https://doi.org/10.3390/mining4040048 - 17 Oct 2024
Cited by 1 | Viewed by 3612
Abstract
Located in northern Western Australia, the Pilbara is the highest productivity region for iron ore and other metal mining in Australia. As elsewhere, mine closure guidelines typically require post-closure landforms to be safe, stable, non-polluting and sustainable here in the long-term. I reviewed [...] Read more.
Located in northern Western Australia, the Pilbara is the highest productivity region for iron ore and other metal mining in Australia. As elsewhere, mine closure guidelines typically require post-closure landforms to be safe, stable, non-polluting and sustainable here in the long-term. I reviewed the primary literature, including international, national and state government guidelines and regional case studies for mine closure and related socio-environmental topics, to understand the key risks and management strategies needed to achieve these broad expectations for below water table (BWT) mining. Many BWT open cut mining projects will result in pit lakes in this region, many of which will be very large and will degrade in water quality with increasing salinisation over time. As an arid region, risks are dominated by alterations to hydrology and hydrogeology of largely unmodified natural waterways and freshwater aquifers. Although remote, social risks may also present, especially in terms of impacts to groundwater values. This remoteness also decreases the potential for realising practicable development of post-mining land uses for pit lakes. Explicitly considered risk-based decisions should determine closure outcomes for BWT voids, and when pit backfill to prevent pit lake formation will be warranted. However, maintaining an open pit lake or backfilling a void should also be considered against the balance of potential risks and opportunities. Full article
(This article belongs to the Special Issue Post-Mining Management)
Show Figures

Figure 1

19 pages, 9441 KiB  
Article
Characteristics and Driving Factors of Energy Balance over Different Underlying Surfaces in the Qinghai Plateau
by Xiaoyang Liu, Lele Zhang, Liming Gao and Ziyi Duan
Atmosphere 2024, 15(10), 1196; https://doi.org/10.3390/atmos15101196 - 6 Oct 2024
Viewed by 1495
Abstract
The study of the surface energy balance characteristics of different ecosystems in the Qinghai Plateau is of great significance for a deeper understanding of land surface processes, the water cycle, and global climate change. This study aims to compare the seasonal variations in [...] Read more.
The study of the surface energy balance characteristics of different ecosystems in the Qinghai Plateau is of great significance for a deeper understanding of land surface processes, the water cycle, and global climate change. This study aims to compare the seasonal variations in energy balance and partitioning of four typical ecosystems on the Qinghai Plateau—swamp meadows, subalpine mountain meadows, alpine shrublands, and alpine deserts. Mantel analysis and path analysis were used to explore the regulatory mechanisms of meteorological elements on energy fluxes and the Bowen ratio (β). The results showed the following: (1) Net radiation (Rn), sensible heat flux (H), and latent heat flux (LE) all exhibited a single-peak pattern of change, and the energy partitioning was closely related to the hydrothermal conditions. Swamp meadows and subalpine mountain meadows were dominated by LE throughout the year and the growing season, while H dominated in the non-growing season. Meanwhile, alpine shrublands and alpine deserts were dominated by H throughout the year. (2) β reflected the characteristics of turbulent fluxes variations and the moisture level of the underlying surface. Swamp meadows and subalpine mountain meadows were relatively moist, with the value of β all being less than 1. Alpine shrublands and deserts were comparatively arid, with the values of β all exceeding 1. The energy closure rate ranged from 48% to 90%, with better energy closure conditions observed during the growing season compared to the non-growing season. (3) Meteorological factors collectively regulated the variations in energy fluxes and its partitioning, with H and LE being primarily influenced by Rn, relative humidity (RH), and soil moisture (Ms). β was significantly affected by RH, Ms, and the saturated vapor pressure deficit (VPD). The sensitivity of the ecosystems to changes in fluxes increased with decreasing moisture, especially in alpine deserts, with Ms, VPD and RH being the most affected. Swamp meadows were significantly associated with air temperature (Ta), soil temperature (Ts), and wind speed; subalpine mountain meadows with Ta and Ts; and alpine shrublands with Ta. These results provided a basis for further analyses of the energy balance characteristics and partitioning differences of different ecosystems on the Qinghai Plateau. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

18 pages, 15144 KiB  
Article
Quantifying the Atmospheric Water Balance Closure over Mainland China Using Ground-Based, Satellite, and Reanalysis Datasets
by Linghao Zhou, Yunchang Cao, Chuang Shi, Hong Liang and Lei Fan
Atmosphere 2024, 15(4), 497; https://doi.org/10.3390/atmos15040497 - 18 Apr 2024
Cited by 2 | Viewed by 1726
Abstract
Quantifying the atmospheric water balance is critical for the study of hydrological processes in significant regions. This study quantified atmospheric water balance closure at 205 stations in mainland China on a monthly timescale from 2009 to 2018 using datasets from ground- and satellite-based [...] Read more.
Quantifying the atmospheric water balance is critical for the study of hydrological processes in significant regions. This study quantified atmospheric water balance closure at 205 stations in mainland China on a monthly timescale from 2009 to 2018 using datasets from ground- and satellite-based observations and reanalysis data. The closure performances were firstly quantified using the mean and root mean square (RMS) of the residuals, and the possible influencing factors were explored, as well as the influence of different water balance components (WBCs) using different datasets. In the closure experiment using ERA5, the mean and residuals were 6.26 and 12.39 mm/month, respectively, on average, which indicated a closure uncertainty of 12.8%. Using ERA5 analysis as a reference, the closure experiment using different combinations revealed average mean residuals of 8.73, 11.50, and 15.89 mm/month, indicating a precipitation closure uncertainty of 22.0, 23.7, and 24.4% for the ground- and satellite-based observations and reanalysis data, respectively. Two possible influencing factors, station latitude and the climatic zone in which the station is located, were shown to be related to closure performance. Finally, the analysis of the impact from different WBCs showed that precipitation tended to have the most significant impact, which may have been due to larger observation uncertainties. Generally, the atmospheric water balance in mainland China can be closed using datasets from different observational techniques. Full article
Show Figures

Figure 1

17 pages, 7772 KiB  
Article
Evolution and Optimization of an Ecological Network in an Arid Region Based on MSPA-MCR: A Case Study of the Hexi Corridor
by Xifeng Zhang, Xiaowei Cui and Shuiming Liang
Sustainability 2024, 16(4), 1704; https://doi.org/10.3390/su16041704 - 19 Feb 2024
Cited by 13 | Viewed by 1642
Abstract
Under the background of climate change, the problems of water resource allocation and desertification in arid areas are becoming increasingly prominent, which seriously threatens the sustainable development of society. Constructing an ecological network is an important measure to improve the ecological environment and [...] Read more.
Under the background of climate change, the problems of water resource allocation and desertification in arid areas are becoming increasingly prominent, which seriously threatens the sustainable development of society. Constructing an ecological network is an important measure to improve the ecological environment and maintain ecological service function. This study takes the Hexi Corridor as an example and relies on land use data from 2000 to 2020, and comprehensively applies methods, such as morphological spatial pattern analysis (MSPA), the minimum cumulative resistance model (MCR), and the network evaluation index to construct and optimize the ecological network of the Hexi Corridor. Our results show: (1) the spatial distribution of the landscape elements in the Hexi Corridor was not uniform and that the ecological foundation in the north was poor; (2) the resistance surface was “low in the south and high in the north”, with low-value areas mainly located to the south of Jiuquan City, Zhangye City, and Wuwei City, and the high-value areas were mainly located in the middle and to the north of Jiuquan City and Wuwei City; (3) the ecological source areas, corridors, and nodes showed a fluctuating upward trend, and they were mainly located to the southwest of Zhangye City, Jiuquan City, and Wuwei City; (4) the network closure (α), line point rate (β), and network connectivity (γ) showed a W-shaped change trend; (5) after the ecological network optimization, 22 new ecological source areas, 78 new corridors, and 61 new nodes were added, as a result, the α, β, and γ indices all increased. Our results provide a reference for ecological environment restoration research and serve as a regionally balanced means of sustainably developing the Hexi Corridor. Full article
Show Figures

Figure 1

20 pages, 4640 KiB  
Article
Water Distribution Network Partitioning Based on Complex Network Theory: The Udine Case Study
by Federico Spizzo, Giovanni Venaruzzo, Matteo Nicolini and Daniele Goi
Water 2023, 15(8), 1621; https://doi.org/10.3390/w15081621 - 21 Apr 2023
Cited by 5 | Viewed by 3502
Abstract
Water Distribution Network Partitioning (WDNP), which is the partitioning of the existing Water distribution Network (WDN) into smaller and more homogeneous portions called District Metered Areas (DMAs), is an effective strategy that allows water utilities to improve network management through water balance, pressure [...] Read more.
Water Distribution Network Partitioning (WDNP), which is the partitioning of the existing Water distribution Network (WDN) into smaller and more homogeneous portions called District Metered Areas (DMAs), is an effective strategy that allows water utilities to improve network management through water balance, pressure control, water loss detection, and protection from contamination. The partitioning is realized physically, closing the pipes between two different districts, or virtually, installing flow meters which measure the districts inflow and outflow. Pipe closures lead to a considerable network performance worsening, reducing minimum pressure, resilience, and redundancy; on the other hand, flow meters allow us to avoid these issues but involve a higher investing cost. Hence, the DMAs’ definition could become a hard task because both network performance and maximum investing cost must be respected. This paper presents the application of an optimization approach, based on complex network theory, coupled with an optimization technique based on genetic algorithms (GA). The methodology, implemented in Python environment, consists of a clustering phase carried out with two different algorithms (Girvan–Newman and spectral clustering) and a dividing phase which defines whether a gate valve or a flow meter should be installed in a pipe. The last phase is fulfilled with the GA which allows us to optimize one or more objectives in order to minimize the cost and maximize the network performance. The methodology has been applied on the Udine water distribution system, whose hydraulic model has been calibrated with a recent measure campaign. The results produced with the different clustering algorithms and objective functions have been compared to show their pros and cons. Full article
(This article belongs to the Special Issue Optimization Studies for Water Distribution Systems)
Show Figures

Figure 1

13 pages, 1909 KiB  
Article
Variation in Hydric Response of Two Industrial Hemp Varieties (Cannabis sativa) to Induced Water Stress
by Hang Duong, Brian Pearson, Steven Anderson, Erin Berthold and Roger Kjelgren
Horticulturae 2023, 9(4), 431; https://doi.org/10.3390/horticulturae9040431 - 26 Mar 2023
Cited by 10 | Viewed by 4479
Abstract
Information on industrial hemp (Cannabis sativa) water use and water stress is sparse. We studied water stress impact in two essential-oil hemp cultivars (‘Wife’ and ‘Cherry’) prompted by anecdotal differences in growth and water use. In a greenhouse setting, we measured [...] Read more.
Information on industrial hemp (Cannabis sativa) water use and water stress is sparse. We studied water stress impact in two essential-oil hemp cultivars (‘Wife’ and ‘Cherry’) prompted by anecdotal differences in growth and water use. In a greenhouse setting, we measured water relations, water use, growth, and essential oil (CBD-cannabidiol and THC-delta-9 tetrahydrocannabinol) concentrations. Water stress did not significantly affect THC and CBD concentrations, but both cultivars responded to water stress by reducing transpiration through notably different mechanisms. ‘Cherry’ had more anisohydric behavior, maintaining high stomatal conductance (Gs) and more negative leaf water potential until root zone water depletion triggered partial afternoon stomatal closure to moderate stress, resulting in lower flower and CBD yield. By contrast, water-stressed ‘Wife’ rapidly defoliated half its leaf area in balance with less applied water and so maintained high Gs and flower yield on par with well-watered plants, suggesting potential for deficit irrigation to conserve water and reduce post-harvest vegetation management. Differences in water use translated to provisionally suggested crop coefficients of 1 for ‘Cherry’ and 1.3–1.5 for ‘Wife’, but further research is needed. Because hemp is genetically diverse, and cultivar naming conventions are currently lax, further germplasm screening and research are needed to determine the extent to which either conservative ‘Cherry’ or the water-stress defoliation response of ‘Wife’ is found in the larger population of hemp cultivars. Full article
(This article belongs to the Topic Tolerance to Drought and Salt Stress in Plants)
Show Figures

Graphical abstract

23 pages, 3470 KiB  
Article
Stomatal Responses of Two Drought-Tolerant Barley Varieties with Different ROS Regulation Strategies under Drought Conditions
by Xiachen Lv, Yihong Li, Rongjia Chen, Mengmeng Rui and Yizhou Wang
Antioxidants 2023, 12(4), 790; https://doi.org/10.3390/antiox12040790 - 23 Mar 2023
Cited by 17 | Viewed by 3812
Abstract
Drought stress is a major obstacle to agricultural production. Stomata are central to efforts to improve photosynthesis and water use. They are targets for manipulation to improve both processes and the balance between them. An in-depth understanding of stomatal behavior and kinetics is [...] Read more.
Drought stress is a major obstacle to agricultural production. Stomata are central to efforts to improve photosynthesis and water use. They are targets for manipulation to improve both processes and the balance between them. An in-depth understanding of stomatal behavior and kinetics is important for improving photosynthesis and the WUE of crops. In this study, a drought stress pot experiment was performed, and a transcriptome analysis of the leaves of three contrasting, cultivated barley genotypes Lumley (Lum, drought-tolerant), Golden Promise (GP, drought-sensitive), and Tadmor (Tad, drought-tolerant), generated by high-throughput sequencing, were compared. Lum exhibited a different WUE at the leaf and whole-plant levels and had greater CO2 assimilation, with a higher gs under drought stress. Interestingly, Lum showed a slower stomatal closure in response to a light–dark transition and significant differences compared to Tad in stomatal response to the exogenous application of ABA, H2O2, and CaCl2. A transcriptome analysis revealed that 24 ROS-related genes were indeed involved in drought response regulation, and impaired ABA-induced ROS accumulation in Lum was identified using ROS and antioxidant capacity measurements. We conclude that different stomatal ROS responses affect stomatal closure in barley, demonstrating different drought regulation strategies. These results provide valuable insight into the physiological and molecular basis of stomatal behavior and drought tolerance in barley. Full article
Show Figures

Figure 1

13 pages, 3108 KiB  
Article
Bulbil Formation on Water Yam (Dioscorea alata L.) Is Promoted by Waterlogged Soil
by Norimitsu Hamaoka, Takahito Moriyama, Takatoshi Taniguchi, Chetphilin Suriyasak and Yushi Ishibashi
Agronomy 2023, 13(2), 484; https://doi.org/10.3390/agronomy13020484 - 7 Feb 2023
Cited by 5 | Viewed by 3131
Abstract
The formation of bulbils, which are storage organs, is an important agronomic trait and a unique morphological feature in the vegetative reproduction of yam. We found a landrace of water yam (Dioscorea alata L.), which rarely forms bulbils, that produces bulbils during [...] Read more.
The formation of bulbils, which are storage organs, is an important agronomic trait and a unique morphological feature in the vegetative reproduction of yam. We found a landrace of water yam (Dioscorea alata L.), which rarely forms bulbils, that produces bulbils during periods of high rainfall. We investigated the physiological mechanism of bulbil formation in response to over-moist soil and relevant factors at the single plant level. Waterlogging (WL) treatment markedly increased the number of bulbils initiated, predominantly toward the upper nodes. This formed-bulbil was an accessory bud developed as a storage organ in leaf axils. Photosynthetic capacity decreased under WL, attributed to stress-induced stomatal closure. WL stress also reduced dry matter partitioning to the belowground organs. During tuber enlargement in WL plants, photosynthetic products accumulated in the aboveground organs and were transported to the bulbils as a result of reduced translocation to belowground organs. We investigated the effect of abscisic acid (ABA) on bulbil formation on the basis of changes in the sink–source balance in response to WL stress. ABA treatment of leaf axils enhanced bulbil formation in unstressed plants, suggesting that increased ABA is one of the factors that initiate bulbils. Our study shows that bulbil initiation occurs as a result of changes in physiological conditions in response to WL stress. This finding may provide fundamental information for the control of bulbil production. This response of bulbil formation, as an environmentally adaptive trait of the tropical water yam, may underlie the survival strategy of vegetatively propagated plants. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

12 pages, 1985 KiB  
Article
Spatial–Temporal Variations of Water Quality in Urban Rivers after Small Sluices Construction: A Case in Typical Regions of the Taihu Lake Basin
by Feng Lan, Wang Haisen and Yan Yan
Int. J. Environ. Res. Public Health 2022, 19(19), 12453; https://doi.org/10.3390/ijerph191912453 - 29 Sep 2022
Cited by 5 | Viewed by 2050
Abstract
Urban river pollution is considered a ‘necessary evil’ consequence of disproportionate developmental expansion in metropolises. Unprecedented expansion and anthropic activities lead to the deterioration of urban rivers with municipal and industrial sewage. The construction of sluices is one of the irrefutable parts of [...] Read more.
Urban river pollution is considered a ‘necessary evil’ consequence of disproportionate developmental expansion in metropolises. Unprecedented expansion and anthropic activities lead to the deterioration of urban rivers with municipal and industrial sewage. The construction of sluices is one of the irrefutable parts of the process. In order to prevent floods and drought, many cities build sluices and dams in rivers to balance water quantity in different seasons. To explore the change characteristics of the water quality in urban rivers after the construction of sluices and dams, the change in the total phosphorus (TP) and total nitrogen (TN) concentrations upstream and downstream of rivers was investigated under the condition of sluices closure in Wuxi. According to the results, when the sluices were closed, the pollutants of TP and TN would accumulate upstream in rivers, which caused the water quality in the upper reaches to be worse than that in the lower reaches. Specifically, the TN and TP concentrations downstream of urban rivers in Wuxi were approximately 14.42% and 13.80% lower than those upstream when the sluices were closed. Additionally, the water quality in urban rivers was usually better in summer and autumn than in the other seasons, showing obvious seasonality after the construction of the sluices. The research will provide a theoretical basis for future sluice operation and the water resources management of urban rivers. Full article
(This article belongs to the Topic Water Management in the Era of Climatic Change)
Show Figures

Figure 1

18 pages, 5796 KiB  
Article
Estimation of Sensible and Latent Heat Fluxes Using Flux Variance Method under Unstable Conditions: A Case Study of Tea Plants
by Noman Ali Buttar, Yongguang Hu, Josef Tanny, Ali Raza, Yasir Niaz, Muhammad Imran Khan, Naeem Saddique, Abid Sarwar, Ahmad Azeem, Fiaz Ahmed and Muhammad Bilal Idrees
Atmosphere 2022, 13(10), 1545; https://doi.org/10.3390/atmos13101545 - 21 Sep 2022
Cited by 6 | Viewed by 2694
Abstract
Evapotranspiration is essential for precise irrigation and water resource management. Previous literature suggested that eddy covariance (EC) systems could directly measure evapotranspiration in agricultural fields. However, the eddy covariance method remains difficult for routine use, due to its high cost, operational complexity, and [...] Read more.
Evapotranspiration is essential for precise irrigation and water resource management. Previous literature suggested that eddy covariance (EC) systems could directly measure evapotranspiration in agricultural fields. However, the eddy covariance method remains difficult for routine use, due to its high cost, operational complexity, and relatively multifaceted raw data processing. An alternative method is the flux variance (FV) method, which can estimate the sensible heat flux using high-frequency air temperature measurements by fine-wire thermocouples, at relatively low-cost and with less complexity. Additional measurements of the net radiation and soil heat flux permit the extraction of latent heat flux through the energy balance closure equation. This study examined the performance of the FV method and the results were compared against direct eddy covariance measurements. Data were collected from November 2018 to July 2019, covering seasonal variations. Due to the method’s limitation, only the data under unstable conditions were used for the analysis and days with rainfall were omitted. The results showed that the FV-estimated sensible heat flux was in good agreement with that of eddy covariance in the seasons of winter 2018 and summer 2019. The best agreement between the estimated and measured sensible heat fluxes was observed in the summer, with R2 = 0.83, RMSE = 34.97 Wm−2 and RE = 8.20%. The FV extracted latent heat flux was in good agreement with that measured by EC for both seasons. The best result was obtained in the summer, with R2 = 0.92, RMSE = 23.12 Wm−2, and RE = 6.37%. Overall estimations of sensible and latent heat fluxes by the FV method were in close relation with the eddy covariance data. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

Back to TopTop