Estimation of Sensible and Latent Heat Fluxes Using Flux Variance Method under Unstable Conditions: A Case Study of Tea Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Site
2.2. Micrometeorological Measurements
2.3. Data Analysis
2.4. Fetch and Wind Direction
2.5. Flux Variance Method
3. Results and Discussion
3.1. Energy Balance Closure
3.2. Sensible Heat Flux
3.3. Latent Heat Flux
3.4. Seasonal Estimates of the Energy Balance Components
3.5. Footprint Analysis of the EC System
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gowda, P.H.; Chávez, J.L.; Colaizzi, P.D.; Evett, S.R.; Howell, T.A.; Tolk, J.A. ET mapping for agricultural water management: Present status and challenges. Irrig. Sci. 2008, 26, 223–237. [Google Scholar] [CrossRef]
- Rosset, M.; Riedo, M.; Grub, A.; Geissmann, M.; Fuhrer, J. Seasonal variation in radiation and energy balances of permanent pastures at different altitudes. Agric Meteorol. 1997, 86, 245–258. [Google Scholar] [CrossRef]
- Wever, L.A.; Flanagan, L.B.; Carlson, P.J. Seasonal and interannual variation in evapotranspiration, energy balance and surface conductance in a northern temperate grassland. Agric. For. Meteorol. 2002, 112, 31–49. [Google Scholar] [CrossRef]
- Tha, P.U.K.; Jie, Q.; Hong-Bing, S.; Tomonori, W.; Yves, B. Surface renewal analysis: A new method to obtain scalar fluxes. Agric Meteorol. 1995, 74, 119–137. Available online: https://www.sciencedirect.com/science/article/pii/016819239402182J (accessed on 22 June 2019).
- Czikowsky, M.J.; Fitzjarrald, D.R. Evidence of seasonal changes in evapotranspiration in eastern U.S. hydrological records. J. Hydrometeorol. 2004, 5, 974–988. [Google Scholar] [CrossRef]
- Drexler, J.Z.; Snyder, R.L.; Spano, D.; Paw, U.K.T. A review of models and micrometeorological methods used to estimate wetland evapotranspiration. Hydrol. Proc. 2004, 18, 2071–2101. [Google Scholar] [CrossRef]
- RAllen, G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric Water Manag. 2011, 98, 899–920. [Google Scholar]
- Buttar, N.A.; Yongguang, H.; Shabbir, A.; Lakhiar, I.A.; Ullah, I.; Ali, A.; Aleem, M.; Yasin, M.A. Estimation of evapotranspiration using Bowen ratio method. IFAC PapersOnLine 2018, 51, 807–810. [Google Scholar] [CrossRef]
- Wang, J.; Raza, A.; Hu, Y.; Buttar, N.A.; Shoaib, M.; Saber, K.; Li, P.; Elbeltagi, A.; Ray, R.L. Development of Monthly Reference Evapotranspiration Machine Learning Models and Mapping of Pakistan—A Comparative Study. Water 2022, 14, 1666. [Google Scholar] [CrossRef]
- Sunmonu, L.A.; Olufemi, A.P.; Abiye, O.E.; Babatunde, O.A. Estimation of sensible heat flux at a tropical location: A performance evaluation of half-order time derivative method. Model. Earth Syst. Environ. 2019, 5, 1215–1220. [Google Scholar] [CrossRef]
- Nile, E. Sensible Heat Flux under Unstable Conditions for Sugarcane Using Temperature Variance and Surface Renewal. 2010. Available online: https://ukzn-dspace.ukzn.ac.za/handle/10413/600 (accessed on 11 May 2019).
- Hu, Y.; Buttar, N.A.; Tanny, J.; Snyder, R.L.; Savage, M.; Lakhiar, I.A. Surface renewal application for estimating evapotranspiration: A review. Adv. Meteorol. 2018, 2018, 1690714. [Google Scholar] [CrossRef]
- Jizhang, W.; Buttar, N.A.; Yongguang, H.; Lakhiar, I.A.; Javed, Q.; Shabbir, A. Estimation of sensible and latent heat fluxes using surface renewal method: Case study of a tea plantation. Agronomy 2021, 11, 179. [Google Scholar] [CrossRef]
- Tillman, J.E. The indirect determination of stability, heat and momentum fluxes in the atmospheric boundary layer from simple scalar variables during dry unstable conditions. J. Appl. Meteorol. 1972, 11, 783–792. [Google Scholar] [CrossRef]
- Castellví, F.; Buttar, N.A.; Hu, Y.; Ikram, K. Sensible heat and latent heat flux estimates in a tall and dense forest canopy under unstable conditions. Atmosphere 2022, 13, 264. [Google Scholar] [CrossRef]
- Castellvi, F.; Martínez-Cob, A. Estimating sensible heat flux using surface renewal analysis and the flux variance method: A case study over olive trees at Sástago (NE of Spain). Water Resour. Res. 2005, 41, 1–10. [Google Scholar] [CrossRef]
- Shaoying, W.; Yu, Z.; Shihua, L.; Heping, L.; Lunyu, S. Estimation of turbulent fluxes using the flux-variance method over an alpine meadow surface in the eastern Tibetan Plateau. Adv. Atmos Sci. 2013, 30, 411–424. [Google Scholar]
- Haymann, N.; Lukyanov, V.; Tanny, J. Effects of variable fetch and footprint on surface renewal measurements of sensible and latent heat fluxes in cotton. Agric. For. Meteorol. 2019, 268, 63–73. [Google Scholar] [CrossRef]
- Chor, T.L.; Dias, N.L.; Araújo, A.; Wolff, S.; Zahn, E.; Manzi, A.; Trebs, I.; Sá, M.O.; Teixeira, P.R.; Sörgel, M. Flux-variance and flux-gradient relationships in the roughness sublayer over the Amazon forest. Agric. For. Meteorol. 2017, 239, 213–222. [Google Scholar] [CrossRef]
- Ahiman, O.; Mekhmandarov, Y.; Pirkner, M.; Tanny, J. Application of the flux-variance technique for evapotranspiration estimates in three types of agricultural structures. Int. J. Agron. 2018, 2018, 7935140. [Google Scholar] [CrossRef]
- Buttar, N.A.A.M.; Yongguang, H.; Chuan, Z.; Tanny, J.; Ullah, I. Height effect of air temperature measurement on sensible heat flux estimation using flux variance method. Pak. J. Agric. Sci. 2019, 56, 793–800. [Google Scholar]
- De Bruin, H.A.R.; Kohsiek, W.; Van Den Hurk, B.J.J.M. A verification of some methods to determine the fluxes of momentum, sensible heat, and water vapour using standard deviation and structure parameter of scalar meteorological quantities. Bound. Layer Meteorol. 1993, 63, 231–257. [Google Scholar] [CrossRef]
- Padro, J. An investigation of flux-variance methods and universal functions applied to three land-use types in unstable conditions. Bound. Layer Meteorol. 1993, 66, 413–425. [Google Scholar] [CrossRef]
- Albertson, J.D.; Parlange, M.B.; Katul, G.G.; Chu, C.-R.; Stricker, H.; Tyler, S. Sensible heat flux from arid regions: A simple flux-variance method. Water Resour. Res. 1995, 31, 969–973. [Google Scholar] [CrossRef]
- Gao, Z.; Bian, L.; Chen, Z.; Sparrow, M.; Zhang, J. Turbulent variance characteristics of temperature and humidity over a non-uniform land surface for an agricultural ecosystem in China. Adv. Atmos. Sci. 2006, 23, 365–374. [Google Scholar] [CrossRef]
- Kaimal, J.; Finnigan, J. Atmospheric Boundary Layer Flows: Their Structure and Measurement; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
- Wilczak, J.M.; Oncley, S.P.; Stage, S.A. Sonic anemometer tilt correction algorithms. Bound. Layer Meteorol. 2001, 99, 127–150. [Google Scholar] [CrossRef]
- Buttar, N.A.; Yongguang, H.; Tanny, J.; Akram, M.W.; Shabbir, A. Fetch effect on flux-variance estimations of sensible and latent heat fluxes of camellia sinensis. Atmosphere 2019, 10, 299. [Google Scholar] [CrossRef]
- Stull, R.B. Transilient turbulence theory. The concept of eddy-mixing across finite distances—1. J. Atmos. Sci. 1984, 41, 3351–3367. [Google Scholar] [CrossRef]
- Garratt, J.R. Review: The atmospheric boundary layer. Earth-Sci. Rev. 1994, 37, 89–134. [Google Scholar] [CrossRef]
- Wilson, A.K.; Goldstein, A.; Falge, E.; Aubinet, M.; Baldocchi, D.; Berbigier, P.; Bernhofer, C.; Ceulemans, R.; Dolman, H.; Field, C.; et al. Energy balance closure at FLUXNET sites. Agric. Meteorol. 2002, 113, 223–243. [Google Scholar]
- Yuling, F. Energy balance closure at ChinaFLUX sites. Sci. China Earth Sci. 2005, 48, 51–62. [Google Scholar]
- Renhua, Z. Determination of Averaging Period Parameter and Its Effects Analysis for Eddy Covariance Measurements. Sci. China Ser. D Earth Sci. 2005, 48, 33–41. [Google Scholar]
- Nitai, H.; Lukyanov, V.; Cohen, S.; Tanny, J. Effect of variable fetch on surface renewal estimates of sensible and latent heat fluxes in cotton. In Proceedings of the 20th EGU General Assembly, EGU2018, Vienna, Austria, 4–13 April 2018; p. 12561. [Google Scholar]
- Hsieh, C.-I.; Katul, G.; Chi, T.-W. An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv. Water Resour. 2000, 23, 765–772. [Google Scholar] [CrossRef]
- Savage, M.J.; Everson, C.S.; Odhiambo, G.O.; Mengistu, M.G.; Jarmain, C. Theory and Practice of Evaporation Measurement, with Spatial Focus on SLS as an Operational Tool for the Estimation of Spatially-Averaged Evaporation; Report No. 1335/1/04; Water Research Commission: Pretoria, South Africa, 2004; p. 204. ISBN 1-77005-247-X.
- Zhao, X.; Liu, Y.; Tanaka, H.; Hiyama, T. A comparison of flux variance and surface renewal methods with eddy covariance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 345–350. [Google Scholar] [CrossRef]
- Castellví, F. An advanced method based on surface renewal theory to estimate the friction velocity and the surface heat flux. Water Resour. Res. 2018, 54, 10134–10154. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, H.; Cai, X.; Kang, L.; Zhu, T.; Leclerc, M.Y. Flux-variance method for latent heat and carbon dioxide fluxes in unstable conditions. Bound. Layer Meteorol. 2009, 131, 363–384. [Google Scholar] [CrossRef]
- Mekhmandarov, Y.; Pirkner, M.; Achiman, O.; Tanny, J. Application of the surface renewal technique in two types of screenhouses: Sensible heat flux estimates and turbulence characteristics. Agric. For. Meteorol. 2015, 203, 229–242. [Google Scholar] [CrossRef]
- Tanny, J.; Achiman, O.; Mazliach, Y.; Lukyanov, V.; Cohen, S.; Cohen, Y. The effect of variable fetch on flux-variance estimates of sensible and latent heat fluxes in a pepper screenhouse. Acta Hortic. 2016, 1197, 109–116. [Google Scholar] [CrossRef]
Conditions | Limit in ζ = (z − d)/Lo | Remarks |
---|---|---|
Convection | ζ < −0.05 | Heat convection dominant. |
Unstable | −0.05 ≤ ζ < 0.02 | Mechanical turbulence dominant. |
Slightly stable | 0.02 ≤ ζ < 0.2 | Mechanical turbulence slightly damped by temperature stratification. |
Strongly stable | ζ > 0.2 | Mechanical turbulence severely reduced by temperature stratification. |
Neutral | −0.02 ≤ ζ < 0.02 | Purely mechanical turbulence (wind shear dominates). |
Observation Items | Notation | Units | Height (m) | Equipment, Type and Manufactures |
---|---|---|---|---|
3D-wind velocity, sonic temperature | u, v, w, Ts | m s−1 °C | 2.3 | CSAT3, Sonic anemometer, Campbell Scientific Inc, Logan, UT, USA. |
H2O and CO2 concentrations | - | µ mol m−3 | 2.3 | EC150, Campbell Scientific Inc, Logan, UT, USA. |
Soil temperature | Tsoil | °C | 0.02 and 0.06 (depth) | TCAV-L, Campbell Scientific Inc, Logan, UT, USA. |
Air temperature for FV analysis | Ta | °C | 1.8 | Fine-wire thermocouple, COCO-002, Omega, Eng., Irlam, UK. |
Relative humidity and air temperature | RH | % | 2.1 | HC2S3-L, Campbell Scientific Inc, Logan, UT, USA. |
Soil heat flux | G | W m−2 | 0.08 | HFP01, Hukseflux, Delft, The Netherlands |
Net radiation | Rn | W m−2 | 2.3 | CNR4-L, KIPP and ZONEN. |
Liquid precipitation | - | mm | 2.1 | TE525MM, Campbell Scientific Inc., Logan, UT, USA. |
Soil water content | ϴv | m3 m−3 | 0.04 (depth) | CS655, Campbell Scientific Inc., Logan, UT, USA. |
Datalogger | CR3000 | Campbell Scientific Inc., Logan, UT, USA. |
Seasons | Fluxes (Wm−2) | Intercept (Wm−2) | Slope | R2 | RMSE (Wm−2) | RE (%) |
---|---|---|---|---|---|---|
Winter | HFV | 16.52 | 0.89 | 0.80 | 25.73 | 10.84 |
Summer | HFV | 22.39 | 0.91 | 0.83 | 35.49 | 10.54 |
Winter | LEFV | 16.68 | 0.82 | 0.89 | 36.37 | 7.15 |
Summer | LEFV | 8.27 | 0.99 | 0.93 | 23.12 | 6.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buttar, N.A.; Hu, Y.; Tanny, J.; Raza, A.; Niaz, Y.; Khan, M.I.; Saddique, N.; Sarwar, A.; Azeem, A.; Ahmed, F.; et al. Estimation of Sensible and Latent Heat Fluxes Using Flux Variance Method under Unstable Conditions: A Case Study of Tea Plants. Atmosphere 2022, 13, 1545. https://doi.org/10.3390/atmos13101545
Buttar NA, Hu Y, Tanny J, Raza A, Niaz Y, Khan MI, Saddique N, Sarwar A, Azeem A, Ahmed F, et al. Estimation of Sensible and Latent Heat Fluxes Using Flux Variance Method under Unstable Conditions: A Case Study of Tea Plants. Atmosphere. 2022; 13(10):1545. https://doi.org/10.3390/atmos13101545
Chicago/Turabian StyleButtar, Noman Ali, Yongguang Hu, Josef Tanny, Ali Raza, Yasir Niaz, Muhammad Imran Khan, Naeem Saddique, Abid Sarwar, Ahmad Azeem, Fiaz Ahmed, and et al. 2022. "Estimation of Sensible and Latent Heat Fluxes Using Flux Variance Method under Unstable Conditions: A Case Study of Tea Plants" Atmosphere 13, no. 10: 1545. https://doi.org/10.3390/atmos13101545
APA StyleButtar, N. A., Hu, Y., Tanny, J., Raza, A., Niaz, Y., Khan, M. I., Saddique, N., Sarwar, A., Azeem, A., Ahmed, F., & Bilal Idrees, M. (2022). Estimation of Sensible and Latent Heat Fluxes Using Flux Variance Method under Unstable Conditions: A Case Study of Tea Plants. Atmosphere, 13(10), 1545. https://doi.org/10.3390/atmos13101545