Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (400)

Search Parameters:
Keywords = waste incineration product

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 466 KiB  
Review
Bioconversion of Agro-Industrial Byproducts by Applying the Solid-State Fermentation Bioprocess to Increase Their Antioxidant Potency
by Christos Eliopoulos, Dimitrios Arapoglou and Serkos A. Haroutounian
Antioxidants 2025, 14(8), 910; https://doi.org/10.3390/antiox14080910 - 25 Jul 2025
Viewed by 376
Abstract
Agriculture and its related industries produce annually a vast amount of byproducts and waste which comprise a large proportion of global waste. Only a small percentage is managed with environmentally acceptable procedures, while a large proportion is either incinerated or discarded into nearby [...] Read more.
Agriculture and its related industries produce annually a vast amount of byproducts and waste which comprise a large proportion of global waste. Only a small percentage is managed with environmentally acceptable procedures, while a large proportion is either incinerated or discarded into nearby open fields, causing serious environmental burdens. Since these byproducts exhibit a rich nutritional and phytochemical content, they may be considered as raw materials for various industrial applications, initiating the need for the development of sustainable and eco-friendly methods for their valorization. Among the various methods considered, Solid-State Fermentation (SSF) constitutes an intriguing eco-friendly bioprocess, being suitable for water-insoluble mixtures and providing products with improved stability and depleted catabolic suppression. Thus, there are several literature studies highlighting the aspects and efficacy of SSF for improving the nutritional and phytochemical contents of diverse agro-industrial waste. The review herein aspires to summarize these literature results with a special focus on the enhancement of their antioxidant potency. For this purpose, specific keywords were used for searching multiple scientific databases with an emphasis on the most recent studies and higher impact journals. The presented data establish the usefulness and efficacy of the SSF bioprocess to obtain fermentation products with enhanced antioxidant profiles. Full article
Show Figures

Graphical abstract

49 pages, 4131 KiB  
Review
Municipal Solid Waste Gasification: Technologies, Process Parameters, and Sustainable Valorization of By-Products in a Circular Economy
by Nicoleta Ungureanu, Nicolae-Valentin Vlăduț, Sorin-Ștefan Biriș, Mariana Ionescu and Neluș-Evelin Gheorghiță
Sustainability 2025, 17(15), 6704; https://doi.org/10.3390/su17156704 - 23 Jul 2025
Viewed by 417
Abstract
Gasification of municipal solid waste and other biogenic residues (e.g., biomass and biowaste) is increasingly recognized as a promising thermochemical pathway for converting non-recyclable fractions into valuable energy carriers, with applications in electricity generation, district heating, hydrogen production, and synthetic fuels. This paper [...] Read more.
Gasification of municipal solid waste and other biogenic residues (e.g., biomass and biowaste) is increasingly recognized as a promising thermochemical pathway for converting non-recyclable fractions into valuable energy carriers, with applications in electricity generation, district heating, hydrogen production, and synthetic fuels. This paper provides a comprehensive analysis of major gasification technologies, including fixed bed, fluidized bed, entrained flow, plasma, supercritical water, microwave-assisted, high-temperature steam, and rotary kiln systems. Key aspects such as feedstock compatibility, operating parameters, technology readiness level, and integration within circular economy frameworks are critically evaluated. A comparative assessment of incineration and pyrolysis highlights the environmental and energetic advantages of gasification. The valorization pathways for main product (syngas) and by-products (syngas, ash, tar, and biochar) are also explored, emphasizing their reuse in environmental, agricultural, and industrial applications. Despite progress, large-scale adoption in Europe is constrained by economic, legislative, and technical barriers. Future research should prioritize scaling emerging systems, optimizing by-product recovery, and improving integration with carbon capture and circular energy infrastructures. Supported by recent European policy frameworks, gasification is positioned to play a key role in sustainable waste-to-energy strategies, biomass valorization, and the transition to a low-emission economy. Full article
(This article belongs to the Special Issue Sustainable Waste Process Engineering and Biomass Valorization)
Show Figures

Figure 1

13 pages, 4134 KiB  
Article
Use of Biodried Organic Waste as a Soil Amendment: Positive Effects on Germination and Growth of Lettuce (Lactuca sativa L., var. Buttercrunch) as a Model Crop
by Rosa María Contreras-Cisneros, Fabián Robles-Martínez, Marina Olivia Franco-Hernández and Ana Belem Piña-Guzmán
Processes 2025, 13(7), 2285; https://doi.org/10.3390/pr13072285 - 17 Jul 2025
Viewed by 309
Abstract
Biodrying and composting are aerobic processes to treat and stabilize organic solid waste, but biodrying involves a shorter process time and does not require the addition of water. The resulting biodried material (BM) is mainly used as an energy source in cement production [...] Read more.
Biodrying and composting are aerobic processes to treat and stabilize organic solid waste, but biodrying involves a shorter process time and does not require the addition of water. The resulting biodried material (BM) is mainly used as an energy source in cement production or in municipal solid waste incineration with energy recovery, but when obtained from agricultural or agroindustrial organic waste, it could also be used as a soil amendment, such as compost (CO). In this study, the phytotoxicity of BM compared to CO, both made from organic wastes (orange peel, mulch and grass), was evaluated on seed germination and growth (for 90 days) of lettuce (Lactuca sativa L.) seedlings on treatments prepared from mixtures of BM and soil, soil (100%) and a mixture of CO and soil. The germination index (GI%) was higher for BM extracts (200 g/L) than for CO extracts (68% vs. 53%, respectively). According to their dry weight, lettuce grew more on the CO mixture (16.5 g) than on the BM (5.4–7.4 g), but both materials far exceeded the soil values (0.15 g). The absence of phytotoxicity suggests that BM acts as a soil amendment, improving soil structure and providing nutrients to the soil. Therefore, biodrying is a quick and low-cost bioprocess to obtain a soil improver. Full article
Show Figures

Figure 1

16 pages, 3177 KiB  
Article
Cadmium as the Critical Limiting Factor in the Co-Disposal of Municipal Solid Waste Incineration Fly Ash in Cement Kilns: Implications for Three-Stage Water Washing Efficiency and Safe Dosage Control
by Zhonggen Li, Qingfeng Wang, Li Tang, Liangliang Yang and Guangyi Sun
Toxics 2025, 13(7), 593; https://doi.org/10.3390/toxics13070593 - 15 Jul 2025
Viewed by 373
Abstract
The co-disposal of municipal solid waste incineration fly ash (MSWI-FA) in cement kilns is an effective method for managing incineration by-products in China. However, the presence of heavy metals in MSWI-FA raises environmental concerns. This study analyzed the Cu, Zn, Cd, Pb, Cr, [...] Read more.
The co-disposal of municipal solid waste incineration fly ash (MSWI-FA) in cement kilns is an effective method for managing incineration by-products in China. However, the presence of heavy metals in MSWI-FA raises environmental concerns. This study analyzed the Cu, Zn, Cd, Pb, Cr, and Ni concentrations in MSWI-FA from 11 representative facilities across China and assessed the efficacy of a three-stage water washing process for Cl and heavy metal removal. The results revealed significant regional variations in heavy metal content that were strongly correlated with surface soil levels, with Zn, Pb, and Cu exhibiting the highest concentrations. Elemental correlations, such as Cu-Pb and Zn-Cd synergies and Cd-Ni antagonism, suggest common waste sources and temperature-dependent volatilization during incineration. The washing process (solid–liquid ratio = 1:10) achieved 97.1 ± 2.0% Cl removal, reducing residual Cl to 0.45 ± 0.32%, but demonstrated limited heavy metal elimination (10.28–19.38% efficiency), resulting in elevated concentrations (32.5–60.8% increase) due to 43.4 ± 9.2% mass loss. Notably, the washing effluents exceeded municipal wastewater discharge limits by up to 52-fold for Pb and 38-fold for Cd, underscoring the need for advanced effluent treatment. To mitigate environmental risks, the addition of washed MSWI-FA in cement kilns should be restricted to ≤0.5%, with Cd content prioritized in pre-disposal assessments. This study provides actionable insights for optimizing MSWI-FA co-processing while ensuring compliance with ecological safety standards. Full article
(This article belongs to the Special Issue Distribution and Behavior of Trace Metals in the Environment)
Show Figures

Graphical abstract

29 pages, 27846 KiB  
Review
Recycling and Mineral Evolution of Multi-Industrial Solid Waste in Green and Low-Carbon Cement: A Review
by Zishu Yue and Wei Zhang
Minerals 2025, 15(7), 740; https://doi.org/10.3390/min15070740 - 15 Jul 2025
Viewed by 275
Abstract
The accelerated industrialization in China has precipitated a dramatic surge in solid waste generation, causing severe land resource depletion and posing substantial environmental contamination risks. Simultaneously, the cement industry has become characterized by the intensive consumption of natural resources and high carbon emissions. [...] Read more.
The accelerated industrialization in China has precipitated a dramatic surge in solid waste generation, causing severe land resource depletion and posing substantial environmental contamination risks. Simultaneously, the cement industry has become characterized by the intensive consumption of natural resources and high carbon emissions. This review aims to investigate the current technological advances in utilizing industrial solid waste for cement production, with a focus on promoting resource recycling, phase transformations during hydration, and environmental management. The feasibility of incorporating coal-based solid waste, metallurgical slags, tailings, industrial byproduct gypsum, and municipal solid waste incineration into active mixed material for cement is discussed. This waste is utilized by replacing conventional raw materials or serving as active mixed material due to their content of oxygenated salt minerals and oxide minerals. The results indicate that the formation of hydration products can be increased, the mechanical strength of cement can be improved, and a notable reduction in CO2 emissions can be achieved through the appropriate selection and proportioning of mineral components in industrial solid waste. Further research is recommended to explore the synergistic effects of multi-waste combinations and to develop economically efficient pretreatment methods, with an emphasis on balancing the strength, durability, and environmental performance of cement. This study provides practical insights into the environmentally friendly and efficient recycling of industrial solid waste and supports the realization of carbon peak and carbon neutrality goals. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Graphical abstract

17 pages, 2302 KiB  
Article
Experimental Evaluation of Pet Food Waste as Biomass Fuel: Corrosion, Emissions, and Energy Potential
by Harald Puratich-Fernández, Joaquin Aburto-Hole, Joaquin Díaz, Francisca Angerstein, Fernanda de Groote, Héctor Quinteros-Lama, Johan González and Diógenes Hernández
Appl. Sci. 2025, 15(14), 7792; https://doi.org/10.3390/app15147792 - 11 Jul 2025
Viewed by 389
Abstract
The pet food industry faces significant sustainability challenges, including reducing energy consumption, lowering emissions, and adopting circular economy practices. This study aimed to assess and propose energy efficiency measures to enhance sustainability within the sector. The research evaluated the use of unapproved food [...] Read more.
The pet food industry faces significant sustainability challenges, including reducing energy consumption, lowering emissions, and adopting circular economy practices. This study aimed to assess and propose energy efficiency measures to enhance sustainability within the sector. The research evaluated the use of unapproved food as biomass for boiler combustion. It analyzed its chemical composition, energy impact, and emissions of volatile organic compounds (VOCs) through TD-GC/MS, as well as the corrosion effects on boiler metals. An energy assessment of the production process and a combustion characterization of the waste were conducted to identify opportunities for improving energy efficiency and sustainability. The results demonstrated that the chemical composition of the waste and other biomass-related parameters were within acceptable economic and environmental ranges. A reduction of 0.015 Mg of CO2eq per Mg of produced pet food was achieved. Regarding VOCs, their environmental impact was minimal due to the molecular structure of the compounds. Additionally, the corrosion rate caused by waste incineration was comparable to that of domestic gas in the case of cat food, with a rate of 214.74 mpy, while the dog food yielded 55.42 mpy, which is near that of other types of biomass, such as wood chips and pellets. The use of residual biomass in pet food production is a viable alternative for reducing carbon footprint, promoting a circular economy, and improving the industry’s sustainability. Full article
Show Figures

Figure 1

48 pages, 5755 KiB  
Review
Accelerated Carbonation of Waste Incineration Residues: Reactor Design and Process Layout from Laboratory to Field Scales—A Review
by Quentin Wehrung, Davide Bernasconi, Fabien Michel, Enrico Destefanis, Caterina Caviglia, Nadia Curetti, Meissem Mezni, Alessandro Pavese and Linda Pastero
Clean Technol. 2025, 7(3), 58; https://doi.org/10.3390/cleantechnol7030058 - 11 Jul 2025
Viewed by 913
Abstract
Municipal solid waste (MSW) and refuse-derived fuel (RDF) incineration generate over 20 million tons of residues annually in the EU. These include bottom ash (IBA), fly ash (FA), and air pollution control residues (APCr), which pose significant environmental challenges due to their leaching [...] Read more.
Municipal solid waste (MSW) and refuse-derived fuel (RDF) incineration generate over 20 million tons of residues annually in the EU. These include bottom ash (IBA), fly ash (FA), and air pollution control residues (APCr), which pose significant environmental challenges due to their leaching potential and hazardous properties. While these residues contain valuable metals and reactive mineral phases suitable for carbonation or alkaline activation, chemical, techno-economic, and policy barriers have hindered the implementation of sustainable, full-scale management solutions. Accelerated carbonation technology (ACT) offers a promising approach to simultaneously sequester CO2 and enhance residue stability. This review provides a comprehensive assessment of waste incineration residue carbonation, covering 227 documents ranging from laboratory studies to field applications. The analysis examines reactor designs and process layouts, with a detailed classification based on material characteristics, operating conditions, investigated parameters, and the resulting pollutant stabilization, CO2 uptake, or product performance. In conclusion, carbonation-based approaches must be seamlessly integrated into broader waste management strategies, including metal recovery and material repurposing. Carbonation should be recognized not only as a CO2 sequestration process, but also as a binding and stabilization strategy. The most critical barrier remains chemical: the persistent leaching of sulfates, chromium(VI), and antimony(V). We highlight what we refer to as the antimony problem, as this element can become mobilized by up to three orders of magnitude in leachate concentrations. The most pressing research gap hindering industrial deployment is the need to design stabilization approaches specifically tailored to critical anionic species, particularly Sb(V), Cr(VI), and SO42−. Full article
(This article belongs to the Collection Review Papers in Clean Technologies)
Show Figures

Figure 1

19 pages, 2149 KiB  
Article
Feather Waste Biodegradation and Biostimulant Potential of Gordonia alkanivorans S7: A Novel Keratinolytic Actinobacterium for Sustainable Waste Valorization
by Katarzyna Struszczyk-Świta, Piotr Drożdżyński, Paweł Marcinkowski, Aleksandra Nadziejko, Magdalena Rodziewicz, Bartłomiej Januszewicz, Magdalena Gierszewska and Olga Marchut-Mikołajczyk
Int. J. Mol. Sci. 2025, 26(13), 6494; https://doi.org/10.3390/ijms26136494 - 5 Jul 2025
Viewed by 410
Abstract
The poultry industry produces significant quantities of keratin-rich waste, primarily feathers, whose traditional disposal methods—incineration or chemical treatment—result in environmental damage and resource depletion. This research introduces a sustainable biotechnological method for the valorization of feather waste utilizing Gordonia alkanivorans S7, an actinomycete [...] Read more.
The poultry industry produces significant quantities of keratin-rich waste, primarily feathers, whose traditional disposal methods—incineration or chemical treatment—result in environmental damage and resource depletion. This research introduces a sustainable biotechnological method for the valorization of feather waste utilizing Gordonia alkanivorans S7, an actinomycete strain extracted from petroleum plant sludge. This is the inaugural publication illustrating keratinolytic activity in the Gordonia genus. The optimization of the degradation process via the Taguchi approach led to the effective biodegradation of untreated home chicken feathers, achieving dry mass loss of up to 99% after 168 h in a mineral medium. The agricultural potential of the obtained keratin hydrolysate, which was high in organic components (C 31.2%, N 8.9%, H 5.1%, and S 1.7%), was assessed. Phytotoxicity tests demonstrated that the feather hydrolysate led to better growth of the indicator plants—Sorghum saccharatum and Lepidium sativum. The highest values of root growth stimulation were 26% for S. saccharatum and 31% for L. sativum, at a dose of 0.01%. Shoot growth stimulation was noted only for L. sativum, reaching 38% (0.01%), 53% (0.05%), and 37% (0.1%), as compared to the control sample. These results demonstrate the process’s combined economic and environmental benefits, providing a fresh approach to the production of bio-based plant biostimulants and sustainable keratin waste management. Full article
(This article belongs to the Special Issue Microbial Enzymes for Biotechnological Applications: 2nd Edition)
Show Figures

Figure 1

15 pages, 2934 KiB  
Article
Assessment of the Area of Heavy Metals and Radionuclides Deposition on the Environment of the Household Waste Landfill on the 9th km of Vilyuisky Tract in Yakutsk City
by Sargylana Mamaeva, Marina Frontasyeva, Kristina Petrova, Vassiliy Kolodeznikov, Galina Ignatyeva, Eugenii Zakharov and Vladlen Kononov
Atmosphere 2025, 16(7), 816; https://doi.org/10.3390/atmos16070816 - 3 Jul 2025
Viewed by 186
Abstract
For the first time, the deposition area of heavy metals and other trace elements (Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, P, Pb, S, Sr, Sb, V, Zn, and Hg) on the territory surrounding a landfill of domestic (municipal) waste at [...] Read more.
For the first time, the deposition area of heavy metals and other trace elements (Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, P, Pb, S, Sr, Sb, V, Zn, and Hg) on the territory surrounding a landfill of domestic (municipal) waste at the 9th km of the Vilyuisky tract of Yakutsk within a radius of 51 km was assessed using the method of moss biomonitors and ICP-OES as an analytical technique. Mosses were analyzed for radionuclide content (40K, 137Cs, 212 Pb, 214Pb, 212Bi, 214Bi, 208Tl, 7Be, and 228Ac) in a number of selected samples by semiconductor gamma spectrometry. The results of the examination of moss samples by ICP-OES indicate the presence of large amounts of toxic Ba and metal debris (Al, Co, Cr, Fe, S, and Pb) at the landfill. In addition, it is shown that the investigated samples contain elements such as Cd, Co, Cr, Cu, Cu, Mn, Ni, Pb, Sr, V, Zn, and Hg. The method of gamma spectrometry revealed that the studied samples contain such radioactive elements as 137Cs, daughter products of 238U and 232Th. Detection of the same heavy metals and radionuclides in the atmospheric air of the city and in the vegetation near the landfill may indicate that one of the sources of environmental pollution may be products of incineration of the landfill contents at the 9th km of the Vilyuisky tract. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

32 pages, 1967 KiB  
Review
Energy Valorization and Resource Recovery from Municipal Sewage Sludge: Evolution, Recent Advances, and Future Prospects
by Pietro Romano, Adriana Zuffranieri and Gabriele Di Giacomo
Energies 2025, 18(13), 3442; https://doi.org/10.3390/en18133442 - 30 Jun 2025
Viewed by 524
Abstract
Municipal sewage sludge, a by-product of urban wastewater treatment, is increasingly recognized to be a strategic resource rather than a disposal burden. Traditional management practices, such as landfilling, incineration, and land application, are facing growing limitations due to environmental risks, regulatory pressures, and [...] Read more.
Municipal sewage sludge, a by-product of urban wastewater treatment, is increasingly recognized to be a strategic resource rather than a disposal burden. Traditional management practices, such as landfilling, incineration, and land application, are facing growing limitations due to environmental risks, regulatory pressures, and the underuse of the sludge’s energy and nutrient potential. This review examines the evolution of sludge management, focusing on technologies that enable energy recovery and resource valorization. The transition from linear treatment systems toward integrated biorefineries is underway, combining biological, thermal, and chemical processes. Anaerobic digestion remains the most widely used energy-positive method, but it is significantly improved by processes such as thermal hydrolysis, hydrothermal carbonization, and wet oxidation. Among these, hydrothermal carbonization stands out for its scalability, energy efficiency, and phosphorus-rich hydrochar production, although implementation barriers remain. Economic feasibility is highly context-dependent, being shaped by capital costs, energy prices, product markets, and policy incentives. This review identifies key gaps, including the need for standardized treatment models, decentralized processing hubs, and safe residual management. Supportive regulation and economic instruments will be essential to facilitate widespread adoption. In conclusion, sustainable sludge management depends on modular, integrated systems that recover energy and nutrients while meeting environmental standards. A coordinated approach across technology, policy, and economics is vital to unlock the full value of this critical waste stream. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

19 pages, 5802 KiB  
Article
Soil Quality and Heavy Metal Source Analyses for Characteristic Agricultural Products in Luzuo Town, China
by Zhaoyu Zhou, Zeming Shi, Linsong Yu, Haiyin Fan and Fang Wan
Agriculture 2025, 15(13), 1360; https://doi.org/10.3390/agriculture15131360 - 25 Jun 2025
Viewed by 269
Abstract
Identifying the soil quality and the sources of heavy metals in the production areas of characteristic agricultural products is crucial for ensuring the quality of such products and the sustainable development of agriculture. This research took the farmland soil of Luzuo Town, a [...] Read more.
Identifying the soil quality and the sources of heavy metals in the production areas of characteristic agricultural products is crucial for ensuring the quality of such products and the sustainable development of agriculture. This research took the farmland soil of Luzuo Town, a characteristic production area of Cangshan garlic in Linyi City, as the research object. The contents of Cr, Cu, Ni, Pb, Zn, As, Hg, and Cd in farmland soil were analyzed. The ecological risks were evaluated using the Geographical Cumulative Index (Igeo) and the Potential Ecological Risk Index. The spatial distribution characteristics of the elements were determined through geostatistical analysis, and Positive Matrix Factorization (PMF) was used for source apportionment. The results show the following: (1) The average concentrations of all heavy metals exceeded local background values, with Cr and Hg surpassing the screening thresholds from China’s “Soil Pollution Risk Control Standards” (GB 15618-2018). (2) The results of the Moran’s index show that, except for Hg and Cd, all the elements had a high spatial autocorrelation, and there are two potential highly polluted areas in the study area. (3) Soils were generally uncontaminated or low risk, with Hg and Cd as the primary ecological risk contributors. (4) Five sources were quantified: fertilizer and pesticide sources (32.28%); mixed sources of fertilizer, pesticides, and manure (14.15%); mixed sources of traffic activities and agricultural waste discharge (19.95%); natural sources (20.55%); and incineration sources (13.07%). This study demonstrates the value of integrating geospatial and statistical methods for soil pollution management. Targeted control of Hg/Cd and reduced agrochemical use are recommended to protect this important agricultural region. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

57 pages, 3664 KiB  
Review
Advancing Municipal Solid Waste Management Through Gasification Technology
by Uzeru Haruna Kun and Ewelina Ksepko
Processes 2025, 13(7), 2000; https://doi.org/10.3390/pr13072000 - 24 Jun 2025
Cited by 1 | Viewed by 844
Abstract
This review thoroughly evaluates gasification as a transformative alternative to conventional methods for managing municipal solid waste (MSW), highlighting its potential to convert carbonaceous materials into syngas for energy and chemical synthesis. A comparative evaluation of more than 350 papers and documents demonstrated [...] Read more.
This review thoroughly evaluates gasification as a transformative alternative to conventional methods for managing municipal solid waste (MSW), highlighting its potential to convert carbonaceous materials into syngas for energy and chemical synthesis. A comparative evaluation of more than 350 papers and documents demonstrated that gasification is superior to incineration and pyrolysis, resulting in lower harmful emissions and improved energy efficiency, which aligns with sustainability goals. Key operational findings indicate that adjusting the temperature to 800–900 °C leads to the consumption of CO2 and the production of CO via the Boudouard reaction. Air gasification produces syngas yields of up to 76.99 wt% at 703 °C, while oxygen gasification demonstrates a carbon conversion efficiency of 80.2%. Steam and CO2 gasification prove to be effective for producing H2 and CO, respectively. Catalysts, especially nickel-based ones, are effective in reducing tar and enhancing syngas quality. Innovative approaches, such as co-gasification, plasma and solar-assisted gasification, chemical looping, and integration with carbon capture, artificial intelligence (AI), and the Internet of Things (IoT), show promise in improving process performance and reducing technical and economic hurdles. The review identifies research gaps in catalyst development, feedstock variability, and system integration, emphasizing the need for integrated research, policy, and investment to fully realize the potential of gasification in the clean energy transition and sustainable MSW management. Full article
(This article belongs to the Special Issue Advances in Solid Waste Treatment and Design (2nd Edition))
Show Figures

Figure 1

18 pages, 14135 KiB  
Article
Investigation of the Properties of Low Water-to-Solid Ratio Vibro-Press-Formed Alkali-Activated Municipal Solid Waste Incineration Bottom-Ash Concrete
by Gintautas Tamošaitis, Danutė Vaičiukynienė and Diana Bajare
Materials 2025, 18(13), 2926; https://doi.org/10.3390/ma18132926 - 20 Jun 2025
Viewed by 269
Abstract
This work focuses on the use of municipal waste incineration bottom ash (MSWI) for the development and production of products suitable for use as construction products. The generation of these ashes is increasing every year due to the incineration of municipal waste. There [...] Read more.
This work focuses on the use of municipal waste incineration bottom ash (MSWI) for the development and production of products suitable for use as construction products. The generation of these ashes is increasing every year due to the incineration of municipal waste. There are currently three incineration plants operating in major cities in Lithuania. The non-hazardous bottom ash remaining from the incineration process is stored in dedicated sorting and aging sites until it is used as an inert form of aggregate for the installation of road foundations. However, it has been observed that these ashes have a tendency to bind and cement when exposed to atmospheric precipitation at the storage site. Based on this characteristic, it was decided in this study to use alkaline activation of the ash to accelerate the bonding process and to create a dense, non-porous composite concrete structure. This activation method is known to create another problem during ash bonding, where the presence of metallic aluminum particles in the ash leads to the release of hydrogen gas and makes the structure of the cured samples porous. For the purposes of the study, it was decided to create a completely different mixture structure and not to use additional water in the mixtures tested. A very low water/solids ratio (W/S) of <0.08 was used for the alkaline activation of the mixtures. All the water required for ash activation was obtained from sodium silicate and sodium hydroxide solution. Metakaolin waste (MKW) was used to adjust the SiO2/Na2O/Al2O3 ratio of the mixtures. Vibro-pressing was used to form and increase the density of the samples. And for the formation of the concrete structure, 0/4 fraction sand was used as aggregate. The final alkali-activated sample obtained had properties similar to those of the very widely used vibro-pressed cementitious paving tiles and did not exhibit hydrogen evolution during alkali activation due to the very low W/S ratio. The best results were achieved by samples with a highest compressive strength of 40.0 MPa and a tensile strength of 5.60 MPa, as well as a density of 1950 kg/m3. It is believed that this alkaline activation and vibro-pressing method can expand the use of MSWI ash in the development of building products. Full article
(This article belongs to the Special Issue Low-Carbon Construction and Building Materials)
Show Figures

Figure 1

14 pages, 308 KiB  
Article
Recycling of Discarded Mattresses Through Extended Producer Responsibility: Is It More Cost-Effective than Incineration?
by Bram Faber and Raymond Gradus
Sustainability 2025, 17(12), 5542; https://doi.org/10.3390/su17125542 - 16 Jun 2025
Viewed by 725
Abstract
About half of the discarded mattresses in the Netherlands are recycled, and the other half are incinerated. Based on a recently implemented sustainability measure of extended producer responsibility, the recycling rate should increase to 75% in 2028. Thereby, a recycling fee of EUR [...] Read more.
About half of the discarded mattresses in the Netherlands are recycled, and the other half are incinerated. Based on a recently implemented sustainability measure of extended producer responsibility, the recycling rate should increase to 75% in 2028. Thereby, a recycling fee of EUR 12.5 per mattress should be introduced to finance the infrastructure to increase recycling. This study investigates the potential cost-effectiveness of mattress recycling through the reuse of materials, compared to the incineration of mattresses in Dutch energy-to-waste plants. The benefits of recycling include the avoidance of CO2 that would otherwise be released by incineration and the displacement of virgin material that would otherwise be used by producers as raw material. However, there are also significant costs associated with the collection and recycling process of complex products such as mattresses. Taking all factors into account, the cost of saving one ton of CO2 through mattress recycling is EUR 138. This is higher than alternatives such as wind energy, ETS prices, or carbon capture and storage. If the replacement energy is fully CO2-neutral or the recycling fee is lower, the costs of one ton of CO2 decrease but are still higher than most alternatives. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

14 pages, 590 KiB  
Review
Economic, Environmental, and Sociopolitical Aspects of Waste Incineration: A Scoping Review
by Peter W. Tait, Joe Salmona, Mahakaran Sandhu, Thomas Guscott, Jonathon King and Victoria Williamson
Sustainability 2025, 17(12), 5528; https://doi.org/10.3390/su17125528 - 16 Jun 2025
Viewed by 3799
Abstract
Objective: To examine the economic, environmental, and sociopolitical aspects of waste-to-energy incineration (WtE-I) and to provide recommendations for the Australian context. Methods: A scoping review of the literature published from 2016 to 2024 was conducted, adhering to the PRISMA guidelines. Results: This review [...] Read more.
Objective: To examine the economic, environmental, and sociopolitical aspects of waste-to-energy incineration (WtE-I) and to provide recommendations for the Australian context. Methods: A scoping review of the literature published from 2016 to 2024 was conducted, adhering to the PRISMA guidelines. Results: This review identifies WtE-I as a dual-purpose tool for energy production and waste management. However, its environmental profile is unclear, with potential significant environmental and health risks due to the emission of toxins and heavy metals and diminished air quality. The economic feasibility of WtE-I varies, with high initial costs and operational expenses offset by subsidies, revenue from energy, and material recovery. Public opposition to WtE-I is prevalent, driven by health concerns, and this raises important environmental justice issues, especially for marginalised communities. Conclusions: The present study provides economic, environmental, and sociopolitical recommendations against WtE-I. When compared to landfill, WtE-I demonstrates economic and environmental benefits. The transition to a circular economy with renewables-derived electricity attenuates the benefits of WtE-I. This, combined with grassroots opposition to WtE-I and its violations of social justice, renders future WtE-I projects unjustifiable. Public health practitioners need to promote primary waste reduction, recycling/composting, and other non-incinerator waste management practices in Australia. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

Back to TopTop