Cadmium as the Critical Limiting Factor in the Co-Disposal of Municipal Solid Waste Incineration Fly Ash in Cement Kilns: Implications for Three-Stage Water Washing Efficiency and Safe Dosage Control
Highlights
- Three-stage washing removes 97% Cl but enriches heavy metals by 32–61%;
- The addition of ≤0.5%(w/w) washed fly ash with prioritized Cd control ensures safety.
- Cd is an important limiting factor for the proper disposal of municipal solid waste incineration fly ash (MSWI-FA) in cement kilns.
- Understanding or controlling heavy metals in MSWI-FA is necessary before disposal.
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Simulation of the Three-Stage Water Washing Process
2.3. Sample Testing Methods
3. Results and Discussion
3.1. Heavy Metal and Chlorine Content in Raw Fly Ash
3.2. Mass Loss of Fly Ash and Removal Rates of Heavy Metal and Chlorine During the Washing Process
3.3. Maximum Allowable Amount of Incineration Fly Ash Addition for Co-Disposal in Cement Kilns
4. Conclusions
- (1)
- The heavy metal concentrations in MSWI-FA varied significantly across the five Chinese cities, with Zn (3720 ± 1126 mg/kg), Pb (1013 ± 223 mg/kg), and Cu (331 ± 69 mg/kg) being the most abundant. These variations were strongly correlated with the heavy metal levels in the regional surface soils (p < 0.01), highlighting the influence of local soil contamination. Elemental correlations (e.g., Cu–Pb synergy, Zn–Cd association, and Cd–Ni antagonism) further underscored shared waste sources (e.g., electronics, batteries, and PVC plastics) and volatilization dynamics during incineration.
- (2)
- The three-stage counter-current washing process demonstrated exceptional efficiency in chloride removal, achieving an average reduction of 97.1 ± 2.0%, with residual Cl content reduced to 0.45 ± 0.32%. This meets the stringent Cl limit (<1%) required for cement raw materials, enabling MSWI-FA to serve as a viable substitute for traditional raw materials. However, the process exhibited limited effectiveness in removing heavy metals, with removal efficiencies ranging from 10.28% (Zn) to 19.38% (Pb). Notably, the process caused a substantial mass loss (43.4 ± 9.2%) due to the dissolution of soluble salts (e.g., NaCl and KCl), which paradoxically increased the heavy metal concentrations in the residue by 32.5% (Ni) to 60.8% (Cr). This concentration effect exacerbates environmental risks if the washed ash is improperly managed.
- (3)
- Despite successful Cl removal, the washing process generated effluents with heavy metal concentrations exceeding China’s municipal wastewater discharge standards (GB 18918-2002) by up to 52-fold for Pb and 38-fold for Cd. This poses severe contamination risks if untreated effluents are released into ecosystems. Furthermore, the enrichment of Cd in washed ash emerged as the most critical constraint for co-disposal in cement kilns. Calculations based on China’s GB/T 30760-2024 standard revealed that Cd’s strict limit (1 mg/kg in raw materials) restricts the maximum addition of washed MSWI-FA to ≤0.5% in cement production.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2023. (In Chinese) [Google Scholar]
- Zhang, L.; Zhao, W.; Yan, R.; Yu, X.; Barceló, D.; Sui, Q. Microplastics in different municipal solid waste treatment and disposal systems: Do they pose environmental risks? Water Res. 2024, 255, 121443. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Kow, K.-W.; Wang, W.; Meredith, W.; Zhang, G.; Mao, Y.; Xu, M. Co-treatment of municipal solid waste incineration fly ash and alumina-/silica-containing waste: A critical review. J. Hazard. Mater. 2024, 479, 135677. [Google Scholar] [CrossRef] [PubMed]
- Teng, F.; Wang, Z.; Ren, K.; Liu, S.; Ding, H. Analysis of composition characteristics and treatment techniques of municipal solid waste incineration fly ash in China. J. Environ. Manag. 2024, 357, 120783. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.H.; Matsuto, T.; Tanaka, N.; Okada, T. Metal distribution in incineration residues of municipal solid waste (MSW) in Japan. Waste Manag. 2004, 24, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, L.; Chen, L.; Ma, B.; Zhang, Y.; Ni, W.; Tsang, D.C.W. Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives. J. Hazard. Mater. 2021, 411, 125132. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, Z.; Fang, Z.; Qian, Y.; Zhong, P.; Yan, J. Review of harmless treatment of municipal solid waste incineration fly ash. Waste Dispos. Sustain. Energy 2020, 2, 1–25. [Google Scholar] [CrossRef]
- Ping, X.; Wang, F.; Wang, H.; Pan, J.; Lu, L.; Qiu, J. High temperature melting of municipal solid waste incineration (MSWI) fly ash and co-disposal technology with blast furnaces. Waste Manag. 2024, 183, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Du, C.; Zhao, Y.; Wang, D.; Zhang, W.; Qiu, P. Process exploration for scale melting and solidifying of municipal solid waste incineration (MSWI) fly ash by horizontal cyclone melting furnace. Waste Manag. 2024, 189, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Margallo, M.; Taddei, M.B.M.; Hernández-Pellón, A.; Aldaco, R.; Irabien, Á. Environmental sustainability assessment of the management of municipal solid waste incineration residues: A review of the current situation. Clean Technol. Environ. Policy 2015, 17, 1333–1353. [Google Scholar] [CrossRef]
- Su, L.; Wu, S.; Yu, F.; Zhu, W.; Zhang, X.; Liang, B. Utilizing municipal solid waste incineration fly ash for mine goaf filling: Preparation, optimization, and heavy metal leaching study. Environ. Res. 2025, 266, 120594. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Li, P.; Ye, Z.; Zhang, P.; Wu, S.; Cheng, F. Study progress on the composition characteristics of fly ash from municipal solid waste incineration and treatment technology of heavy metal melting and solidification. Clean Coal Technol. 2021, 27, 169–180, (In Chinese with English Abstract). [Google Scholar]
- Ma, B.; Yang, H.; Wang, Y. Overview of resource reuse technologies and corresponding products for municipal solid waste incineration fly ash. Environ. Chem. 2023, 42, 2669–2687, (In Chinese with English Abstract). [Google Scholar]
- Saikia, N.; Kato, S.; Kojima, T. Production of cement clinkers from municipal solid waste incineration (MSWI) fly ash. Waste Manag. 2007, 27, 1178–1189. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Ji, R.; Liu, L.; Wang, X.; Zhang, Z. Recycling of municipal solid waste incineration by-product for cement composites preparation. Constr. Build. Mater. 2018, 162, 794–801. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Z.; Huang, L.; Zhu, Y.; Gu, J.; Wei, B. Technical engineering application of co-disposal of municipal solid waste incineration fly ash by cement kiln. Cement 2017, S1, 8–12, (In Chinese with English Abstract). [Google Scholar]
- Ling, Y.; Jin, Y.; Wang, L.; Nie, Y. Demonstration project of resource utilization of municipal solid waste incineration fly ash in cement kilns in Suzhou. Environ. Eng. 2008, 26 (Suppl. 1), 220–223, (In Chinese with English Abstract). [Google Scholar]
- Ministry of Ecology and Environment of the People’s Republic of China. National Catalogue of Hazardous Wastes, 2021st ed.; Ministry of Ecology and Environment of the People’s Republic of China, China Environmental Publishing Group: Beijing, China, 2021. [Google Scholar]
- Li, Z. Co-disposal of municipal solid waste incineration fly ash is an effective way for the transformation and upgrading of the cement industry. China Cement 2017, 9, 110–111. (In Chinese) [Google Scholar]
- Yang, N.; Ge, Z.; Li, A.; Wei, B.; Li, Y.; Zhang, Y.; Shen, Q.; Wang, T.; Wu, X.; Cao, X.; et al. Analysis of the heavy metals (As, Pb, Cu, Zn) by leaching and sequential extraction procedure from a municipal solid waste incinerator fly ash co-processing cement kiln plant. Environ. Monit. Assess. 2022, 194, 353. [Google Scholar] [CrossRef] [PubMed]
- Marieta, C.; Martín-Garin, A.; Leon, I.; Guerrero, A. Municipal Solid Waste Incineration Fly Ash: From Waste to Cement Manufacturing Resource. Materials 2023, 16, 2538. [Google Scholar] [CrossRef] [PubMed]
- Chiang, K.-Y.; Hu, Y.-H. Water washing effects on metals emission reduction during municipal solid waste incinerator (MSWI) fly ash melting process. Waste Manag. 2010, 30, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.H.K.; Barford, J.P.; McKay, G. Utilization of municipal solid waste incineration ash in Portland cement clinker. Clean Technol. Environ. Policy 2011, 13, 607–615. [Google Scholar] [CrossRef]
- Nowak, B.; Rocha, S.F.; Aschenbrenner, P.; Rechberger, H.; Winter, F. Heavy metal removal from MSW fly ash by means of chlorination and thermal treatment: Influence of the chloride type. Chem. Eng. J. 2012, 179, 178–185. [Google Scholar] [CrossRef]
- Cho, B.H.; Nam, B.H.; An, J.; Youn, H. Municipal Solid Waste Incineration (MSWI) Ashes as Construction Materials—A Review. Materials 2020, 13, 3143. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Hu, Y.; Cheng, H. Municipal solid waste (MSW) incineration fly ash as an important source of heavy metal pollution in China. Environ. Pollut. 2019, 252, 461–475. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, H. Evaluation of municipal waste incinerator fly ash toxicity and the role of cadmium by two aquatic toxicity tests. Waste Manag. 1996, 16, 555–559. [Google Scholar] [CrossRef]
- Xu, H.; Zhao, D.; Ding, Q. Discussion on the characteristics and control measures of mercury emissions from co-disposal of municipal solid waste incineration fly ash in cement kilns. Environ. Eng. 2017, 35, 102–105, (In Chinese with English Abstract). [Google Scholar]
- Li, Y.; Xu, W. Characteristics of metal element content in soil profiles in cement industrial areas and their indicative significance. Earth Environ. 2019, 47, 218–226, (In Chinese with English Abstract). [Google Scholar]
- Yan, D.; Peng, Z.; Yu, L.; Sun, Y.; Yong, R.; Helge Karstensen, K. Characterization of heavy metals and PCDD/Fs from water-washing pretreatment and a cement kiln co-processing municipal solid waste incinerator fly ash. Waste Manag. 2018, 76, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Liu, D.; Zhang, L.; Wu, Y.; Ding, X.; Zeng, X. Challenges of E-Waste Dismantling in China. Toxics 2024, 12, 867. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Liu, J.; Yang, L.; Li, X.; Hu, G.; Wang, G.; Sun, G.; Li, Z. Fate of Lead and Cadmium in Precalciner Cement Plants and Their Atmospheric Releases. ACS Omega 2021, 6, 21265–21275. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, X.; Wang, W.; Wu, T. The Distribution Pattern and Leaching Toxicity of Heavy Metals in Glass Ceramics from MSWI Fly Ash and Andesite Tailings. Toxics 2022, 10, 774. [Google Scholar] [CrossRef] [PubMed]
- GB/T 30760-2024; State Administration for Market Regulation and Standardization Administration of China. Technical Specification for Co-Processing of Solid Waste in Cement Kiln. China Standards Press: Beijing, China, 2024.
- Kikuchi, R. Recycling of municipal solid waste for cement production: Pilot-scale test for transforming incineration ash of solid waste into cement clinker. Resour. Conserv. Recycl. 2001, 31, 137–147. [Google Scholar] [CrossRef]
- Dontriros, S.; Likitlersuang, S.; Janjaroen, D. Mechanisms of chloride and sulfate removal from municipal-solid-waste-incineration fly ash (MSWI FA): Effect of acid-base solutions. Waste Manag. 2020, 101, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Zhang, J.; Sun, F.; Wu, S.; Pan, Y.; Zhou, J.; Qian, G. Heavy metal leaching and distribution in glass products from the co-melting treatment of electroplating sludge and MSWI fly ash. J. Environ. Manag. 2019, 232, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhan, J.; Zheng, M.; Li, L.; Li, C.; Jiang, X.; Wang, M.; Zhao, Y.; Jin, R. Field pilot study on emissions, formations and distributions of PCDD/Fs from cement kiln co-processing fly ash from municipal solid waste incinerations. J. Hazard. Mater. 2015, 299, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Sarmiento, L.M.; Clavier, K.A.; Paris, J.M.; Ferraro, C.C.; Townsend, T.G. Critical examination of recycled municipal solid waste incineration ash as a mineral source for portland cement manufacture—A case study. Resour. Conserv. Recycl. 2019, 148, 1–10. [Google Scholar] [CrossRef]
- Chen, W.-S.; Chang, F.-C.; Shen, Y.-H.; Tsai, M.-S.; Ko, C.-H. Removal of chloride from MSWI fly ash. J. Hazard. Mater. 2012, 237, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.R.; Huang, C.; Kuo, J.-J.; Lin, S.-H. Recycling MSWI bottom and fly ash as raw materials for Portland cement. Waste Manag. 2008, 28, 1113–1118. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Du, X.; Liu, S.; Wen, Y.; Liao, Q.; Jiao, G.; Shimaoka, T.; Tang, S. Promotion of chloride removal from MSWI fly ash by an accelerated wet-carbonation process to enhance ash recycling in cement manufacture. J. Environ. Chem. Eng. 2024, 12, 112591. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, Y.; Wang, X.; Zhu, X.; Liu, X. Chlorine removal technologies for resource utilization of municipal solid waste incineration fly ash. Environ. Res. 2025, 268, 120784. [Google Scholar] [CrossRef] [PubMed]
- Pei, C.; Ma, L.; Xia, T.; Li, S. Research on the Optimization and Application of the Washing Dechlorination Process for Municipal Solid Waste Incineration Fly Ash. ACS Omega 2023, 8, 4081–4091. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Tian, S.; Ji, R.; Liu, L.; Wang, X.; Zhang, Z. Effect of water-washing on the co-removal of chlorine and heavy metals in air pollution control residue from MSW incineration. Waste Manag. 2017, 68, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; He, T.; Da, Y.; Xu, Y.; Wan, Z. Physical properties, chemical composition, and toxicity leaching of incineration fly ash by multistage water washing. Environ. Sci. Pollut. Res. 2023, 30, 80978–80987. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chen, J.; Lin, X.; Mao, T.; Zhu, Z.; Lv, J.; Fu, C.; Chen, S.; Wu, A.; Li, X.; et al. Study on Three-Stage Counter-Current Water Washing Desalination Characteristics and Mechanism of High Chlorine Waste Incineration Fly Ash. Processes 2022, 10, 2540. [Google Scholar] [CrossRef]
- Li, M.; Chen, J.; Wang, R.; Lin, X.; Li, X.; Yan, J. Enhancing dechlorination procedure of waste incineration fly ash: Extraction mechanism, prediction model, and application. Desalination 2025, 600, 118498. [Google Scholar] [CrossRef]
- JC/T 1073-2008; National Development and Reform Commission of the People’s Republic of China. Methods for Chemical Analysis of Chloride for Cement. China Building Materials Industry Press: Beijing, China, 2008.
- GB/T 3558-2014; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China and Standardization Administration of China. Determination of Chlorine in Coal. China Standards Press: Beijing, China, 2014.
- GB 11896-89; National Environmental Protection Agency of China. Water Quality—Determination of Chloride—Silver Nitrate Titration Method. China Standards Press: Beijing, China, 1989.
- Lane, D.J.; Sippula, O.; Koponen, H.; Heimonen, M.; Peräniemi, S.; Lähde, A.; Kinnunen, N.M.; Nivajärvi, T.; Shurpali, N.; Jokiniemi, J. Volatilisation of major, minor, and trace elements during thermal processing of fly ashes from waste- and wood-fired power plants in oxidising and reducing gas atmospheres. Waste Manag. 2020, 102, 698–709. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Wu, Z.; Zhou, J.; Zhao, J.; Ruan, X.; Liu, J.; Qian, G. Chemical characteristics and risk assessment of typical municipal solid waste incineration (MSWI) fly ash in China. J. Hazard. Mater. 2013, 261, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Fusheng, W.; Guozhi, Y.; Dezhen, J. Basic Statistics and Characteristics of Element Background Values in Chinese Soils. Chin. Environ. Monit. 1991, 1, 1–6. (In Chinese) [Google Scholar]
- GB 15618-2018; Ministry of Ecology and Environment of the People’s Republic of China. Soil Environmental Quality—Risk Control Standard for Soil Contamination of Agricultural Land. China Environmental Science Press: Beijing, China, 2018.
- Lederer, J.; Trinkel, V.; Fellner, J. Wide-scale utilization of MSWI fly ashes in cement production and its impact on average heavy metal contents in cements: The case of Austria. Waste Manag. 2017, 60, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, B.; Zhu, F.; Chen, Q.; Zhou, T.; Wang, Y. Study on the reduction of chlorine and heavy metals in municipal solid waste incineration fly ash by organic acid and microwave treatment and the variation of environmental risk of heavy metals. Sci. Total Environ. 2023, 870, 161929. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gao, M.; Wang, M.; Wu, C.; Wang, Q.; Wang, Y. Chloride removal from municipal solid waste incineration fly ash using lactic acid fermentation broth. Waste Manag. 2021, 130, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Fang, Y.; Chen, D.; Chen, G.; Xu, Y.; Sheng, H.; Zhou, Z. Volatilization and leaching behavior of heavy metals in MSW incineration fly ash in a DC arc plasma furnace. Fuel 2017, 210, 145–153. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, W.; Gao, X. Solidification and immobilization of MSWI fly ash through aluminate geopolymerization: Based on partial charge model analysis. Waste Manag. 2016, 58, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Wang, W.; Ye, T.; Wang, F.; Lan, Y. Utilization of washed MSWI fly ash as partial cement substitute with the addition of dithiocarbamic chelate. J. Environ. Manag. 2008, 88, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wu, S.; Pan, Y.; Zhang, L.; Cao, Z.; Zhang, X.; Yonemochi, S.; Hosono, S.; Wang, Y.; Oh, K.; et al. Enrichment of heavy metals in fine particles of municipal solid waste incinerator (MSWI) fly ash and associated health risk. Waste Manag. 2015, 43, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Ye, N.; Chen, Y.; Yang, J.; Liang, S.; Hu, Y.; Xiao, B.; Huang, Q.; Shi, Y.; Hu, J.; Wu, X. Co-disposal of MSWI fly ash and Bayer red mud using an one-part geopolymeric system. J. Hazard. Mater. 2016, 318, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhou, W.; Zhao, H.; Tian, Z.; Li, F.; Wu, Y. Stabilization/solidification of lead in MSWI fly ash with mercapto functionalized dendrimer Chelator. Waste Manag. 2016, 50, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, A.; Wang, X.; Zhang, L. Stabilization/solidification of municipal solid waste incineration fly ash via co-sintering with waste-derived vitrified amorphous slag. Waste Manag. 2016, 56, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.; Jiang, X.; Chen, Z.; Lu, S.; Ni, M. Microwave-Assisted Hydrothermal Treatment with Soluble Phosphate Added for Heavy Metals Solidification in MSWI Fly Ash. Energy Fuels 2017, 31, 5222–5232. [Google Scholar] [CrossRef]
- Wang, H.; Fan, X.; Wang, Y.-N.; Li, W.; Sun, Y.; Zhan, M.; Wu, G. Comparative leaching of six toxic metals from raw and chemically stabilized MSWI fly ash using citric acid. J. Environ. Manag. 2018, 208, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhang, B.; Wang, Y.; Zhao, Y.; Li, F. Leaching potential of stabilized fly ash from the incineration of municipal solid waste with a new polymer. J. Environ. Manag. 2019, 232, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Wang, B.; Qi, Y.; Liu, Z. Characteristics and leaching behavior of MSWI fly ash in novel solidification/stabilization binders. Waste Manag. 2021, 131, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Shim, Y.-S.; Rhee, S.-W.; Lee, W.-K. Comparison of leaching characteristics of heavy metals from bottom and fly ashes in Korea and Japan. Waste Manag. 2005, 25, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Jiao, F.; Zhang, L.; Dong, Z.; Namioka, T.; Yamada, N.; Ninomiya, Y. Study on the species of heavy metals in MSW incineration fly ash and their leaching behavior. Fuel Process. Technol. 2016, 152, 108–115. [Google Scholar] [CrossRef]
- Oehmig, W.N.; Roessler, J.G.; Blaisi, N.I.; Townsend, T.G. Contemporary practices and findings essential to the development of effective MSWI ash reuse policy in the United States. Environ. Sci. Policy 2015, 51, 304–312. [Google Scholar] [CrossRef]
- Huber, F.; Blasenbauer, D.; Mallow, O.; Lederer, J.; Winter, F.; Fellner, J. Thermal co-treatment of combustible hazardous waste and waste incineration fly ash in a rotary kiln. Waste Manag. 2016, 58, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Funari, V.; Mäkinen, J.; Salminen, J.; Braga, R.; Dinelli, E.; Revitzer, H. Metal removal from Municipal Solid Waste Incineration fly ash: A comparison between chemical leaching and bioleaching. Waste Manag. 2017, 60, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Weibel, G.; Eggenberger, U.; Schlumberger, S.; Mäder, U.K. Chemical associations and mobilization of heavy metals in fly ash from municipal solid waste incineration. Waste Manag. 2017, 62, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Thuy Nguyen, T.T.; Vuong, T.X.; Ha Pham, T.T.; Hoang, Q.A.; Tu, B.M.; Nguyen, T.H.; Phuong Nguyen, T.T. Insight into heavy metal chemical fractions in ash collected from municipal and industrial waste incinerators in northern Vietnam. RSC Adv. 2024, 14, 16486–16500. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Zhou, C.; Chi, C.; Liu, Y.; Yang, G. Estimating Physical Composition of Municipal Solid Waste in China by Applying Artificial Neural Network Method. Environ. Sci. Technol. 2020, 54, 9609–9617. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Li, K.; Li, M.; Yang, K.; Liu, F.; Cheng, X. Geochemical background and baseline value of chemical elements in urban soil in China. Earth Sci. Front. 2014, 21, 265–306. [Google Scholar]
- Chang, W. Study on the Washing and Resource Utilization of Municipal Solid Waste Incineration Fly Ash. Master’s Thesis, Zhejiang University, Zhejiang, China, 2016. (In Chinese with English Abstract). [Google Scholar]
- GB 50295-2016; Ministry of Housing and Urban Rural Development of the People’s Republic of China and General Administration of Quality Supervision, Inspection and Testing of the People’s Republic of China. Code for Design of Cement Plant. China Planning Press: Beijing, China, 2016.
- Wang, L.; Jin, Y.; Nie, Y.; Li, R. Recycling of municipal solid waste incineration fly ash for ordinary Portland cement production: A real-scale test. Resour. Conserv. Recycl. 2010, 54, 1428–1435. [Google Scholar] [CrossRef]
- GB 18918-2002; State Environmental Protection Administration and General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant. China Environmental Science Press: Beijing, China, 2002.
- GB/T 30760-2014; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China and Standardization Administration of China. Technical Specification for Co-Processing of Solid Waste in Cement Kiln. China Standards Press: Beijing, China, 2014.
- Bogush, A.A.; Stegemann, J.A.; Zhou, Q.; Wang, Z.; Zhang, B.; Zhang, T.; Zhang, W.; Wei, J. Co-processing of raw and washed air pollution control residues from energy-from-waste facilities in the cement kiln. J. Clean. Prod. 2020, 254, 119924. [Google Scholar] [CrossRef]
Area | Heavy Metal | References | |||||
---|---|---|---|---|---|---|---|
Cu | Zn | Cd | Pb | Cr | Ni | ||
China | 331 ± 69 | 3720 ± 1126 | 138 ± 40 | 1013 ± 223 | 172 ± 137 | 38 ± 16 | This study |
China | 981 | 6470 | 116 | 1960 | 510 | 121 | [26] |
China | 1141 ± 323.8 | 14,092 ± 5120 | 170 ± 29.7 | 2701 ± 605 | 554 ± 77 | 154 ± 44.7 | [59] |
China | 3315 | 5692 | - | 933 | 423 | - | [60] |
China | 1385.0 | 7079.0 | 189.2 | 5253.0 | 364.0 | 228.2 | [53] |
Hangzhou, China | 500 | 19,880 | 350 | 5480 | 250 | 90 | [61] |
Taiwan, China | 1600 ± 20 | 1000 | 83 ± 1 | 2500 ± 10 | 230 ± 30 | - | [22] |
Taiwan, China | 1100 ± 100 | 8900 ± 300 | 300 | 1600 ± 100 | 500 | - | [40] |
Shanghai, China | 199 ± 1 | 1267 ± 61 | 29 ± 0 | 852 ± 5 | 72 ± 2 | - | [62] |
Wuhan, China | 756.15 | 2683.93 | - | 1377.12 | 93.76 | - | [63] |
Shanghai, China | 603.34 | 3487.23 | 62.33 | 2369.31 | 132.91 | 24.66 | [64] |
Liaoning, China | 924 ± 46 | 7332 ± 219 | - | 2703 ± 81 | 549 ± 12 | - | [65] |
Eastern China | 1587 ± 1138 | 5072 ± 1536 | 62 ± 38 | 1259 ± 522 | 339 ± 166 | 112 ± 63 | [66] |
Shandong, China | 377 ± 14 | 4344 ± 311 | 122 ± 17 | 1251 ± 80 | 119 ± 29 | 25 ± 10 | [67] |
Beijing, China | 394 | 3263 | 70 | 642 | 26 | 120 | [15] |
Shanghai, China | 603.4 ± 31.5 | 3497.7 ± 278.6 | 64.8 ± 5.1 | 2375.2 ± 186.6 | 132.9 ± 10.8 | 23.6 ± 1.4 | [68] |
Dalian, China | 740 | 6368 | 282 | 2249 | 55 | 12 | [69] |
Beijing, China | 702.2 | 4959 | 108.1 | 1111.2 | 49.7 | - | [58] |
Beijing, China | 412.3 | 4240.6 | 126.9 | 983.1 | 278.3 | - | [57] |
Japan | 460 ± 252 | 4300 ± 2621 | 68 ± 42 | 1480 ± 1370 | 120 ± 36 | 15 ± 5 | [70] |
Japan | - | - | 110 | - | 260 | - | [14] |
Japan | 423.6 ± 2.1 | 423.6 ± 2.1 | 57.3 ± 0.20 | 1623 ± 17 | 240.9 ± 2.3 | - | [71] |
Korea | 1087 ± 575 | 6700 ± 1308 | 303 ± 97 | 2967 ± 651 | 141 ± 80 | 37 ± 19 | [70] |
USA | 630 | 16,000 | 260 | 5600 | 140 | 30 | [72] |
Australia | 702 ± 105 | 9750 ± 1660 | 140 ± 35 | 1730 ± 340 | 250 ± 9 | 54 ± 4 | [73] |
Italy | 881 | 14,400 | - | 5076 | 1459 | 88 | [74] |
Switzerland | 3006 ± 775 | 46,710 ± 19,242 | 282 ± 65 | 10,234 ± 1591 | 604 ± 103 | - | [75] |
Finland | 1955 ± 1903 | 12,433 ± 6178 | 143 ± 107 | 2488 ± 1928 | 561 ± 111 | 133 ± 43 | [52] |
Northern Vietnam | 1508 | 2809 | 20.95 | 2169 | 665.8 | - | [76] |
Heavy Metal | TL-CRM | HM-FA (AM) [26] | MAR | HM-FA (GM) [26] | MAR | HM-FA (AM) | MAR | HM-FA (GM) | MAR |
---|---|---|---|---|---|---|---|---|---|
Cu | 65 | 981 | 6.60 | 664 | 9.79 | 590.5 | 11.0 | 493 | 13.18 |
Zn | 361 | 6470 | 5.58 | 4250 | 8.49 | 5631.0 | 6.41 | 5310 | 6.80 |
Cd | 1 | 116 | 0.86 | 67.3 | 1.49 | 201.2 | 0.50 | 186 | 0.54 |
Pb | 67 | 1960 | 3.42 | 1420 | 4.72 | 1381.5 | 4.85 | 1328 | 5.05 |
Cr | 98 | 510 | 19.22 | 253 | 38.74 | 258.8 | 37.88 | 224 | 43.8 |
Ni | 66 | 121 | 54.55 | 70.2 | 94.01 | 49.9 | 132.26 | 46 | 143.5 |
Cl | 0.03 | - | - | - | - | 0.45 | 6.76 | 0.30 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Wang, Q.; Tang, L.; Yang, L.; Sun, G. Cadmium as the Critical Limiting Factor in the Co-Disposal of Municipal Solid Waste Incineration Fly Ash in Cement Kilns: Implications for Three-Stage Water Washing Efficiency and Safe Dosage Control. Toxics 2025, 13, 593. https://doi.org/10.3390/toxics13070593
Li Z, Wang Q, Tang L, Yang L, Sun G. Cadmium as the Critical Limiting Factor in the Co-Disposal of Municipal Solid Waste Incineration Fly Ash in Cement Kilns: Implications for Three-Stage Water Washing Efficiency and Safe Dosage Control. Toxics. 2025; 13(7):593. https://doi.org/10.3390/toxics13070593
Chicago/Turabian StyleLi, Zhonggen, Qingfeng Wang, Li Tang, Liangliang Yang, and Guangyi Sun. 2025. "Cadmium as the Critical Limiting Factor in the Co-Disposal of Municipal Solid Waste Incineration Fly Ash in Cement Kilns: Implications for Three-Stage Water Washing Efficiency and Safe Dosage Control" Toxics 13, no. 7: 593. https://doi.org/10.3390/toxics13070593
APA StyleLi, Z., Wang, Q., Tang, L., Yang, L., & Sun, G. (2025). Cadmium as the Critical Limiting Factor in the Co-Disposal of Municipal Solid Waste Incineration Fly Ash in Cement Kilns: Implications for Three-Stage Water Washing Efficiency and Safe Dosage Control. Toxics, 13(7), 593. https://doi.org/10.3390/toxics13070593