Bioconversion of Agro-Industrial Byproducts by Applying the Solid-State Fermentation Bioprocess to Increase Their Antioxidant Potency
Abstract
1. Introduction
2. Method
3. Solid-State Fermentation Process
4. Impact of Solid-State Fermentation on Substrate’s Antioxidant Potency
5. Future Challenges for the Solid-State Fermentation Bioprocess
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eliopoulos, C.; Markou, G.; Langousi, I.; Arapoglou, D. Reintegration of Food Industry By-Products: Potential Applications. Foods 2022, 11, 3743. [Google Scholar] [CrossRef] [PubMed]
- Hadj Saadoun, J.; Bertani, G.; Levante, A.; Vezzosi, F.; Ricci, A.; Bernini, V.; Lazzi, C. Fermentation of Agri-Food Waste: A Promising Route for the Production of Aroma Compounds. Foods 2021, 10, 707. [Google Scholar] [CrossRef] [PubMed]
- Gómez-García, R.; Campos, D.A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. Valorisation of Food Agro-Industrial by-Products: From the Past to the Present and Perspectives. J. Environ. Manag. 2021, 299, 113571. [Google Scholar] [CrossRef] [PubMed]
- Enciso-Martínez, Y.; Zuñiga-Martínez, B.S.; Ayala-Zavala, J.F.; Domínguez-Avila, J.A.; González-Aguilar, G.A.; Viuda-Martos, M. Agro-Industrial By-Products of Plant Origin: Therapeutic Uses as Well as Antimicrobial and Antioxidant Activity. Biomolecules 2024, 14, 762. [Google Scholar] [CrossRef] [PubMed]
- Villamil-Galindo, E.; Van de Velde, F.; Piagentini, A.M. Strawberry Agro-Industrial by-Products as a Source of Bioactive Compounds: Effect of Cultivar on the Phenolic Profile and the Antioxidant Capacity. Bioresour. Bioprocess. 2021, 8, 61. [Google Scholar] [CrossRef] [PubMed]
- Almaraz-Sánchez, I.; Amaro-Reyes, A.; Acosta-Gallegos, J.A.; Mendoza-Sánchez, M. Processing Agroindustry By-Products for Obtaining Value-Added Products and Reducing Environmental Impact. J. Chem. 2022, 2022, 3656932. [Google Scholar] [CrossRef]
- Trigo, J.P.; Alexandre, E.M.; Saraiva, J.A.; Pintado, M.E. High Value-Added Compounds from Fruit and Vegetable by-Products–Characterization, Bioactivities, and Application in the Development of Novel Food Products. Crit. Rev. Food Sci. Nutr. 2022, 60, 1388–1416. [Google Scholar] [CrossRef] [PubMed]
- Winans, K.; Kendall, A.; Deng, H. The History and Current Applications of the Circular Economy Concept. Renew. Sustain. Energy Rev. 2017, 68, 825–833. [Google Scholar] [CrossRef]
- Cano y Postigo, L.O.; Jacobo-Velázquez, D.A.; Guajardo-Flores, D.; Garcia Amezquita, L.E.; García-Cayuela, T. Solid-State Fermentation for Enhancing the Nutraceutical Content of Agrifood by-Products: Recent Advances and Its Industrial Feasibility. Food Biosci. 2021, 41, 100926. [Google Scholar] [CrossRef]
- D’Amato, G.; Cecchi, L.; D’amato, M.; Liccardi, G. Urban Air Pollution and Climate Change as Environmental Risk Factors of Respiratory Allergy: An Update. J. Investig. Allergol. Clin. Immunol. 2010, 20, 95–102. [Google Scholar] [PubMed]
- Blahuskova, V.; Vlcek, J.; Jancar, D. Study Connective Capabilities of Solid Residues from the Waste Incineration. J. Environ. Manag. 2019, 231, 1048–1055. [Google Scholar] [CrossRef] [PubMed]
- Eliopoulos, C.; Markou, G.; Chorianopoulos, N.; Haroutounian, S.A.; Arapoglou, D. Preliminary Research Concerning the Enrichment of Industrial Hemp Extract Residues via Solid State Fermentation with Pleurotus Ostreatus. Appl. Sci. 2022, 12, 2376. [Google Scholar] [CrossRef]
- Ritota, M.; Manzi, P. Pleurotus Spp. Cultivation on Different Agri-Food by-Products: Example of Biotechnological Application. Sustainability 2019, 11, 5049. [Google Scholar] [CrossRef]
- Leite, P.; Sousa, D.; Fernandes, H.; Ferreira, M.; Costa, A.R.; Filipe, D.; Gonçalves, M.; Peres, H.; Belo, I.; Salgado, J.M. Recent Advances in Production of Lignocellulolytic Enzymes by Solid-State Fermentation of Agro-Industrial Wastes. Curr. Opin. Green Sustain. Chem. 2021, 27, 100407. [Google Scholar] [CrossRef]
- Ravindran, R.; Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. A Review on Bioconversion of Agro-Industrial Wastes to Industrially Important Enzymes. Bioengineering 2018, 5, 93. [Google Scholar] [CrossRef] [PubMed]
- Gómez-García, R.; Campos, D.A.; Oliveira, A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. A Chemical Valorisation of Melon Peels towards Functional Food Ingredients: Bioactives Profile and Antioxidant Properties. Food Chem. 2021, 335, 127579. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Gaur, V.K.; Sirohi, R.; Varjani, S.; Kim, S.H.; Wong, J.W. Sustainable Processing of Food Waste for Production of Bio-Based Products for Circular Bioeconomy. Bioresour. Technol. 2021, 325, 124684. [Google Scholar] [CrossRef] [PubMed]
- Sala, A.; Barrena, R.; Artola, A.; Sánchez, A. Current Developments in the Production of Fungal Biological Control Agents by Solid-State Fermentation Using Organic Solid Waste. Crit. Rev. Environ. Sci. Technol. 2019, 49, 655–694. [Google Scholar] [CrossRef]
- Chilakamarry, C.R.; Sakinah, A.M.; Zularisam, A.; Sirohi, R.; Khilji, I.A.; Ahmad, N.; Pandey, A. Advances in Solid-State Fermentation for Bioconversion of Agricultural Wastes to Value-Added Products: Opportunities and Challenges. Bioresour. Technol. 2022, 343, 126065. [Google Scholar] [CrossRef] [PubMed]
- Chen, H. Modern Solid State Fermentation; Springer: Dordrecht, The Netherlands, 2013; Volume 599. [Google Scholar]
- Abu Yazid, N.; Barrena, R.; Komilis, D.; Sánchez, A. Solid-State Fermentation as a Novel Paradigm for Organic Waste Valorization: A Review. Sustainability 2017, 9, 224. [Google Scholar] [CrossRef]
- El-Bakry, M.; Abraham, J.; Cerda, A.; Barrena, R.; Ponsá, S.; Gea, T.; Sanchez, A. From Wastes to High Value Added Products: Novel Aspects of SSF in the Production of Enzymes. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1999–2042. [Google Scholar] [CrossRef]
- Singhania, R.R.; Patel, A.K.; Soccol, C.R.; Pandey, A. Recent Advances in Solid-State Fermentation. Biochem. Eng. J. 2009, 44, 13–18. [Google Scholar] [CrossRef]
- Martins, S.; Mussatto, S.I.; Martínez-Avila, G.; Montañez-Saenz, J.; Aguilar, C.N.; Teixeira, J.A. Bioactive Phenolic Compounds: Production and Extraction by Solid-State Fermentation. A Review. Biotechnol. Adv. 2011, 29, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Soccol, C.R.; Rodriguez-Leon, J.A.; Nigam, P.S.-N. Solid State Fermentation in Biotechnology: Fundamentals and Applications; Asiatech Publishers Inc.: New Delhi, India, 2001. [Google Scholar]
- Chen, H.; He, Q. Value-added Bioconversion of Biomass by Solid-state Fermentation. J. Chem. Technol. Biotechnol. 2012, 87, 1619–1625. [Google Scholar] [CrossRef]
- De Castro, R.J.S.; Sato, H.H. Enzyme Production by Solid State Fermentation: General Aspects and an Analysis of the Physicochemical Characteristics of Substrates for Agro-Industrial Wastes Valorization. Waste Biomass Valorization 2015, 6, 1085–1093. [Google Scholar] [CrossRef]
- Orzua, M.C.; Mussatto, S.I.; Contreras-Esquivel, J.C.; Rodriguez, R.; de la Garza, H.; Teixeira, J.A.; Aguilar, C.N. Exploitation of Agro Industrial Wastes as Immobilization Carrier for Solid-State Fermentation. Ind. Crops Prod. 2009, 30, 24–27. [Google Scholar] [CrossRef]
- Abraham, J.; Gea, T.; Sánchez, A. Substitution of Chemical Dehairing by Proteases from Solid-State Fermentation of Hair Wastes. J. Clean. Prod. 2014, 74, 191–198. [Google Scholar] [CrossRef]
- Yazid, N.A.; Barrena, R.; Sánchez, A. Assessment of Protease Activity in Hydrolysed Extracts from SSF of Hair Waste by and Indigenous Consortium of Microorganisms. Waste Manag. 2016, 49, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Abraham, J.; Gea, T.; Sánchez, A. Potential of the Solid-State Fermentation of Soy Fibre Residues by Native Microbial Populations for Bench-Scale Alkaline Protease Production. Biochem. Eng. J. 2013, 74, 15–19. [Google Scholar] [CrossRef]
- Abdul Manan, M.; Webb, C. Modern Microbial Solid State Fermentation Technology for Future Biorefineries for the Production of Added-Value Products. Biofuel Res. J. 2017, 4, 730–740. [Google Scholar] [CrossRef]
- Šelo, G.; Planinić, M.; Tišma, M.; Tomas, S.; Koceva Komlenić, D.; Bucić-Kojić, A. A Comprehensive Review on Valorization of Agro-Food Industrial Residues by Solid-State Fermentation. Foods 2021, 10, 927. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.; Baenas, N.; Dominguez-Perles, R.; Barros, A.; Rosa, E.; Moreno, D.A.; Garcia-Viguera, C. Natural Bioactive Compounds from Winery By-Products as Health Promoters: A Review. Int. J. Mol. Sci. 2014, 15, 15638–15678. [Google Scholar] [CrossRef] [PubMed]
- Helkar, P.B.; Sahoo, A.K.; Patil, N. Review: Food Industry by-Products Used as a Functional Food Ingredients. Int. J. Waste Resour. 2016, 6, 1–6. [Google Scholar]
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards Integral Utilization of Grape Pomace from Winemaking Process: A Review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Antonic, B.; Jancikova, S.; Dordevic, D.; Tremlova, B. Apple Pomace as Food Fortification Ingredient: A Systematic Review and Meta-analysis. J. Food Sci. 2020, 85, 2977–2985. [Google Scholar] [CrossRef] [PubMed]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Valéro, J.R. Solid-State Fermentation of Apple Pomace Using Phanerocheate Chrysosporium—Liberation and Extraction of Phenolic Antioxidants. Food Chem. 2011, 126, 1071–1080. [Google Scholar] [CrossRef]
- Martínez-Ávila, G.C.; Aguilera-Carbó, A.F.; Rodríguez-Herrera, R.; Aguilar, C.N. Fungal Enhancement of the Antioxidant Properties of Grape Waste. Ann. Microbiol. 2012, 62, 923–930. [Google Scholar] [CrossRef]
- Aguilar, C.N.; Aguilera-Carbo, A.; Robledo, A.; Ventura, J.; Belmares, R.; Martinez, D.; Rodríguez-Herrera, R.; Contreras, J. Production of Antioxidant Nutraceuticals by Solid-State Cultures of Pomegranate (Punica granatum) Peel and Creosote Bush (Larrea tridentata) Leaves. Food Technol. Biotechnol. 2008, 46, 218. [Google Scholar]
- Dulf, F.V.; Vodnar, D.C.; Dulf, E.-H.; Diaconeasa, Z.; Socaciu, C. Liberation and Recovery of Phenolic Antioxidants and Lipids in Chokeberry (Aronia melanocarpa) Pomace by Solid-State Bioprocessing Using Aspergillus Niger and Rhizopus Oligosporus Strains. LWT 2018, 87, 241–249. [Google Scholar] [CrossRef]
- Vattem, D.A.; Shetty, K. Ellagic Acid Production and Phenolic Antioxidant Activity in Cranberry Pomace (Vaccinium macrocarpon) Mediated by Lentinus Edodes Using a Solid-State System. Process Biochem. 2003, 39, 367–379. [Google Scholar] [CrossRef]
- Sharma, A.; Vivekanand, V.; Singh, R.P. Solid-State Fermentation for Gluconic Acid Production from Sugarcane Molasses by Aspergillus Niger ARNU-4 Employing Tea Waste as the Novel Solid Support. Bioresour. Technol. 2008, 99, 3444–3450. [Google Scholar] [CrossRef] [PubMed]
- Nimnoi, P.; Lumyong, S. Improving Solid-State Fermentation of Monascus Purpureus on Agricultural Products for Pigment Production. Food Bioprocess Technol. 2011, 4, 1384–1390. [Google Scholar] [CrossRef]
- Rashad, M.M.; Mahmoud, A.E.; Ali, M.M.; Nooman, M.U.; Al-Kashef, A.S. Antioxidant and Anticancer Agents Produced from Pineapple Waste by Solid State Fermentation. Int. J. Toxicol. Pharmacol. Res. 2015, 7, 287–296. [Google Scholar]
- Correia, R.T.; McCue, P.; Magalhães, M.M.; Macêdo, G.R.; Shetty, K. Production of Phenolic Antioxidants by the Solid-State Bioconversion of Pineapple Waste Mixed with Soy Flour Using Rhizopus Oligosporus. Process Biochem. 2004, 39, 2167–2172. [Google Scholar] [CrossRef]
- Bind, A.; Singh, S.K.; Prakash, V.; Kumar, M. Evaluation of Antioxidants through Solid State Fermentation from Pomegranate Peels Using Aspergillus Niger and It’s Antibacterial Properties. Int. J. Pharm. Biol. Sci. 2014, 4, 104–112. [Google Scholar]
- Dulf, F.V.; Vodnar, D.C.; Toşa, M.I.; Dulf, E.-H. Simultaneous Enrichment of Grape Pomace with γ-Linolenic Acid and Carotenoids by Solid-State Fermentation with Zygomycetes Fungi and Antioxidant Potential of the Bioprocessed Substrates. Food Chem. 2020, 310, 125927. [Google Scholar] [CrossRef] [PubMed]
- Zambrano, C.; Kotogán, A.; Bencsik, O.; Papp, T.; Vágvölgyi, C.; Mondal, K.C.; Krisch, J.; Takó, M. Mobilization of Phenolic Antioxidants from Grape, Apple and Pitahaya Residues via Solid State Fungal Fermentation and Carbohydrase Treatment. LWT 2018, 89, 457–465. [Google Scholar] [CrossRef]
- Erskine, E.; Ozkan, G.; Lu, B.; Capanoglu, E. Effects of Fermentation Process on the Antioxidant Capacity of Fruit Byproducts. ACS Omega 2023, 8, 4543–4553. [Google Scholar] [CrossRef] [PubMed]
- Torres-León, C.; Ramírez-Guzmán, N.; Ascacio-Valdes, J.; Serna-Cock, L.; dos Santos Correia, M.T.; Contreras-Esquivel, J.C.; Aguilar, C.N. Solid-State Fermentation with Aspergillus Niger to Enhance the Phenolic Contents and Antioxidative Activity of Mexican Mango Seed: A Promising Source of Natural Antioxidants. LWT 2019, 112, 108236. [Google Scholar] [CrossRef]
- Buenrostro-Figueroa, J.; Velázquez, M.; Flores-Ortega, O.; Ascacio-Valdés, J.; Huerta-Ochoa, S.; Aguilar, C.; Prado-Barragán, L. Solid State Fermentation of Fig (Ficus carica L.) by-Products Using Fungi to Obtain Phenolic Compounds with Antioxidant Activity and Qualitative Evaluation of Phenolics Obtained. Process Biochem. 2017, 62, 16–23. [Google Scholar] [CrossRef]
- Larios-Cruz, R.; Buenrostro-Figueroa, J.; Prado-Barragán, A.; Rodríguez-Jasso, R.M.; Rodríguez-Herrera, R.; Montañez, J.C.; Aguilar, C.N. Valorization of Grapefruit By-Products as Solid Support for Solid-State Fermentation to Produce Antioxidant Bioactive Extracts. Waste Biomass Valorization 2019, 10, 763–769. [Google Scholar] [CrossRef]
- Dulf, F.V.; Vodnar, D.C.; Socaciu, C. Effects of Solid-State Fermentation with Two Filamentous Fungi on the Total Phenolic Contents, Flavonoids, Antioxidant Activities and Lipid Fractions of Plum Fruit (Prunus domestica L.) by-Products. Food Chem. 2016, 209, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Dulf, F.V.; Vodnar, D.C.; Dulf, E.-H.; Pintea, A. Phenolic Compounds, Flavonoids, Lipids and Antioxidant Potential of Apricot (Prunus armeniaca L.) Pomace Fermented by Two Filamentous Fungal Strains in Solid State System. Chem. Cent. J. 2017, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Vattem, D.A.; Shetty, K. Solid-State Production of Phenolic Antioxidants from Cranberry Pomace by Rhizopus Oligosporus. Food Biotechnol. 2002, 16, 189–210. [Google Scholar] [CrossRef]
- Lateef, A.; Oloke, J.; Gueguim Kana, E.; Oyeniyi, S.; Onifade, O.; Oyeleye, A.; Oladosu, O.; Oyelami, A. Improving the Quality of Agro-Wastes by Solid-State Fermentation: Enhanced Antioxidant Activities and Nutritional Qualities. World J. Microbiol. Biotechnol. 2008, 24, 2369–2374. [Google Scholar] [CrossRef]
- Lessa, O.A.; Reis, N.D.S.; Leite, S.G.F.; Gutarra, M.L.E.; Souza, A.O.; Gualberto, S.A.; de Oliveira, J.R.; Aguiar-Oliveira, E.; Franco, M. Effect of the Solid State Fermentation of Cocoa Shell on the Secondary Metabolites, Antioxidant Activity, and Fatty Acids. Food Sci. Biotechnol. 2018, 27, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Madeira, J.V.; Macedo, J.A.; Macedo, G.A. A New Process for Simultaneous Production of Tannase and Phytase by Paecilomyces Variotii in Solid-State Fermentation of Orange Pomace. Bioprocess Biosyst. Eng. 2012, 35, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Ghoshal, G.; Jain, A. Bio-Utilization of Fruits and Vegetables Waste to Produce β-Carotene in Solid-State Fermentation: Characterization and Antioxidant Activity. Process Biochem. 2019, 76, 155–164. [Google Scholar] [CrossRef]
- Nemes, S.A.; Fărcas, A.C.; Ranga, F.; Teleky, B.-E.; Călinoiu, L.F.; Dulf, F.V.; Vodnar, D.C. Enhancing Phenolic and Lipid Compound Production in Oat Bran via Acid Pretreatment and Solid-State Fermentation with Aspergillus Niger. New Biotechnol. 2024, 83, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Bautista-Hernández, I.; Gómez-García, R.; Aguilar, C.N.; Martínez-Ávila, G.C.; Torres-León, C.; Chávez-González, M.L. Solid-State Fermentation for Phenolic Compounds Recovery from Mexican Oregano (Lippia graveolens Kunth) Residual Leaves Applying a Lactic Acid Bacteria (Leuconostoc mesenteroides). Agriculture 2024, 14, 1342. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, M.; Cheng, Z.; Meng, J.; Li, Y. Optimization of Polyphenols Release from Highland Barley Bran by Solid-State Fermentation and Antioxidant Activity Characterization. Fermentation 2024, 10, 438. [Google Scholar] [CrossRef]
- Ordoñez-Cano, A.J.; Ramírez-Esparza, U.; Méndez-González, F.; Alvarado-González, M.; Baeza-Jiménez, R.; Sepúlveda-Torre, L.; Prado-Barragán, L.A.; Buenrostro-Figueroa, J.J. Recovery of Phenolic Compounds with Antioxidant Capacity Through Solid-State Fermentation of Pistachio Green Hull. Microorganisms 2024, 13, 35. [Google Scholar] [CrossRef] [PubMed]
- Barros Tiburcio, P.; de Carvalho Neto, D.P.; Soccol, C.R.; Medeiros, A.B.P. Cocoa Pod Husk Valorization Through Rhizopus Stolonifer Solid-State Fermentation: Enhancement in Antioxidant Activity. Microorganisms 2025, 13, 716. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Li, X.; Liu, N.; Wang, Y.; Li, Y.; Jia, Y.; An, X.; Qi, J. Improving the Quality of Glycyrrhiza Stems and Leaves through Solid-State Fermentation: Flavonoid Content, Antioxidant Activity, Metabolic Profile, and Release Mechanism. Chem. Biol. Technol. Agric. 2024, 11, 105. [Google Scholar] [CrossRef]
- El Sheikha, A.F.; Ray, R.C. Bioprocessing of Horticultural Wastes by Solid-State Fermentation into Value-Added/Innovative Bioproducts: A Review. Food Rev. Int. 2023, 39, 3009–3065. [Google Scholar] [CrossRef]
- Lizardi-Jiménez, M.A.; Hernández-Martínez, R. Solid State Fermentation (SSF): Diversity of Applications to Valorize Waste and Biomass. 3 Biotech 2017, 7, 44. [Google Scholar] [CrossRef] [PubMed]
- Raghavarao, K.S.M.S.; Ranganathan, T.V.; Karanth, N.G. Some Engineering Aspects of Solid-State Fermentation. Biochem. Eng. J. 2003, 13, 127–135. [Google Scholar] [CrossRef]
- Narra, M.; Balasubramanian, V. Utilization of Solid and Liquid Waste Generated during Ethanol Fermentation Process for Production of Gaseous Fuel through Anaerobic Digestion—A Zero Waste Approach. Bioresour. Technol. 2015, 180, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, G.S.; Kaur, S.; Sarma, S.J.; Brar, S.K. Integrated Process for Fungal Citric Acid Fermentation Using Apple Processing Wastes and Sequential Extraction of Chitosan from Waste Stream. Ind. Crops Prod. 2013, 50, 346–351. [Google Scholar] [CrossRef]
- Sánchez, A.; Oiza, N.; Artola, A.; Font, X.; Barrena, R.; Moral-Vico, J.; Gea, T. Solid-State Fermentation: A Review of Its Opportunities and Challenges in the Framework of Circular Bioeconomy. Afinidad 2024, 81, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Casciatori, F.P.; Thoméo, J.C. Heat Transfer in Packed-Beds of Agricultural Waste with Low Rates of Air Flow Applicable to Solid-State Fermentation. Chem. Eng. Sci. 2018, 188, 97–111. [Google Scholar] [CrossRef]
- Montoya, S.; Patiño, A.; Sánchez, Ó.J. Production of Lignocellulolytic Enzymes and Biomass of Trametes Versicolor from Agro-Industrial Residues in a Novel Fixed-Bed Bioreactor with Natural Convection and Forced Aeration at Pilot Scale. Processes 2021, 9, 397. [Google Scholar] [CrossRef]
- Yao, W.; Nokes, S.E. The Use of Co-culturing in Solid Substrate Cultivation and Possible Solutions to Scientific Challenges. Biofuels Bioprod. Biorefining 2013, 7, 361–372. [Google Scholar] [CrossRef]
- Mathew, A.K.; Crook, M.; Chaney, K.; Humphries, A.C. Continuous Bioethanol Production from Oilseed Rape Straw Hydrosylate Using Immobilised Saccharomyces Cerevisiae Cells. Bioresour. Technol. 2014, 154, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.A.; Treichel, H.; Kumar, V.; Pandey, A. Advances in Solid-State Fermentation. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–17. [Google Scholar]
- Noratiqah, K.; Madihah, M.; Aisyah, B.S.; Eva, M.S.; Suraini, A.; Kamarulzaman, K. Statistical Optimization of Enzymatic Degradation Process for Oil Palm Empty Fruit Bunch (OPEFB) in Rotary Drum Bioreactor Using Crude Cellulase Produced from Aspergillus Niger EFB1. Biochem. Eng. J. 2013, 75, 8–20. [Google Scholar] [CrossRef]
- Rodríguez-Zúñiga, U.F.; Couri, S.; Neto, V.B.; Crestana, S.; Farinas, C.S. Integrated Strategies to Enhance Cellulolytic Enzyme Production Using an Instrumented Bioreactor for Solid-State Fermentation of Sugarcane Bagasse. BioEnergy Res. 2013, 6, 142–152. [Google Scholar] [CrossRef]
- Farinas, C.S.; Vitcosque, G.L.; Fonseca, R.F.; Neto, V.B.; Couri, S. Modeling the Effects of Solid State Fermentation Operating Conditions on Endoglucanase Production Using an Instrumented Bioreactor. Ind. Crops Prod. 2011, 34, 1186–1192. [Google Scholar] [CrossRef]
- Rodríguez, A.; Gea, T.; Font, X. Sophorolipids Production from Oil Cake by Solid-State Fermentation. Inventory for Economic and Environmental Assessment. Front. Chem. Eng. 2021, 3, 632752. [Google Scholar] [CrossRef]
- Thomas, L.; Larroche, C.; Pandey, A. Current Developments in Solid-State Fermentation. Biochem. Eng. J. 2013, 81, 146–161. [Google Scholar] [CrossRef]
By-Product | Microorganism | Antioxidant Parameters | References |
---|---|---|---|
Apple pomace | P. chrysosporium | Increased antioxidant activity, reduced IC50 | [38] |
Grape byproducts | Aspergillus and Penicillium strains | Increased gallic acid yield | [39] |
Pomegranate peel and creosote bush leaves | A. niger GH1 | Enhanced production of ellagic and gallic acids | [40] |
Chokeberry pomace | A. niger and R. oligosporus. | Elevated total phenolic and total flavonoid content | [41] |
Chokeberry pomace | L. edodes | Enhanced ellagic acid content | [42] |
Tea waste | A. niger ARNU-4 | Gluconic acid production | [43] |
Peanut meal, coconut residue, and soybean meal | M. purpureus | Red pigment production | [44] |
Pineapple byproducts | K. marxianus NRRL Y-8281 | Increased phenolic content and potential anticancer activity | [45,50] |
Pineapple byproducts enriched with soy flour | Enhanced antioxidant activity and phenolic content; DPPH’s free radical scavenging capacity and β-carotene content recorded a significant increase | [46] | |
Pomegranate peels and soy flour | A. niger | Increased value for total phenolic content and improved DPPH free radical scavenging activity | [47] |
Grape pomace | A. elegans and U. isabelline | Increased total phenolic content | [48] |
Black grape, apple, and yellow pitahaya byproducts | R. miehei NRRL 5282 | Higher antioxidant activity | [49] |
Grape byproducts | A. niger GH1, PSH, Aa-20, and ESH | Improved DPPH scavenging activity and total phenolic content | [39] |
Fig byproducts | R. oryzae (PP4-UAMI), Trichoderma sp., A. niger HT4, and A. niger GH1 | Increased total phenolic content | [52] |
Grapefruit byproducts | A. niger GH1 | Increased DPPH and FRAP activity | [53] |
Plum byproducts | A. niger and R. oligosporus. | Elevated total flavonoids and phenolic content and enhanced DPPH’s capacity | [54] |
Apricot pomace | R. oligosporus and A. niger | Higher total phenolic and total flavonoid content and improved DPPH’s activity | [55] |
Cranberry pomace | R. oligosporus | Enhanced β-glucosidase activity and DPPH assay total phenolic and antioxidant activity for both conditions | [56] |
Cocoa pod husk, cassava peel, and palm kernel cake | R. stolonifer LAU 07 | Increased DPPH free radical scavenging activity | [57] |
Cocoa shells | R. stolonifer | Elevated total phenolic compounds, reducing activity and free radical scavenging activity | [58] |
Orange pomace | P. variotii | Enhanced antioxidant profile | [59] |
Orange, carrot, and papaya peels | B. trispora (+) MTCC 884 | Increased β-carotene’s production | [60] |
Oat bran | A. niger | Higher total phenolic content and vanillic acid, improved DPPH’s free radical scavenging capacity | [61] |
Oregano byproducts | L. mesenteroides | Increased total phenolics, flavonoids, and antioxidant activity | [62] |
Highland barley bran | B. subtilis | Elevated polyphenol concentration, DPPH radical scavenging activity, Fe ion reducing capacity, and hydroxyl radical scavenging activity | [63] |
Pistachio green hull | A. niger GH1 | Enhanced phenolics, ABTS, DPPH, and FRAP | [64] |
Cocoa pod husk | R. stolonifer | Higher ORAC and DPPH assays | [65] |
Glycyrrhiza stems and leaves | B., L. plantarum, and S. cerevisiae mixed at a ratio of 1:1:1. | Increased scavenging activities of DPPH radical, hydroxyl radical, and reducing power | [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eliopoulos, C.; Arapoglou, D.; Haroutounian, S.A. Bioconversion of Agro-Industrial Byproducts by Applying the Solid-State Fermentation Bioprocess to Increase Their Antioxidant Potency. Antioxidants 2025, 14, 910. https://doi.org/10.3390/antiox14080910
Eliopoulos C, Arapoglou D, Haroutounian SA. Bioconversion of Agro-Industrial Byproducts by Applying the Solid-State Fermentation Bioprocess to Increase Their Antioxidant Potency. Antioxidants. 2025; 14(8):910. https://doi.org/10.3390/antiox14080910
Chicago/Turabian StyleEliopoulos, Christos, Dimitrios Arapoglou, and Serkos A. Haroutounian. 2025. "Bioconversion of Agro-Industrial Byproducts by Applying the Solid-State Fermentation Bioprocess to Increase Their Antioxidant Potency" Antioxidants 14, no. 8: 910. https://doi.org/10.3390/antiox14080910
APA StyleEliopoulos, C., Arapoglou, D., & Haroutounian, S. A. (2025). Bioconversion of Agro-Industrial Byproducts by Applying the Solid-State Fermentation Bioprocess to Increase Their Antioxidant Potency. Antioxidants, 14(8), 910. https://doi.org/10.3390/antiox14080910