Economic, Environmental, and Sociopolitical Aspects of Waste Incineration: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Protocol
2.2. Abstract Screen: Inclusion Criteria
2.3. Analysis of Full Manuscripts
2.4. Ethics Approval
3. Results
4. Discussion
4.1. Economic Feasibility and Circular Economy
4.1.1. High Initial Investment and Operating and Maintenance Costs with Low Thermal Efficiency
4.1.2. Efficiency Compared to Other Renewables
4.1.3. Waste Composition, Circular Economy, and Recycling
4.2. Environmental Outcomes
4.2.1. Reducing Relative Greenhouse Gas Emissions
4.2.2. Other Positive Environmental Impacts
4.2.3. Direct Environmental Impacts
4.2.4. Other Environmental Outcomes
4.3. Policy and Regulatory Trends
International Trends Regarding WtE-I
4.4. Public Perception and Environmental Justice
5. Limitations
6. Conclusions
- 1.
- WtE-I should not be relied upon as a significant and enduring component of the energy supply and waste management in the Australian context. Instead, Australian governments need to pursue waste minimisation and diversion policies aggressively;
- 2.
- Australian state/territory and local governments should more proactively involve communities in waste management planning across the spectrum from reducing to disposal;
- 3.
- More progressive waste management strategies should be adopted to facilitate the move towards renewable energy and waste minimisation, which have proven to be effective in other settings [52];
- 4.
- In particular, governments should much more proactively engage with communities where waste management facilities are to be sited and be much more responsive to the concerns these communities may have;
- 5.
- Where facilities are built, monitoring of health, social, and environmental impacts is essential.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Makarichi, L.; Jutidamrongphan, W.; Techato, K.-A. The evolution of waste-to-energy incineration: A review. Renew. Sustain. Energy Rev. 2018, 91, 812–821. [Google Scholar] [CrossRef]
- Beyene, H.D.; Werkneh, A.A.; Ambaye, T.G. Current updates on waste to energy (WtE) technologies: A review. Renew. Energy Focus 2018, 24, 1–11. [Google Scholar] [CrossRef]
- Arena, U. Process and technological aspects of municipal solid waste gasification. A review. Waste Manag. 2012, 32, 625–639. [Google Scholar] [CrossRef]
- Chen, D.; Yin, L.; Wang, H.; He, P. Pyrolysis technologies for municipal solid waste: A review. Waste Manag. 2014, 34, 2466–2486. [Google Scholar] [CrossRef]
- Zhao, N.; Li, B.; Chen, D.; Ahmad, R.; Zhu, Y.; Li, G.; Yu, Z.; Li, J.; Wang, E.; Yun, S.; et al. Direct combustion of waste oil in domestic stove by an internal heat re-circulation atomization technology: Emission and performance analysis. Waste Manag. 2020, 104, 20–32. [Google Scholar] [CrossRef]
- Liu, C.; Nishiyama, T.; Gamaralalage, P.J.D.; Onogawa, K.; Hotta, Y.; Honda, S. Waste-to-Energy Incineration. CCET Guideline Series on Intermediate Municipal Solid Waste Treatment Technologies. IGES and UNEP IETC. 2020 June 11. Available online: https://wedocs.unep.org/handle/20.500.11822/32795;jsessionid=1A5E8B26D4B5791425EDBC420D1020E7 (accessed on 4 June 2025).
- Tan, S.; Hashim, H.; Lee, C.; Taib, M.R.; Yan, J. Economical and environmental impact of waste-to-energy (WTE) alternatives for waste incineration, landfill and anaerobic digestion. Energy Procedia 2014, 61, 704–708. [Google Scholar] [CrossRef]
- Brunner, P.H.; Rechberger, H. Waste to energy—Key element for sustainable waste management. Waste Manag. 2015, 37, 3–12. [Google Scholar] [CrossRef]
- Šyc, M.; Simon, F.G.; Hykš, J.; Braga, R.; Biganzoli, L.; Costa, G.; Funari, V.; Grosso, M. Metal recovery from incineration bottom ash: State-of-the-art and recent developments. J. Hazard. Mater. 2020, 393, 122433. [Google Scholar] [CrossRef]
- dos Santos, I.F.S.; Mensah, J.H.R.; Gonçalves, A.T.T.; Barros, R.M. Incineration of municipal solid waste in Brazil: An analysis of the economically viable energy potential. Renew. Energy 2020, 149, 1386–1394. [Google Scholar]
- Alayi, R.; Rouhi, H. Techno-Economic Analysis of Electrical Energy Generation from Urban Waste in Hamadan, Iran. Int. J. Des. Nat. Ecodynamics 2020, 15, 337–341. [Google Scholar] [CrossRef]
- Kalogirou, E.N. Waste-to-Energy Technologies and Global Applications [Internet], 1st ed.; CRC Press: Boca Raton, FL, USA, 2018; Available online: https://www.taylorfrancis.com/books/9781351977920 (accessed on 20 August 2023).
- Klemeš, J.J.; Fan, Y.V.; Tan, R.R.; Jiang, P. Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19. Renew. Sustain. Energy Rev. 2020, 127, 109883. [Google Scholar] [CrossRef]
- Mata-Lima, H.; Silva, D.W.; Nardi, D.C.; Klering, S.A.; de Oliveira, T.C.F.; Morgado-Dias, F. Waste-to-Energy: An Opportunity to Increase Renewable Energy Share and Reduce Ecological Footprint in Small Island Developing States (SIDS). Energies 2021, 14, 7586. [Google Scholar] [CrossRef]
- Jaiswal, K.K.; Chowdhury, C.R.; Yadav, D.; Verma, R.; Dutta, S.; Jaiswal, K.S.; Sangmesh, B.; Karuppasamy, K.S.K. Renewable and sustainable clean energy development and impact on social, economic, and environmental health. Energy Nexus 2022, 7, 100118. [Google Scholar] [CrossRef]
- Pires, A.; Martinho, G. Waste hierarchy index for circular economy in waste management. Waste Manag. 2019, 95, 298–305. [Google Scholar] [CrossRef]
- Usmani, Z.; Kumar, V.; Varjani, S.; Gupta, P.; Rani, R.; Chandra, A. Chapter 11—Municipal solid waste to clean energy system: A contribution toward sustainable development. In Current Developments in Biotechnology and Bioengineering [Internet]; Varjani, S., Pandey, A., Gnansounou, E., Khanal, S.K., Raveendran, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 217–231. Available online: https://www.sciencedirect.com/science/article/pii/B9780444643216000112 (accessed on 14 August 2023).
- Clarke, L.; Wei, Y.M.; De La Vega Navarro, A.; Garg, A.; Hahmann, A.N.; Khennas, S.; Azevedo, I.M.; Löschel, A.; Singh, A.K. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Internet]; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Tait, P.W.; Brew, J.; Che, A.; Costanzo, A.; Danyluk, A.; Davis, M.; Khalaf, A.; McMahon, K.; Watson, A.; Rowcliff, K.; et al. The health impacts of waste incineration: A systematic review. Aust. N. Zeal. J. Public Health 2020, 44, 40–48. [Google Scholar] [CrossRef]
- Ballinger, A.; Shanks, W.; Miles, T.; Degagny, S. Greenhouse Gas and Air Quality Impacts of Incineration and Landfill; Eunomia Research & Consulting Ltd.: Bristol, UK, 2022. [Google Scholar]
- Hirvonen, J.; Kosonen, R. Waste Incineration Heat and Seasonal Thermal Energy Storage for Promoting Economically Optimal Net-Zero Energy Districts in Finland. Buildings 2020, 10, 205. [Google Scholar] [CrossRef]
- Cudjoe, D.; Acquah, P.M. Environmental impact analysis of municipal solid waste incineration in African countries. Chemosphere 2021, 265, 129186. [Google Scholar] [CrossRef]
- Istrate, I.R.; Iribarren, D.; Gálvez-Martos, J.L.; Dufour, J. Review of life-cycle environmental consequences of waste-to-energy solutions on the municipal solid waste management system. Resour. Conserv. Recycl. 2020, 157, 104778. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, X.; Gao, M.; Guan, Y.; Wu, C.; Wang, Q.; Rao, Y.; Liu, S. Heavy metal leaching behaviour and long-term environmental risk assessment of cement-solidified municipal solid waste incineration fly ash in sanitary landfill. Chemosphere 2022, 300, 134571. [Google Scholar] [CrossRef]
- Di Maria, F.; Mastrantonio, M.; Uccelli, R. The life cycle approach for assessing the impact of municipal solid waste incineration on the environment and on human health. Sci. Total Environ. 2021, 776, 145785. [Google Scholar] [CrossRef]
- Khan, M.S.; Mubeen, I.; Caimeng, Y.; Zhu, G.; Khalid, A.; Yan, M. Waste to energy incineration technology: Recent development under climate change scenarios. Waste Manag. Res. 2022, 40, 1708–1729. [Google Scholar] [CrossRef]
- Jeswani, H.K.; Smith, R.W.; Azapagic, A. Energy from waste: Carbon footprint of incineration and landfill biogas in the UK. Int. J. Life Cycle Assess. 2013, 18, 218–229. [Google Scholar] [CrossRef]
- Thompson, J.; Anthony, H. The health effects of waste incinerators. J. Nutr. Environ. Med. 2005, 15, 115–156. [Google Scholar] [CrossRef]
- Clean Energy Wire [Internet]. Waste to Energy—Controversial Power Generation by Incineration. 2021. Available online: https://www.cleanenergywire.org/factsheets/waste-energy-controversial-power-generation-incineration (accessed on 15 August 2023).
- Bremmer, J.; Immig, J. Zero Waste OZ|Towards a Zero Waste Future [Internet]. 2023. Available online: https://zerowasteaustralia.org/ (accessed on 15 August 2023).
- Department of Climate Change, Energy, the Environment and Water. National Waste Policy Progress Summary Report; Department of Climate Change, Energy, the Environment and Water: Canberra, Australia, 2021.
- Department of Environment, Land, Water and Planning. Victorian Waste to Energy Framework; Department of Environment, Land, Water and Planning: Victoria, Australia, 2021.
- Department of Climate Change, Energy, the Environment and Water. Australian Energy Update; Department of Climate Change, Energy, the Environment and Water: Canberra, Australia, 2022.
- Munn, A. JBI Manual for Evidence Synthesis. 2020. Available online: https://synthesismanual.jbi.global (accessed on 16 August 2023).
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Alamu, S.; Wemida, A.; Tsegaye, T.; Oguntimein, G. Sustainability Assessment of Municipal Solid Waste in Baltimore USA. Sustainability 2021, 13, 1915. [Google Scholar] [CrossRef]
- Galván, S.L.; Bielsa, R.O. Use of life cycle assessment for estimating impacts of waste-to-energy technologies in solid waste management systems: The case of Buenos Aires, Argentina. Environ. Sci. Pollut. Res. 2024, 31, 9992–10012. [Google Scholar] [CrossRef]
- Rubio-Jimenez, C.A.; Ramirez-Olmos, C.; Lopez-Perez, A.C.; Perez-Pantoja, A.L.; Zanor, G.A.; Segoviano-Garfias, J.d.J.N. The controlled incineration process as an alternative to handle MSW and generate electric energy in the state of Guanajuato, Mexico. Energy Clim. Change 2023, 4, 100102. [Google Scholar] [CrossRef]
- Zafar, A.M.; Shahid, S.; Nawaz, M.I.; Mustafa, J.; Iftekhar, S.; Ahmed, I.; Tabraiz, S.; Bontempi, E.; Assad, M.; Ghafoor, F.; et al. Waste to energy feasibility, challenges, and perspective in municipal solid waste incineration and implementation: A case study for Pakistan. Chem. Eng. J. Adv. 2024, 18, 100595. [Google Scholar] [CrossRef]
- Escamilla-García, P.E.; Camarillo-López, R.H.; Carrasco-Hernández, R.; Fernández-Rodríguez, E.; Legal-Hernández, J.M. Technical and economic analysis of energy generation from waste incineration in Mexico. Energy Strategy Rev. 2020, 31, 100542. [Google Scholar] [CrossRef]
- Mladenov, M. Potential of municipal solid waste generated in Bulgaria for energy production. Bulg. Chem. Commun. 2021, 53, 2021. [Google Scholar]
- International Renewable Energy Agency IRENA. Renewable Power Generation Costs in 2022; International Renewable Energy Agency (IRENA): Masdar City, United Arab Emirates, 2022. [Google Scholar]
- Aliabadi, Y.; Hajinezhad, A.; Fattahi, R.; Moosavian, S.F. Analysis of energy generation from MSW with auxiliary feed in the north of Iran. Results Eng. 2023, 18, 101185. [Google Scholar] [CrossRef]
- Tayeh, R.A.; Alsayed, M.F.; Saleh, Y.A. The potential of sustainable municipal solid waste-to-energy management in the Palestinian Territories. J. Clean. Prod. 2021, 279, 123753. [Google Scholar] [CrossRef]
- Zeng, J.; Mustafa, A.B.; Liu, M.; Huang, G.; Shang, N.; Liu, X.; Wei, K.; Wang, P.; Dong, H. Environmental, Energy, and Techno-Economic Assessment of Waste-to-Energy Incineration. Sustainability 2024, 16, 4140. [Google Scholar] [CrossRef]
- Aldersey-Williams, J.; Rubert, T. Levelised cost of energy—A theoretical justification and critical assessment. Energy Policy 2019, 124, 169–179. [Google Scholar] [CrossRef]
- Chen, Y.C. Evaluating greenhouse gas emissions and energy recovery from municipal and industrial solid waste using waste-to-energy technology. J. Clean. Prod. 2018, 192, 262–269. [Google Scholar] [CrossRef]
- Department of Agriculture, Water and the Environment. National Plastics Plan Summary—DCCEEW [Internet]. 2021. Available online: https://www.dcceew.gov.au/environment/protection/waste/publications/national-plastics-plan-summary (accessed on 11 June 2024).
- Allen, D.; Spoelman, N.; Linsley, C.; Johl, A. The Fraud of Plastic Recycling: How Big Oil and the Plastics Industry Deceived the Public for Decades and Caused the Plastic Waste Crisis. Available online: https://policycommons.net/artifacts/11334176/fraud-of-plastic-recycling-2024/12223103/ (accessed on 11 June 2024).
- Pagliaro, M. Waste-to-wealth: The economic reasons for replacing waste-to-energy with the circular economy of municipal solid waste. Vis. Sustain. 2020, 13, 59–65. [Google Scholar]
- Gutberlet, J.; Bramryd, T.; Johansson, M. Expansion of the Waste-Based Commodity Frontier: Insights from Sweden and Brazil. Sustainability 2020, 12, 2628. [Google Scholar] [CrossRef]
- Cui, C.; Liu, Y.; Xia, B.; Jiang, X.; Skitmore, M. Overview of public-private partnerships in the waste-to-energy incineration industry in China: Status, opportunities, and challenges. Energy Strategy Rev. 2020, 32, 100584. [Google Scholar] [CrossRef]
- Patel, B.; Patel, A.; Patel, P. Waste to energy: A decision-making process for technology selection through characterization of waste, considering energy and emission in the city of Ahmedabad, India. J. Mater. Cycles Waste Manag. 2023, 25, 1227–1238. [Google Scholar] [CrossRef]
- Adnan, A.; Mahmud, S.; Uddin, M.R.; Modi, A.; Ehsan, M.M.; Salehin, S. Energy, Exergy, Exergoeconomic, and environmental (4E) analyses of thermal power plants for municipal solid waste to energy application in Bangladesh. Waste Manag. 2021, 134, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Bruno, M.; Abis, M.; Kuchta, K.; Simon, F.G.; Grönholm, R.; Hoppe, M.; Fiore, S. Material flow, economic and environmental assessment of municipal solid waste incineration bottom ash recycling potential in Europe. J. Clean. Prod. 2021, 317, 128511. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, L. Sustainable waste management and waste to energy: Valuation of energy potential of MSW in the Greater Bay Area of China. Energy Policy 2022, 163, 112857. [Google Scholar] [CrossRef]
- Amulen, J.; Kasedde, H.; Serugunda, J.; Lwanyaga, J.D. The potential of energy recovery from municipal solid waste in Kampala City, Uganda by incineration. Energy Convers. Manag. X 2022, 14, 100204. [Google Scholar] [CrossRef]
- Ali Usman, R.; Paramasivam, V.; Selvaraj, S.K. Some study on the potential energy extraction from solar-assisted solid waste for produce electricity in Adama city in Ethiopia. Mater. Today Proc. 2021, 46, 7537–7547. [Google Scholar] [CrossRef]
- Adami, L.; Schiavon, M.; Rada, E.C. Potential environmental benefits of direct electric heating powered by waste-to-energy processes as a replacement of solid-fuel combustion in semi-rural and remote areas. Sci. Total Environ. 2020, 740, 140078. [Google Scholar] [CrossRef]
- Yaman, C.; Anil, I.; Alagha, O. Potential for greenhouse gas reduction and energy recovery from MSW through different waste management technologies. J. Clean. Prod. 2020, 264, 121432. [Google Scholar] [CrossRef]
- Castigliego, J.R.; Pollack, A.; Cleveland, C.J.; Walsh, M.J. Evaluating emissions reductions from zero waste strategies under dynamic conditions: A case study from Boston. Waste Manag. 2021, 126, 170–179. [Google Scholar] [CrossRef]
- Behrsin, I. Controversies of justice, scale, and siting: The uneven discourse of renewability in Austrian waste-to-energy development. Energy Res. Soc. Sci. 2020, 59, 101252. [Google Scholar] [CrossRef]
- Thabit, Q.; Nassour, A.; Nelles, M. Potentiality of Waste-to-Energy Sector Coupling in the MENA Region: Jordan as a Case Study. Energies 2020, 13, 2786. [Google Scholar] [CrossRef]
- Lu, Y.T.; Lee, Y.M.; Hong, C.Y. Inventory Analysis and Social Life Cycle Assessment of Greenhouse Gas Emissions from Waste-to-Energy Incineration in Taiwan. Sustainability 2017, 9, 1959. [Google Scholar] [CrossRef]
- Li, H.X.; Edwards, D.J.; Hosseini, M.R.; Costin, G.P. A review on renewable energy transition in Australia: An updated depiction. J. Clean. Prod. 2020, 242, 118475. [Google Scholar] [CrossRef]
- Lonati, G.; Cambiaghi, A.; Cernuschi, S. The Actual Impact of Waste-To-Energy Plant Emissions On Air Quality: A Case Study From Northern Italy. Detritus 2019, 6, 77–84. [Google Scholar]
- Bandarra, B.S.; Silva, S.; Pereira, J.L.; Martins, R.C.; Quina, M.J. A Study on the Classification of a Mirror Entry in the European List of Waste: Incineration Bottom Ash from Municipal Solid Waste. Sustainability 2022, 14, 10352. [Google Scholar] [CrossRef]
- Pollans, L.B. Sustainability policy paradox: Coping with changing environmental priorities in municipal waste management. J. Environ. Policy Plan. 2019, 21, 785–796. [Google Scholar] [CrossRef]
- Oliveira, A.; Zero Waste Europe. The EU Is Clear: Waste-To-Energy Incineration Has No Place in the Sustainability Agenda. 2021. Available online: https://zerowasteeurope.eu/2021/05/wte-incineration-no-place-sustainability-agenda/ (accessed on 16 August 2023).
- Recupero, R.; Zero Waste Europe. Burning News: Waste-TO-ENERGY Is Not Sustainable as It Harms the Circular Economy. 2019. Available online: https://zerowasteeurope.eu/2019/09/waste-to-energy-is-not-sustainable/ (accessed on 16 August 2023).
- Mukherjee, C.; Denney, J.; Mbonimpa, E.G.; Slagley, J.; Bhowmik, R. A review on municipal solid waste-to-energy trends in the USA. Renew. Sustain. Energy Rev. 2020, 119, 109512. [Google Scholar] [CrossRef]
- Themelis, N.J.; Millrath, K. The Case for WTE as a Renewable Source of Energy. Proceedings of the 12th Annual North American Waste-to-Energy Conference, Savannah, GA, USA, 17–19 May 2004; 2008, pp. 15–22. [CrossRef]
- Wang, W.; Zhao, X.; Wang, J. Can support policies promote the innovative diffusion of waste-to-energy technology? Environ. Sci. Pollut. Res. 2022, 29, 55580–55595. [Google Scholar]
- Purwanta, W.; Augustine, T.; Octivia, R.; Fani, A.M.; Rifai, A. Study of circular economy potential in the Bantargebang waste-to-energy plant. IOP Conf. Ser. Earth Environ. Sci. 2022, 1017, 012031. [Google Scholar]
- World Bank. Trends in Solid Waste Management [Internet]. 2024. Available online: https://datatopics.worldbank.org/what-a-waste/trends_in_solid_waste_management.html (accessed on 13 June 2024).
- Sun, C.; Meng, X.; Ouyang, X.; Xu, M. Social cost of waste-to-energy (WTE) incineration siting: From the perspective of risk perception. Environ. Impact Assess. Rev. 2023, 102, 107204. [Google Scholar] [CrossRef]
- Zhou, Q.; Xu, M.; Liu, Y.; Cui, C.; Xia, B.; Ke, Y.; Skitmore, M. Exploring the effects of spatial distance on public perception of waste-to-energy incineration projects. Waste Manag. 2022, 143, 168–176. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, C.; Xia, B.; Cui, C.; Coffey, V. Impact of community engagement on public acceptance towards waste-to-energy incineration projects: Empirical evidence from China. Waste Manag. 2018, 76, 431–442. [Google Scholar] [CrossRef]
- Liu, Y.; Ge, Y.; Xia, B.; Cui, C.; Jiang, X.; Skitmore, M. Enhancing public acceptance towards waste-to-energy incineration projects: Lessons learned from a case study in China. Sustain. Cities Soc. 2019, 48, 101582. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, C.; Zhang, C.; Xia, B.; Chen, Q.; Skitmore, M. Effects of economic compensation on public acceptance of waste-to-energy incineration projects: An attribution theory perspective. J. Environ. Plan. Manag. 2020, 64, 1515–1535. [Google Scholar] [CrossRef]
- Fu, L.; Yang, Q.; Liu, X.; Wang, Z. Three-stage model based evaluation of local residents’ acceptance towards waste-to-energy incineration project under construction: A Chinese perspective. Waste Manag. 2021, 121, 105–116. [Google Scholar] [CrossRef]
- Lu, J.W.; Xie, Y.; Xu, B.; Huang, Y.; Hai, J.; Zhang, J. From NIMBY to BIMBY: An evaluation of aesthetic appearance and social sustainability of MSW incineration plants in China. Waste Manag. 2019, 95, 325–333. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tait, P.W.; Salmona, J.; Sandhu, M.; Guscott, T.; King, J.; Williamson, V. Economic, Environmental, and Sociopolitical Aspects of Waste Incineration: A Scoping Review. Sustainability 2025, 17, 5528. https://doi.org/10.3390/su17125528
Tait PW, Salmona J, Sandhu M, Guscott T, King J, Williamson V. Economic, Environmental, and Sociopolitical Aspects of Waste Incineration: A Scoping Review. Sustainability. 2025; 17(12):5528. https://doi.org/10.3390/su17125528
Chicago/Turabian StyleTait, Peter W., Joe Salmona, Mahakaran Sandhu, Thomas Guscott, Jonathon King, and Victoria Williamson. 2025. "Economic, Environmental, and Sociopolitical Aspects of Waste Incineration: A Scoping Review" Sustainability 17, no. 12: 5528. https://doi.org/10.3390/su17125528
APA StyleTait, P. W., Salmona, J., Sandhu, M., Guscott, T., King, J., & Williamson, V. (2025). Economic, Environmental, and Sociopolitical Aspects of Waste Incineration: A Scoping Review. Sustainability, 17(12), 5528. https://doi.org/10.3390/su17125528